Supporting Information

Charge Transport Network Dynamics in Molecular Aggregates

Nicholas E. Jackson¹, Lin X. Chen^{1,2}, Mark A. Ratner¹

¹Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, United States. ² Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

Table of Contents:

- 1. Simulation Box Protocols
- 2. OPLS Force-Field Parameters
- 3. Relevant Input Files for LAMMPS
- 4. Figure 3 Fits
- 5. Transfer Integral TCF & Fourier Transform
- 6. TCF of Matrix Spectral Norm
- 7. Correlations between Kirchoff Index and Zero-Field Mobilities Using a Kinetic Monte Carlo Model

Simulation Box Protocol

Since this manuscript is primarily concerned with network methodological development for analyzing amorphous systems, our simulation procedure is not overly concerned with identifying the lowest energy non-crystalline morphology possible. If this were the case, a longer (~microseconds) and more gradual morphology simulation would be required. However, for the purposes of our short-time electronic dynamics (~20 ps), the following procedure is sufficient for generating a morphology required for electronic structure analysis.

Disordered PDI

- 1. A cubic box of length 100 Angstroms was randomly packed with 64 PDI molecules possessing random locations and orientations.
- A force minimization is done in combination with a box compression to increase the density of the initially diffusely packed box, while simultaneously removing any bad contacts. This is followed by a brief (<20 ps) NVE run to reinitialize the packing of the box.
- 3. Another force minimization with box compression is performed to further compress the box to within a factor of 2 of the expected density. This is once again followed by a brief 20 ps NVE re-initialization of the box geometry.

- 4. A 100 ps NPT heating run is performed at 1 atm from 10K to 550K, the annealing temperature. The velocity distribution is randomly initialized according to the Boltzmann distribution.
- 5. A 10 ns NPT annealing run at 550K
- 6. A 10 ns NPT cooling run from 550K to 298 K.
- 7. A 10 ns NPT equilibration run at 298K.
- 8. A 1 ns NVT equilibration run at the average box volume of the previous 10 ns run.
- 9. A 100 ps NVE equilibration.
- 10. A 20 ps NVE sampling run, where the data in the manuscript is taken at 10 fs intervals.

Disordered bBDT(TDPP)₂

- 11. A cubic box of length 100 Angstroms was randomly packed with 100 BTI molecules possessing random locations and orientations.
- 12. A force minimization is done in combination with a box compression to increase the density of the initially diffusely packed box, while simultaneously removing any bad contacts. This is followed by a brief (<20 ps) NVE run to reinitialize the packing of the box.
- 13. Another force minimization with box compression is performed to further compress the box to within a factor of 2 of the expected density. This is once again followed by a brief 20 ps NVE re-initialization of the box geometry.
- 14. A 100 ps NPT heating run is performed at 1 atm from 10K to 550K, the annealing temperature. The velocity distribution is randomly initialized according to the Boltzmann distribution.
- 15. A 10 ns NPT annealing run at 550K
- 16. A 10 ns NPT cooling run from 550K to 298 K.
- 17. A 10 ns NPT equilibration run at 298K.
- 18. A 1 ns NVT equilibration run at the average box volume of the previous 10 ns run.
- 19. A 100 ps NVE equilibration.
- 20. A 20 ps NVE sampling run, where the data in the manuscript is taken at 10 fs intervals.

Crystalline bBDT(TDPP)₂

- 21. The unit cell of bBDT(TDPP) $_{2w}$ was repeated in a 5x5x2 block composed of 100 molecules, and a simulation cell corresponding to the appropriate unit cell was constructued.
- 22. A force minimization is done to remove bad contacts. This is followed by a brief (<20 ps) NVE run to reinitialize the packing of the box.
- 23. A 100 ps NPT heating run is performed at 1 atm from 10K to 550K, the annealing temperature. The velocity distribution is randomly initialized according to the Boltzmann distribution.

- 24. A 10 ns NPT annealing run at 550K
- 25. A 10 ns NPT cooling run from 550K to 298 K.
- 26. A 10 ns NPT equilibration run at 298K.
- 27. A 1 ns NVT equilibration run at the average box volume of the previous 10 ns run.
- 28. A 100 ps NVE equilibration.
- 29. A 20 ps NVE sampling run, where the data in the manuscript is taken at 10 fs intervals.

