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Table S1. Comparison of three different GelMA synthesis methods 

 

Parameters 
Buffer and 

molarity 
pH 

adjustment 

MAA/ 
Gelatin 
(mL/g) 

Gelatin 
conc. 

(w/v %) 

Reaction 
time (h) 

Reaction 
temperature 

(°C) 
DS (%) 

Conventional 
Methods 

PBS NA  (0.8-2)/1  10 1-3 50 >85 

Sequential Method CB 0.1 M 
pH 9 

(multiple)  
total 0.1/1 
(multiple) 

10  3 50 97 

Facile One-pot 
Method 

CB 0.25 M 
pH 9  

(one-time) 
0.1/1 

(one-time) 
10-20  1 35-50 96 

 

  



Review of previous studies 
 

 
 

Figure S1. Comparison of DS versus MAA/gelatin feed ratio between 

conventional studies using PBS as a buffer without employment of pH 

adjustment (closed square) and facile one-pot synthesis (open circle). It indicates 

that the conventional method of GelMA synthesis has little controllability over DS.  

Each label corresponds to its related reference.1-20 Some of the values were 

obtained from NMR measurement.5,10,11,13,14,18-20 It is reported that NMR 

measurement tends to result in a higher DS value compared to colorimetric 

assays (e.g. TNBS).21    

  



NMR results of time-dependent DS monitoring of GelMA synthesis through 

direct freeze-drying  

 

 
Figure S2. NMR spectra of samples, taken during GelMA synthesis conducted at 

standard conditions; CB (0.25 M), initial pH adjustment at pH 9, MAA/gelatin (0.1 

mL/g), gelatin concentration at 10 w/v %, reaction temperature at 50 °C. Peaks at 

around 2.8 ppm, which correspond to methylene protons (2H) of unreacted lysine 

groups, disappeared almost completely after 60 min. 

  



 
 

Figure S3. (A) Enlarged spectra of time-dependent NMR samples (Figure S2). 

Peak  at 5.35 ppm corresponds to an acrylic proton in methacrylated grafts of 

GelMA, and peak  at 5.25 ppm corresponds to an acrylic proton in the 

byproduct, methacrylic acid (MA). (B) Integrated NMR peaks of  and . All the 

integrations are normalized to peaks of aromatic groups at around 7.2 ppm. 

Methacrylation reached a plateau after 60 min whereas production of methacrylic 

acid increased slightly. These results support that the GelMA reaction can be 

complete within 1 h. Also it suggests that there is a small amount of  unreacted 

MAA after 1 h, being hydrolyzed further.  



Mechanical properties of GelMA hydrogels 
 

 
 

Figure S4. (A) Storage modulus of GelMA samples (30 w/v % in distilled 

watercontaining 1 w/v % I2959) with different DS. Strain was applied at 2% at 

frequency of 0.1-10 Hz during the measurement. (B) Demonstration of 

deformation of cylindrical-shaped GelMA hydrogels, (top) without load and 

(bottom) with a 1 N normal force applied. Plus (+) in DS denotes additional 

methacryloylation of  the pendant hydroxyl group.  
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