Supplementary Online Content

Jain N, Jia Y, Gao SS, et al. Optical coherence tomography angiography in choroideremia: correlating choriocapillaris loss with overlying degeneration. *JAMA Ophthalmol*. Published online May 5, 2016. doi:10.1001/jamaophthalmol.2016.0874.

eTable. Electroretinography results and normative ranges. **eFigure.** Spatial correlation of atrophy at different tissue layers in a man in his late 40s (top row) and a man in his mid-30s with more advanced disease (bottom row).

This supplementary material has been provided by the authors to give readers additional information about their work.

© 2016 American Medical Association. All rights reserved.

eTable. Electroretinography results and normative ranges.

Subject	Eye	Gender	Age at time of ERG	Photopic 6.0 (μV)		Scotopic 0.01 (µV)		Scotopic 6.0 (µV)	
				b-wave amplitude (μV)	Normal range (μV)	b-wave amplitude (μV)	Normal range (μV)	b-wave amplitude (μV)	Normal range (μV)
CHM02	OD	М	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	OS	М	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CHM03	OD	F	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	OS	F	n/a	n/a	n/a	n/a	n/a	n/a	n/a
CHM04	OD	М	34	0	111-309	0	250-473	0	450-725
	OS	М	34	0	111-309	0	250-473	0	450-725
CHM05	OD	F	47	142	85-278	363	212-436	565	411-686
	OS	F	47	110	85-278	151	212-436	340	411-686
CHM06	OD	М	41	15	95-288	24	225-448	37	424-699
	OS	Μ	41	11	95-288	16	225-448	22	424-699
CHM07	OD	М	43	17	95-288	29	225-448	66	424-699
	OS	М	43	17	95-288	30	225-448	75	424-699
CHM08	OD	М	8	286	164-362	350	313-536	618	514-790
	OS	М	8	226	164-362	240	313-536	528	514-790
CHM09	OD	Μ	12	41	153-352	23	300-524	83	501-777
	OS	Μ	12	41	153-352	21	300-524	104	501-777
CHM10	OD	М	7	81	102-276	26	155-409	159	290-634
	OS	М	7	85	102-276	26	155-409	163	290-634

© 2016 American Medical Association. All rights reserved.

eFigure. Spatial correlation of atrophy at different tissue layers in a man in his late 40s (top row) and a man in his mid-30s with more advanced disease (bottom row).

(A, B) Central island of relatively preserved EZ, measuring 23.0 mm² and 6.0 mm², respectively. Pseudopodial extensions are longer in the eye with more advanced disease. (C,D) Co-registered fundus autofluorescence image demonstrating region of preserved RPE, measuring 19.6 mm² and 3.8 mm², respectively. (E,F) Manual delineation of margins of perserved EZ (cyan tracing) and RPE (black and white) demonstrates that RPE loss is more extensive than EZ loss. (G, H) Margins of CC degeneration are less well defined, particularly in milder disease. There is no apparent preservation of CC associated with pseudopodial extensions of EZ.

© 2016 American Medical Association. All rights reserved.