OPLS Force-Field Parameters

Since standard OPLS force-field parameters do not accurately describe the atomic geometry, atomic partial charges, and dihedral angles of PDI and bBDT(TDPP)₂, many of these values were parameterized by hand using quantum-chemical calculations. All bond distances and angle values were taken from the B3LYP/6-31G** geometry optimized structures. Atomic partial charges were determined by performing B3LYP/6-31G** CHelpG calculations on the geometry optimized structure. Improper dihedral angles were selected to rigidify the pi-system. The specific OPLS2009 parameters provided below are taken from the TINKER .prm files, as they are presented in an easily digestible format.

PDI

3 3

atom	907	110 N "PDI N1 class 35" 7 14.007 3
atom	908	111 C "PDI C2 class 3" 6 12.011 3
atom	909	112 C "PDI C3 class 38" 6 12.011 3
atom	910	113 C "PDI C4 class 38" 6 12.011 3
atom	911	114 C "PDI C5 class 38" 6 12.011
atom	912	115 C "PDI C6 class 38" 6 12.011
atom	913	116 C "PDI C7 class 38" 6 12.011 3
atom	914	117 C "PDI C8 class 38" 6 12.011 3
atom	915	118 0 "PDI 09 class 4" 8 15.999 1
atom	916	13 C "PDI C10 class 13" 6 12.011 4
atom	917	39 H "PDI H11 class 39" 1 1.008 1
atom	918	39 H "PDI H12 class 39" 1 1.008 1
bond	110	111 490.00 1.409
bond	110	13 337.00 1.497
bond	111	112 400.00 1.484
bond	112	113 469.00 1.385
bond	113	114 469.00 1.399
bond	114	115 469.00 1.396
bond	115	116 469.00 1.431
bond	116	117 469.00 1.429
bond	111	118 570.00 1.225
bond	115	115 469.00 1.470
bond	112	117 469.00 1.414
bond	113	39 367.00 1.083
bond	114	39 367.00 1.083
angle	111	110 111 70.00 123.8
angle	111	110 13 50.00 117.0
angle	110	111 112 70.00 117.3
angle	110	111 118 80.00 121.4
angle	112	111 118 80.00 121.3
angle	111	112 113 85.00 119.3
angle	111	112 117 85.00 121.1
angle	113	112 117 63.00 119.6

