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FILE S1 

DETAILED METHODS 

 

1. Mathematical modeling for progression through meiotic stages 

Parameterization of cell stage kinetics 

A multi-stage modeling was performed as described in Gupta et al. (2015). Cells in G1/S phase of 

cell cycle were said to be in 1-nucleus state. Cells that have completed MI or MII were said to be in 

2-nuclei or 4-nuclei state, respectively. Cells that did not progress from one cell cycle state to 

another were mentioned as inactive cells. The existence of inactive states was supported by the fact 

that at steady state, some cells still had 1-nucleus or 2-nuclei indicating they were trapped at these 

stages, which could be possibly due to nuclear destruction mechanism resulting in dyads (Eastwood 

et al. 2012). Hence cells could be either in a 1-nucleus active, 1-nucleus inactive, 2-nuclei active, 2-

nuclei inactive or 4-nuclei state. Moreover the cells were assumed to only progress in one direction 

(no back transitions) from the 1-nucleus active to either the 1-nucleus inactive or the 2-nuclei active 

stage, and from the 2-nuclei active to either the 2-nuclei inactive or to the 4-nuclei state. The 

samples contained a large number of cells and thus we used Ordinary Differential Equations to 

describe the dynamics of the system. The dynamics was modeled with an initial lag phase 

(measured as t ) followed by first order kinetics between the stages (measured as  and d , as 

shown below): 
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where 
 X1

 is proportion of cells in 1-nucleus active stage, 
 X2

 in 2-nuclei active stage, 
 X4

 in 4-

nuclei active stage, 
 Y1

 is proportion of cells in 1-nucleus inactive stage, 
 Y2

 in 2-nucleus inactive 

stage. The dynamics was modeled with an initial lag phase of duration t  followed by first order 

kinetics as follows: 

for all 

 

t ≤ t :
X1 t( ) = 1

X2 t( ) = X4 t( ) = Y1 t( )= Y2 t( ) = 0
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for all 

 

t >t :

dX1

dt = - a +b( ) X1

dX2

dt
= a X1 - g +d( ) X2

dX4

dt
= g X2

dY1

dt
= b X1

dY2

dt
= d X2
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This model leads to the following closed form solutions: 

for all 

 

t >t :

X1 t( ) = e
- ¢t a+b( )

X2 t( ) = a
m-l e- ¢t l - e- ¢t m( )

X4 t( ) = ag
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where  ¢t = t -t ,  and . 

 

Model fitting 

For each background, the data consisted of frequencies 
 
fi, j

 of cells with 
 
j Î 1,2,4{ }  nuclei 

measured at time 
 ti

. The model described above was fitted to minimize the sum of squared errors: 

 

min
q

fi,1 - X1 ti( ) -Y1 ti( )( )
2
+ fi,2 - X2 ti( ) -Y2 ti( )( )

2
+ fi,4 - X4 ti( )( )
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where  is the vector of parameters. The cost function was minimized using the R 

function optim() with default parameters. The cost function was parameterized with the logarithm 

of the parameters to ensure their positivity (these were lag times and rates). 

 

Confidence Intervals 

Confidence intervals on the parameters were obtained with a leave-one-out approach, where the 

replicate data for each time point were left out one at a time and the model was fitted on the 

remaining time points. This bootstrapping scheme was more stringent and more appropriate than 

sampling with replacement the complete dataset without stratifying per time point because 

frequency measurements within one time point were closer to each other than to the fitted values. 

For further details see Gupta et al. (2015). 

 

 

2. Conditional expression of TAO3 during sporulation 

A tetO7-based promoter substitution cassette containing kanMX4, amplified from the plasmid 

pCM225 (Bellí et al. 1998), was inserted to replace the endogenous TAO3 promoter (-150 to -1bp 

upstream start site) in the T strain. T strains with the endogenous promoter and the strain with tetO7 

promoter (PTet-TAO3(4477C)) were phenotyped for estimating sporulation efficiency. The strains 

were grown in a glucose-rich medium (YPD) and synchronized in pre-sporulation medium (YPA) 

prior to initiating sporulation in sporulation medium (Spo). To decrease the activity of 

TAO3(4477C) during a specific condition (YPD, YPA or Spo), doxycycline was added in the 

medium during that temporal phase. For instance, for decreasing the activity of TAO3(4477C) only 

during growth in glucose, PTet-TAO3(4477C) strain was grown in YPD with doxycycline, washed 

and added to YPA and Spo in the absence of doxycycline.  
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3. Whole genome gene-expression analysis 

Time-series gene expression data was smoothed and made continuous to give a more accurate 

representation of the expression profile of each gene (Bar-Joseph et al. 2012, also see Gupta et al. 

