The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise

Riki Ogasawara^{1,2,*}, Satoshi Fujita³, Troy A. Hornberger⁴, Yu Kitaoka², Yuhei Makanae³, Koichi Nakazato⁵, Naokata, Ishii²

¹Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan

²Department of Life Sciences, The University of Tokyo, Tokyo, Japan

³Department of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan

⁴Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA

⁵Department of exercise physiology, Nippon Sport Science University, Tokyo, Japan

*ogasawara.riki@nitech.ac.jp

Figure S1. The effect of acute RE and rapamycin administration on mRNA expression of β -actin, GAPDH, and β 2-microgloblin. RE, resistance exercise; RAPA, rapamycin; PLA, placebo. Values in the graphs are means + SE. **P*<0.05 vs. no exercise control muscle in the same group.

Fig. S2

Figure S2. The effect of RE and rapamycin administration on the phosphorylation and total protein content of ERK1/2 and p38 MAPK. RE, resistance exercise; RAPA, rapamycin; PLA, placebo. Values in the graphs are means + SE. *P<0.05 vs. no exercise control muscle in the same group.