angle angle angle angle	112 112 114 113	113 113 113 114	114 63.00 120.4 39 35.00 118.7 39 35.00 120.9 115 63.00 121.9
angle	115	114	39 35.00 117.8
angle	113	114	115 63 00 122 4
angle	114	115	116 63.00 118.5
angle	115	115	116 63.00 119.1
angle	115	116	115 63.00 121.8
angle	115	116	117 63.00 119.1
angle	112	11/ 117	112 63.00 119.3 116 63.00 120.4
angle	112	13	13 80.00 111.7
angle	110	13	36 35.00 103.1
torsion	111	110	111 112 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	111	110	111 118 0.000 0.01 2.100 180.0 2 0.000 0.03
torsion	13	110	111 112 0.000 0.01 7.250 180.02 0.000 0.03
torsion	13	110	111 118 0.000 0.01 2.100 180.0 2 0.000 0.03
torsion	111	110	
torsion	111	110	13 36 0.000 0.0 1 0.000 180.0 2 0.000 0.0 3
torsion	110	111	112 113 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	110	111	112 117 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	118	111	112 113 0.000 0.01 2.100 180.0 2 0.000 0.03
torsion	118	111	112 117 0.000 0.01 2.100 180.02 0.000 0.03
torsion	111 111	112 112	113 114 0.000 0.01 7.250 180.02 0.000 0.03 113 39 0.000 0.01 7.250 180.02 0.000 0.03
torsion	117	112	113 39 0.000 0.01 7.250 180.02 0.000 0.03 113 39 0.000 0.01 7.250 180.02 0.000 0.03
torsion	111	112	117 112 0.000 0.01 7.250 180.02 0.000 0.03
torsion	111	112	117 116 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	117	112	113 114 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	113	112	117 112 0.000 0.0 1 7.250 180.0 2 0.000 0.0 3
torsion	113	112	117 116 0.000 0.01 7.250 180.02 0.000 0.03
torsion	112	113	114 115 0.000 0.01 7.250 180.02 0.000 0.03 114 20 0.000 0.01 7.250 180.02 0.000 0.02
torsion	112 39	113	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
torsion	39	113	111 113 0.000 0.01 7.250 100.02 0.000 0.03 113 39 0.000 0.01 7.250 180.02 0.000 0.03
torsion	39	113	114 39 0.000 0.01 7.250 180.0 2 0.000 0.0 3
torsion	113	114	115 115 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	113	114	115 116 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	39	114	115 115 0.000 0.01 7.250 180.02 0.000 0.03
torsion	39	114	115 116 0.000 0.01 7.250 180.02 0.000 0.03 115 114 0.000 0.01 7.250 180.02 0.000 0.02
torsion	114	115	115 114 0.000 0.01 7.250 180.02 0.000 0.03 115 116 0.000 0.01 7.250 180.02 0.000 0.03
torsion	114	115	115 116 0.000 0.01 7.250 100.02 0.000 0.03 116 117 0.000 0.01 7.250 180.02 0.000 0.03
torsion	116	115	115 116 0.000 0.01 7.250 180.02 0.000 0.03
torsion	114	115	116 115 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	115	115	116 115 0.000 0.01 7.250 180.0 2 0.000 0.03
torsion	115	115	116 117 0.000 0.01 7.250 180.02 0.000 0.03
torsion	115	116	117 112 0.000 0.01 7.250 180.02 0.000 0.03 12 12 0.845 0.01 0.062 180.02 0.712 0.02
torsion	110	13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
charge	907	-0.148	15 50 0.000 0.01 0.000 100.02 0.101 0.05
charge	908	0.534	
charge	909	-0.270	
charge	910	0.010	
charge	911	-0.220	
charge	912	0.060	
charge	915 914	0.050	
charge	915	-0.480	
charge	916	0.040	
charge	917	0.120	
charge	918	0.140	
vdw	907	3.2500 0	.1700
vdw	908	3.75000	.1050
vuw	909 910	3.55000	0700
v u vv	10	5.55000	

vdw	911	3.55	00 0.0700					
vdw	912	3.55	00 0.0700					
vdw	913	3.55	00 0.0700					
vdw	914	3.55	00 0.0700					
vdw	915	2.96	00 0.2100					
vdw	916	3.5000 (0.0660					
vdw	917	2.4200	0.0300					
vdw	918	2.4200	0.0300					
torsion	3 35	3 38 0	000 0.0 1	7.250 180	0.0 2	0.000 0.0	03	
torsion	3 35	34	0.000	0.0 1	7.250	180.0 2	0.000 0.0	3
torsion	13 35	3 38	0.000	0.0 1	0.000	180.0 2	0.000 0.0	3
imptors	111 112	113 114	0.000	0.0 1	0.001	180.0 2	0.000 0.0	3
imptors	0 0 1	11 118	$0.000\ 0.0\ 1$	7.250 180.0	2 0.000	0.0 3		

bBDT(TDPP)₂

atom	907 10	1 S "Thiopl	hene1 S" 16 32.060 2
atom	908	102 Cd "7	Thiophene1 C2" 6 12.011 3
atom	909	103 CS "1	'hiophene1 C3" 6 12.011 3
atom	910	104 CS "1	'hiophene1 C4" 6 12.011 3
atom	911	105 Cd "7	Thiophene1 C5" 6 12.011 3
atom	912	106 HA "'	Thiophene1 H1" 1 1.008 1
charge	907 0.0	3	
charge	908 -0.1	.8	
charge	909 -0.1	.7	
charge	910	-0.12	
charge	911 0.0	3	
charge	912 0.1	6	
vdw	907 3.5	500 0.250	0
vdw	908 3.5	500 0.070	0
vdw	909	3.5500	0.0700
vdw	910 3.5	500	0.0700
vdw	911	3.5500	0.0700
vdw	912 2.4	200	0.0300
atom	913 107	V NA "diKe	toPyrrole N" 7 14.007 3
atom	914 108	3 CW "diKe	toPyrrole C2O" 6 12.011 3
atom	915	109 CW "o	diKetoPyrrole C3" 6 12.011 3
atom	916	110 CN "d	liKetoPyrrole C4" 6 12.011 3
atom	917	111 0 "di	KetoPyrrole C=0" 8 15.999 1
atom	918	13 CT "di	KetoPyrrole SC-CH2" 6 12.011 4
charge	913 -0.2	21	
charge	914 0.5	0	
charge	915 0.1	2	
charge	916 -0.2	25	
charge	917 -0.5	50	
charge	918	0.10	
vdw	913	3.2500 0.	1700
vdw	914 3.5	500 0.070	0
vdw	915 3.5	500	0.0700
vdw	916	3.5500	0.0700