2015). Therefore after normalization, the log2 transformed expression values of all transcripts were 

made continuous over time using locfit (Loader 2007). This method performs local regression by 

relying on the bandwidth parameter ‘h’. This parameter was optimized for our expression data by 

controlling its value such that it gave minimum error by the leave one out method for a range of 

bandwidths. Briefly in leave one out method, for each strain, one time point for a single gene was 

‘left out’ or missed and its value was predicted based on the respective ‘h’ being tested. This was 

done for the expression values across all time points of a gene, and error was calculated between the 

actual and the predicted value. For optimizing ‘h’ in our data, the top 10% of the transcripts ordered 

by the descending order of standard deviation across time in expression values were considered. For 

a big range of ‘h’ between 1 and 20, the bandwidth with minimum error was mainly observed to be 

between 1 and 3. Thus this was used as the next range. In the range between 1 and 3, the most 

optimum bandwidth was observed to be h = 1.2. A random set of 20 transcripts were selected and 

plotted to select the optimum ‘h’ (few shown for T and S strain in Supporting Figure S2). 

 

A baseline transformation for each transcript, after smoothing, was done by subtracting each time 

point value from t = 0h (
 t0

), as follows: 

 

¢y
S tn( )

= y
S tn( )

- y
S t0( )

¢y
T tn( )

= y
T tn( )

- y
T t0( )

 

 

where 
 y

 is the expression value of a transcript for a strain (S or T) at a specific time point and 
 ¢y  is 

the transformed expression value. It is this log2 fold value (called as expression) that is used for all 

the comparisons made between M and S strains or T and S strains. 

 

To identify differentially expressed genes (after removing tRNAs, snRNAs and transcripts from 

terminal repeats) between T and S strain, the temporal expression profiles of each transcript were 

compared using the method implemented in the EDGE (Extraction of Differential Gene Expression) 

software (Leek et al. 2006). The EDGE software requires gene expression data as input in a specific 

format, which was created using the R script given as follows: 

 
#Create input files - data & covariate file for EDGE comparisons 

 

data=read.table(paste(path,'TvS/TableS5.txt',sep=''), stringsAsFactors=F, 

header=T, row.names=1,sep='\t') 

 

if(file.exists("TvS/")==F) {system('mkdir TvS')} 

write.table(data,quote=F,sep='\t',file="TvS/data.txt") 

 

cov=c('Cov',colnames(data)) 

cov=rbind(cov,c('Strain',rep('TAO3',8),rep('S288c',8))) 

time=c(30,45,70,100,150,230,340,510) 

cov=rbind(cov,c('Time',rep(time,2))) 

cov=rbind(cov,c('Treatment',rep(1,8),rep(0,8))) 
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write.table(cov, quote=F, row.names=F, 

col.names=F,sep='\t',file="TvS/cov.txt") 

 

q(save='no') 

 

Optimal discovery procedure was used with 1,000 null iterations and random seed number. From 

EDGE analysis, we identified genes showing significant differential expression across time by 

keeping a 10% FDR. 

 

The differentially expressed genes were clustered according to their temporal expression patterns 

using time abstraction clustering algorithm implemented in the TimeClust software (Magni et al. 

2008). Since our data was previously smoothed, we did not smoothen it further as required by the 

software. The smoothened and baseline transformed expression data of the 8 sporulation time-

points was analyzed with length segment parameter set at 3, to classify the expression data majorly 

as early middle and late. An absolute expression change of 0.1 (slope) was considered as a change. 

This clustering method was applied on the expression data separately for each strain. 
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