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TreeQTL: hierarchical error control for eQTL findings

In this supplement, we provide additional details on the hierarchical testing procedure,
the functions available in the TreeQTL R package, and the example application to whole
blood data from the pilot phase of the Genotype-Tissue Expression (GTEx) project.

Hierarchical testing procedure

The hierarchical testing procedure implemented in TreeQTL corrects for multiple com-
parisons in a way that respects the structure of expression quantitative trait (eQTL)
analysis. In particular, in the eQTL setting, there is heterogeneity in the proportion of
non-nulls across different classes of hypotheses. Firstly, there is a substantial difference
in the proportion of non-null hypotheses among local vs. distal hypotheses, given that
local regulation is much more common. Secondly, among the hypotheses addressing dis-
tal regulation, SNPs with any distal effects are likely to play a regulatory role for mul-
tiple genes. Since the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg,
1995) for controlling the false discovery rate (FDR) is adaptive to the amount of signal
in the data, applying BH the entire collection of hypotheses is sub-optimal. In addition,
as demonstrated in Peterson et al. (2015), this strategy fails to control the FDR for the
discovery of eSNPs or eGenes, key points of interest in the reporting of eQTL findings.

These observations lead us to organize the eQTL hypotheses in the tree-like structure
depicted in Figure 1. In this three layer tree, the upper level branches are local and dis-
tal regulation; the middle level contains groups indexed by SNP or gene; and the leaf
nodes are the individual SNP×gene hypotheses. The hypothesis Lvg corresponds to the
null hypothesis that there is no local association between variant v and gene g; similarly,
the hypothesis Dvg corresponds to the null hypothesis that there is no distal associa-
tion between variant v and gene g. When using TreeQTL, the user may specify whether
the identification of eGenes of eSNPs is of primary interest; however, based on the het-
erogeneity among the hypotheses described above, we recommend that distal analysis
should be organized around the discovery of eSNPs.

In Figure 2 we illustrate the correspondence between the hypotheses shown in Figure
1 and their associated p-values. P-values for the tests are defined starting from the leaf
hypotheses. The p-values for the Level 2 hypotheses Lvg and Dvg for association between
SNP v and gene g are taken as input to TreeQTL and may be obtained via MatrixEQTL

(Shabalin 2012) or other appropriate software. We assume that the input p-values are
valid in the sense that they account for sources of confounding such as population strat-
ification, family structure, or batch effects; we are agnostic, however, as to how they are
obtained. The p-values for the Level 1 hypotheses L•g and Hv• are then computed us-
ing the Simes’ rule; TreeQTL also allows the option to submit alternative p-values for the
Level 1 hypotheses (such as those obtained view permutation). The Simes’ p-value for
L•g is defined as

pL•g = min
v=1,...,mg

mg pL(v)g

v
,



treeqtl supplement 2

Local regulation

�
�
�	

�
�
��

HHH
HHHj

?
L•1

?

L11

L21
...

?
Lm11

L•2

?

L12

L22
...

Lm22

?
L•G

?

L1G
?
L2G

...
LmGG

All hypotheses
XXXXXz

�����9
Distal regulation

�
�
�	

�
�
��

HHH
HHHj

D1•

?

D11

D12
...
...

D1g1

?
D2•

?

D21

D22
...
...
?
D2g2

DM•

?

DM1

DM2
...
...

DMgM

Level 0

(local vs. distal)

Level 1

(local eGene,
distal eSNP)

Level 2

(eAssociation)

Figure 1: Organization of eQTL hy-
potheses in TreeQTL. Local regulation
hypotheses have been grouped by gene
and distal regulation hypotheses are
grouped by SNP. Tested hypotheses are
colored in red, and rejected hypotheses
indicated with a star.

where pL(v)g is the vth smallest p-value among the local hypotheses referencing gene g,
and mg is the number of variants in the local region for gene g; the Simes’ p-value for
the other Level 1 hypotheses may be defined similarly. We choose the Simes’ p-value
(rather than alternatives such as Fisher’s combined p-value) since it has several attractive
properties in this context. Specifically, it is robust to dependence among the p-values it
depends on (Benjamini and Heller, 2008). In addition, use of the Simes’ rule to compute
the p-values for the level 1 hypotheses guarantees that if a Level 1 hypothesis is rejected
(i.e. an eSNP or eGene is discovered), then at least one eAssociation involving that eSNP
or eGene will be discovered as well. Finally, we consider the Level 0 hypotheses regard-
ing whether there is any local or any distal regulation; since we can safely reject these
null hypotheses in any realistic setting, we do not explicitly compute pL•• and pD••.
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Figure 2: Hierarchical structure of the
hypotheses tested

Testing for local regulation proceeds starting from Level 1 as follows:

1. Test the collection of Level 1 hypotheses for local regulation. This may be done us-
ing either the Benjamini-Yekutieli (BY) procedure (Benjamini and Yekutieli, 2001) or
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the BH procedure with target FDR level q1. The default procedure is BY as it is more
robust to dependence. A more conservative option is also available of targeting the
family-wise error rate (FWER) at level q1 via the Bonferroni procedure. (See next sec-
tion for a discussion). Let RL (RD) represent the number of rejected local hypotheses
from this stage.