vdw	917	2.9600 0.2100
vdw	918	3.5500 0.0700
atom	919	101 S "Thiophene2 S" 16 32.060 2
atom	920	102 Cd "Thiophene2 C2" 6 12.011 3
atom	921	103 CS "Thiophene2 C3" 6 12.011 3
atom	922	104 CS "Thiophene2 C4" 6 12.011 3
atom	923	105 Cd "Thiophene2 C5" 6 12.011 3
atom	924	106 HA "Thiophene2 H1" 1 1.008 1
charge	919	-0.10
charge	920 0.1	12
charge	921 -0.2	26
charge	922 -0.3	15
charge	923 0.1	13
charge	924 0.1	16
vdw	919 3.5	5500 0.2500
vdw	920 3.5	5500 0.0700
vdw	921 3.5	5500 0.0700
vdw	922 3.5	5500 0.0700
vdw	923 3.5	5500 0.0700
vdw	924 2.4	4200 0.0300
atom	925 11	2 S "BDT S" 16 32.060 2
atom	926	113 C "BDT C1" 6 12.011 3
atom	927	114 C "BDT C2" 6 12.011 3
atom	928 11	5 C "BDT C3" 6 12.011 3
atom	929	116 C "BDT C4" 6 12.011 3
atom	930	117 C "BDT C5" 6 12.011 3
atom	931	118 C "BDT SC C6" 6 12.011 4
atom	932	119 HA "BDT H1" 1 1.008 1
charge	925	-0.03
charge	926	-0.10
charge	927	-0.120001
charge	928 0.0	000001
charge	929 0.0)5
charge	930	-0.10
charge	931 0.1	10
charge	932 0.1	19
vdw	925 3.5	5500 0.2500
vdw	926	3.5500 0.0700
vdw	927	3.5500 0.0700
vdw	928	3.5500 0.0700
vdw	929	3.5500 0.0700
vdw	930	3.5500 0.0700
vdw	931	3.5500 0.0700
vdw	932	2.4200 0.0300
#thio1		
bond	101 10	2 250.00 1.727

bond	102	103 546.00 1.371
bond	103	104 546.00 1.416
bond	104	105 546.00 1.389
bond	105	101 250.00 1.764
bond	102	106 367.00 1.08
bond	103	106 367.00 1.08
bond	104	106 367.00 1.08
bond	109	102 546.00 1.440
angle	102	101 105 74.00 91.8
angle	101	102 103 70.00 111.9
angle	101	102 106 35.00 119.6
angle	103	102 106 35.00 128.5
angle	102	103 104 70.00 113.1
angle	102	103 106 35.00 123.4
angle	104	103 106 35.00 123.6
angle	103	104 105 70.00 113.5
angle	103	104 106 35.00 124.6
angle	105	104 106 35.00 121.9
angle	101	105 104 70.00 109.7
#DPP		
bond	105 10	09 546.00 1.442
bond	107	108 427.00 1.434
bond	107	109 427.00 1.395
bond	108	110 546.00 1.445
bond	109	110 546.00 1.398
bond	110	110 546.00 1.420
bond	108	111 570.00 1.230
bond	107	13 337.00 1.461
angle	101	105 109 70.00 105.9
angle	104	105 109 70.00 124.4
angle	108	107 109 64.00 111.5
angle	108	107 13 70.00 118.4
angle	109	107 13 70.00 130.1
angle	107	108 110 70.00 104.2
angle	107	108 111 80.00 122.2
angle	110	108 111 80.00 133.6
angle	107	109 102 70.00 127.1
angle	107	109 110 70.00 106.6
angle	110	109 102 70.00 126.3
angle	105	109 107 70.00 127.0
angle	105	109 110 70.00 126.3
angle	108	110 109 70.00 142.3
angle	108	110 110 70.00 108.2
angle	109	110 110 70.00 109.5
angle	107	13 13 58.35 113.0

angle	109	102	101	70.00 125.9					
angle	109	102	103	70.00 125.8					
#BDT									
bond	105	113	546	.00 1.441					
bond	112	113	250	.00 1.771					
bond	113	114	546	.00 1.373					
bond	114	115	546	.00 1.432					
bond	115	116	546	.00 1.414					
bond	116	112	250	.00 1.751					
bond	116	116	546	.00 1.393					
bond	115	117	546	.00 1.432					
bond	117	118	469	.00 1.518					
bond	117	117	546	.00 1.395					
bond	114	119	367	.00 1.080					
bond	118	13 3	367.	00 1.080					
bond	118	36 2	268.	00 1.529					
angle	101	105	113	70.00 120.9					
angle	104	105	113	70.00 128.8					
angle	113	112	116	74.00 90.9					
angle	105	113	112	70.00 119.9					
angle	105	113	114	70.00 128.7					
angle	112	113	114	70.00 111.3					
angle	113	114	115	70.00 114.5					
angle	113	114	119	35.00 125.9					
angle	115	114	119	35.00 123.6					
angle	114	115	116	70.00 111.0					
angle	114	115	117	70.00 128.0					
angle	116	115	117	70.00 121.0					
angle	112	116	115	70.00 112.3					
angle	112	116	116	70.00 128.3					
angle	115	116	116	70.00 119.7					
angle	115	117	117	70.00 119.2					
angle	115	117	118	70.00 117.6					
angle	117	117	118	70.00 123.2					
angle	117	118	36	35.00 107.0					
angle	13	118	36	35.00 107.0					
angle	118 13	13 !	58.3	5 113.0					
angle	118	13	36 3	35.00 107.0					
angle	117	117	13	70.00 123.2					
angle	36	118	36	33.00 107.8					
angle	117 118	3 13	58.3	35 112.7					
#torsion									
torsion	0 103	104	0	0.000 0.0 1	7.250	180.0 2	0.000 0.0 3	0.000	180.0 4
torsion	0 102	103	0	0.000 0.0 1	7.250	180.0 2	0.000 0.0 3	0.000	180.0 4
torsion	0 101	102	0	0.000 0.0 1	7.250	180.0 2	0.000 0.0 3	0.000	180.0 4
torsion	0 101	105	0	0.000 0.0 1	7.250	180.0 2	0.000 0.0 3	0.000	$180.0\ 4$

torsion	0 104	105	0	0.000 0.0	1 7.250 180.0 2 0.000 0.0 3 0.000 180.0 4	
torsion	0 101	102	0	0.000 0.0	$1 \hspace{0.1in} 7.250 \hspace{0.1in} 180.0 \hspace{0.1in} 2 \hspace{0.1in} 0.000 \hspace{0.1in} 0.0 \hspace{0.1in} 3 \hspace{0.1in} 0.000 \hspace{0.1in} 180.0 \hspace{0.1in} 4$	
#DIHEDR	AL THIO 1					
torsion	101	105	109	107	0.000 0.0 1 0.000 180.0 2 0.000 0.0 3 0.000 1	80.0 4
torsion	104	105	109	107	0.000 0.0 1 0.000 180.0 2 0.000 0.0 3 0.000 1	80.0 4
#torsion	104	105	109	110	-2.017 0.0 1 8.394 180.0 2 -1.725 0.0 3 0.151 1	80.0 4
torsion	104 105 1	109 1	10 -1	1.906 0.0 1	8.514 180.0 2 -1.613 0.0 3 0.271 180.0 4	
torsion	101	105	109	110	0.000 0.0 1 0.000 180.0 2 0.000 0.0 3 0.000 1	80.0 4
#						
torsion	0	107	108	0	0.000 0.0 1 7.250 180.0 2 0.000 0.0 3 0.000 1	80.0 4
torsion	0 107	109	0	0.000 0.0	1 7.250 180.0 2 0.000 0.0 3 0.000 180.0 4	
torsion	0	107	13	13	1.000 0.0 1 -0.350 180.0 2 0.000 0.0 3 0.000 1	80.0 4
torsion	0 13	13 10	07	0.000 0.0	1 0.000 180.0 2 0.462 0.0 3 0.000 180.0 4	
torsion	0	107	13	36 0.000	0.0 1 0.000 180.0 2 0.000 0.0 3 0.000 180.0 4	
torsion	0	108	110	0	$0.000\ 0.0\ 1\ 10.750\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	0	110	110	0	$0.000\ 0.0\ 1\ 10.750\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	0	109	110	0	$0.000\ 0.0\ 1\ 10.750\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
#DIHEDR	AL THIO 2					
torsion	107	109	102	101 0.000	0 0.0 1 0.000 180.0 2 0.000 0.0 3	
torsion	107	109	102	103	0.000 0.0 1 0.000 180.0 2 0.000 0.0 3	
torsion	110	109	102	101	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.000\ 0.0\ 3$	
torsion	110	109	102	103	-2.100 0.0 1 8.536 180.0 2 -1.840 0.0 3 -0.009 180.0 4	
#						
#DIHEDR	AL 3 THIO	-BDT				
torsion	101	105	113	112	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.000\ 0.0\ 3$	
torsion	101	105	113	114	0.133 0.0 1 2.754 180.0 2 -0.195 0.0 3 -1.011 180.0 4	
torsion	104	105	113	112	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.000\ 0.0\ 3$	
torsion	104	105	113	114	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.000\ 0.0\ 3$	
#						
torsion	0 112	113	0 0	.000 0.0 1	7.250 180.0 2 0.000 0.0 3	
torsion	0	112	116	0	$0.000\; 0.0\; 1 \;\; 7.250\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	
torsion	0	113	114	0	$0.000\ 0.0\ 1\ \ 7.250\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	0	114	115	0	$0.000\; 0.0\; 1 \;\; 7.250\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	
torsion	0	115	116	0	$0.000\ 0.0\ 1\ \ 7.250\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	0	115	117	0	$0.000\ 0.0\ 1\ \ 7.250\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	0	116	116	0	$0.000\; 0.0\; 1 \;\; 7.250\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	
torsion	0	117	117	0	$0.000\; 0.0\; 1 \;\; 7.250\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	
torsion	0	117	118	13	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.000\ 0.0\ 3$	
torsion	0	117	118	36	$0.000\; 0.0\; 1 \;\; 0.000\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	
torsion	0	118	13	13	1.000 0.0 1 -0.350 180.0 2 0.000 0.0 3	
torsion	118	13	13 1	13	$1.300\ 0.0\ 1\ \text{-}0.050\ 180.0\ 2\ \ 0.000\ 0.0\ 3$	
torsion	118	13	13 3	36	$0.000\; 0.0\; 1 \;\; 0.000\; 180.0\; 2 \;\; 0.300\; 0.0\; 3$	
torsion	36	118	13	36	$0.000\ 0.0\ 1\ 0.000\ 180.0\ 2\ 0.300\ 0.0\ 3$	
torsion	117	118	13	36	$0.000\; 0.0\; 1 \;\; 0.000\; 180.0\; 2 \;\; 0.000\; 0.0\; 3$	

#these parameters are just for refitting purposes

bond 109 106 367.0 1.08

bond 116	13 545.0	1.51					
bond 113	106 367.0	0 1.08					
bond 117	13 545.0	1.51					
angle 110	109 106	35.00 130.	4				
angle 106	109	107 35.00) 120.9				
angle 115	117	13 70.00	120.5				
angle 114	113	106 35.00) 127.7				
angle 106	113	112 70.00) 119.3				
angle 117	13	36 35.00	112.5				
torsion	115 117	13 36 0.0	000 0.0 1 0	.000 180.0	2 0.000 0	.0 3	
torsion	117 117	13	36 0.000 0	0.0 1	0.000 180	0.0 2	0.000 0.0 3
imptors	0 0 1 1	0 0 0.000	0.0 1	5.000 180	.0 2	0.000 0.0	3

Example Input File for Disordered PDI

Control file

------ Init Section ------

include "box_of_PDI_label_min.in.init"

----- Atom Definition Section -----

read_data "box_of_PDI_label_min.data"

----- Setting Section -----

include "box_of_PDI_label_min.in.settings"

------ Run Section -----

#USING RATTLE TO GET TIMESTEP OF 2 thermo 1000 thermo_style custom step dt temp press vol etotal ke pe ebond eangle edihed eimp evdwl ecoul elong density neigh_modify delay 0 every 1 check yes page 1000000 one 100000 run_style verlet

#QUICK COMPRESS TO CLEAN UP THE SIMULATION BOX dump 1 all atom 1000 min.dump fix 1 all box/relax iso 10000000.0 vmax 0.01 minimize 1.0e-6 1.0e-6 20000 200000 unfix 1 undump 1

#NVE EQUILIBRATION RUN (20 ps) timestep 1 fix 2 all nve/limit 0.01 run 20000 unfix 2

#Second Compression Minimization fix 3 all box/relax iso 1000000.0 vmax 0.01 minimize 1.0e-6 1.0e-6 20000 200000 unfix 3

#Second NVE Equil timestep 1 fix 4 all nve/limit 0.01 run 20000 unfix 4

#Heating up timestep 2 neigh_modify delay 5 every 1 check yes page 1000000 one 100000 fix 5 all npt temp 10.0 550.0 100.0 iso 1.0 1.0 1000 fix 15 all rattle 0.0001 20 0 m 1.008 run 50000 unfix 15 unfix 5 #ANNEALING RUN (550K for 2 ns) fix 6 all npt temp 550.0 550.0 100.0 iso 1.0 1.0 1000 fix 16 all rattle 0.0001 20 0 m 1.008 run 5000000 unfix 16 unfix 6 #COOLING (550K - 298K over 100 ps) fix 7 all npt temp 550.0 298.0 100 iso 1.0 1.0 1000 fix 17 all rattle 0.0001 20 0 m 1.008 run 5000000 unfix 17 unfix 7 #SIMULATION (nPT for 6 ns; 1 ns snapshots) dump 8 all atom 1000000 equil.dump fix 8 all npt temp 298.0 298.0 100 iso 1.0 1.0 1000 fix 18 all rattle 0.0001 20 0 m 1.008 run 5000000 unfix 18 unfix 8 undump 8 #NVT Run (nVT for 2 ns) fix 200 all nvt temp 298.0 298.0 100 fix 201 all rattle 0.0001 20 0 m 1.008 run 500000 unfix 201 unfix 200 **#NVE Equil** timestep 1 fix 700 all nve run 50000 unfix 700 #SAMPLING (NVE for 20 ps; 10 fs snapshots) timestep 1 dump 100 all atom 10 sample.dump fix 100 all nve run 20000 unfix 100 undump 100 #END OF RUN SECTION # .init file

angstroms,kCal/mol,Daltons,Kelvin units real atom_style full # select column format for Atoms section # cutoffLJ cutoff_coulomb pair_style lj/cut/coul/long 10.0 10.0 bond_style harmonic #parameters needed: k bond, r0 angle_style harmonic #parameters needed: k_theta, theta0 dihedral_style opls improper_style cvff pppm 0.0001 # long-range electrostatics sum method kspace_style #using Lorenz-Berthelot mixing rules pair_modify mix arithmetic

Simulation Details

The data of Figure 3 was fit using the Optimize.curve_fit routine in Scipy. This routine employ a non-linear least squares to fit a function, f, to the data. The data was fit to the form:

$TCF(t) = A1^{*}exp(-b1^{*}t) + A2^{*}exp(-b2^{*}t)$

The optimal values of the fitting parameters were the following:

Disordered PDI

A1, A2, b1, b2 [0.49960115 0.48670783 0.00526324 0.03193688]

and the covariance matrix was:

[[9.02869987e-05	-7.80417345e-05	6.92676478e-07	8.72171357e-06]
[-7.80417345e-05	9.45332078e-05	-6.16078009e-07	-5.73017840e-06]
[6.92676478e-07	-6.16078009e-07	6.30505437e-09	6.06600711e-08]
[8.72171357e-06	-5.73017840e-06	6.06600711e-08	1.19407013e-06]]

Disordered bBDT(TDPP)₂

A1, A2, b1, b2 [0.4235485 0.57582765 0.18934241 0.01063638]

and the covariance matrix was:

[[2.11630)386e-04 -1.102	262518e-04 -1.17	/334933e-04 -1.898	22556e-06]
[-1.10262	2518e-04 1.110	650354e-04 1.42	2336942e-04 1.918	05797e-06]
[-1.17334	1933e-04 1.423	336942e-04 4.19	9904609e-04 2.247	95900e-06]
[-1.89822	2556e-06 1.918	805797e-06 2.24	1795900e-06 4.803	74715e-08]]

Crystalline bBDT(TDPP)₂

A1, A2, b1, b2 [0.80770858 0.14074453 0.01317332 0.00311807]

and the covariance matrix was:

]]]	3.77322746e-04	-3.76912356e-04	-6.12503629e-06	-5.15227374e-06]
[-3.76912356e-04	4.25922587e-04	7.81860648e-06	5.69374574e-06]
[-6.12503629e-06	7.81860648e-06	1.76896233e-07	9.63502632e-08]
[-5.15227374e-06	5.69374574e-06	9.63502632e-08	8.46924134e-08]]

Local TCF Fourier Transform

Figure S1 – Fourier spectrum of the ensemble averaged time-correlation function of the intermolecular electronic coupling between PDI LUMO's.

TCF of Matrix Spectral Norm

To quantify how the self-similarity of the graph representing the charge transport network of the molecular aggregate evolves as a function of time, we compute a time-correlation function of the adjacency matrix spectral norm defined below. TCF reveals a decorrelation timescale of ~ 100 fs, in agreement with the qualitative assignments derived from visual inspection of Figure 2 in the manuscript.

$$C_{ij}(\tau) = \lim_{T \to \infty} \int_{0}^{T} \frac{SpecNorm[A(t) - A(t + \tau)]}{T} dt$$

Where Norm represents the spectral norm, and A is the adjacency matrix at time t. The Spectral Norm TCF for all 5 trajectories are shown below.

Figure S2 – TCF of the spectral norm of the adjacency matrix for PDI trajectory # 1.

Figure S3 – TCF of the spectral norm of the adjacency matrix for PDI trajectory # 2.

Figure S4 – TCF of the spectral norm of the adjacency matrix for PDI trajectory # 3.

PDI - Trajectory 4

Figure S5 – TCF of the spectral norm of the adjacency matrix for PDI trajectory # 4.

Figure S6 – TCF of the spectral norm of the adjacency matrix for PDI trajectory # 5.

<u>Correlations between Kirchoff Index and Zero-Field Mobilities Using a Kinetic</u> <u>Monte Carlo Model</u>

While the correlation between the Kirchoff Index and experimental mobilities or diffusion constants has only been qualitative in previous work (Jackson – JPCL – 2015 – 1:1018-1021), here we use the same geometric model as in our previous work to generate example morphologies. Details on the description of the method for generating morphologies and the lattice model used can be found in our previous JPCL manuscript. These morphologies are then used to generate a realistic ensemble of charge transport networks defined by an adjacency matrix with elements corresponding to intermolecular couplings. These intermolecular couplings are used as inputs into Fermi's Golden Rule to derive rate constants of hopping between sites in the morphology. Fermi's Golden Rule is used for comparison to our Kirchoff Index using the Adjacency Matrix definition of the absolute value of the electronic coupling because both terms ignore energetic disorder, and infer rate constants only from the magnitude of the intermolecular electronic coupling. In a system in which energetic disorder were consider, one would use a Marcus-Jortner-Levich type expression, and a definition of the adjacency matrix which incorporates energetic disorder.

Using these rates, a master equation between all sites in the system is established, and approximately solved using a kinetic monte carlo (KMC) approach. Simulations are run for 10 ns, and the location of the charge on the lattice is computed at the beginning and end of the trajectory. A cubic lattice containing 3,375 sites is used. A maximum coupling of 0.025 eV is allowed between nearest neighbor sites in our model, and these values vary continuously depending on the relative orientations of nearest neighbor molecules (again, see previous JPCL work for more details on the model).

Finally, the mean-squared hopping distance (delta r)² can be related to the zerofield mobility or a diffusion constant via an Einstein-like relation. Consequently, comparison of the Kirchoff index of our example networks to the KMC derived (delta r)² allows for a rigorous test of the relationship between the Kirchoff index and charge mobilities/diffusion constants. The results of these simulations are shown in Figure S7, where a clearly positive, monotonic relationship between charge mobility and the kirchoff index is observed for the 250 independently sampled morphologies, providing proof of the utility of the Kirchoff index as a qualitative metric of charge mobilities.

Figure S7 – Plot of KMC derived mean-squared displacement of charge vs network's Kirchoff Index. Units of delta r are in terms of lattice units.