2. For each rejected Level 1 hypothesis regarding local regulation, test the correspond-
ing set of Level 2 hypotheses using BH with adjusted target level RLq2/G (for the
selection of eGenes) or RLq2/M (for the selection of eSNPs).

The testing procedure for distal regulation is defined similarly. As shown in Benjamini
and Bogomolov (2014), given some assumptions on the dependence among hypothe-
ses, this procedure guarantees that the error rate for level 1 discoveries is controlled
to level q1, and that the expected average proportion of false eAssociation discoveries
across the selected eSNPs or eGenes will be controlled to level q2. Peterson et al. (2015)
demonstrates via simulation studies that these error rates are in fact controlled under
the common types of dependence found in genome-wise association studies.

There is an exact correspondence between the step-wise testing procedure described
above and the functions available in the TreeQTL R package. Specifically, the functions
get_eGenes() and get_eSNPs() can be used to identify the Level 1 rejections for ei-
ther local or distal regulation. Given the return value from either of these functions,
get_eAssociations() can then be called to obtain a full listing of the Level 2 discoveries.
Note that TreeQTL must be run separately for local and distal analysis and expects the
local and distal association SNP-gene association p-values to be stored in separate in-
put files; these input files can be produced in a single run of MatrixEQTL, or constructed
manually. For additional details and example code, please see the TreeQTL package doc-
umentation at http://bioinformatics.org/treeqtl/TreeQTL.pdf.

Illustration on GTEx data

To demonstrate the application of TreeQTL to real data, we used TreeQTL to analyze
whole-blood data from the pilot phase of the GTEx project (Ardlie et al., 2015). In this
data set, genotype data at 6,820,472 SNPs and expression levels for 30,115 genes are
available across 156 subjects. Local associations correspond to SNP-gene pairs where
the SNP is within 1Mb of the transcription start site (TSS) of the gene; all other SNP-
gene associations are considered distal. This definition results in approximately 142

million local tests (reflecting an average of 21 genes in the local region for each SNP)
and 205 billion distal tests. Following the steps in Ardlie et al. (2015), p-values for local
association were obtained by applying Matrix eQTL to normalized gene expression,
adjusting for both known and unknown technical covariates through the inclusion of
gender, 3 genotype principal components, and 15 PEER factors as covariates in the linear
model. We followed the same procedure to obtain p-values for distal association, with
the caveat that distal analysis is underpowered in this setting and is not attempted in
Ardlie et al. (2015).

Here we compare the results from three different approaches: BH applied to local and
distal hypotheses separately at level q = 0.01; TreeQTL defining Level 1 discoveries as
eSNPs and using BH in step 1 at level q1 = q2 = 0.01; and TreeQTL, defining Level 1 dis-
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coveries as eSNP and using BY in step 1 at level q1 = q2 = 0.01. The number of discov-
eries under these methods is given in Table 1. When comparing the results of TreeQTL
using BH to those from applying BH separately to all local vs. distal hypotheses, the to-
tal number of discoveries is slightly smaller and the selection of SNPs is somewhat more
stringent using the hierarchical procedure; in exchange for controlling the FDR across
eSNPs and average proportion of false eAssociations involving the selected eSNPs, we
pay a modest price in terms of loss of overall power. The BY procedure results in a much
more conservative number of eSNP discoveries.

Local Distal
eSNPs eAssoc eSNPs eAssoc

BH separate 163,263 263,417 179,625 216,683

TreeQTL BH 136,609 229,821 164,860 216,933

TreeQTL BY 90,143 175,889 41,216 55,034

Table 1: Number of rejected hypotheses
under the following error control
approaches: BH applied to local and
distal hypotheses separately at level
q = 0.01; TreeQTL using BH in step 1 at
level q1 = q2 = 0.01; and TreeQTL using
BY in step 1 at level q1 = q2 = 0.01

In interpreting these eSNP results, it is important to recall the fact that dependence
exists between SNPs (linkage disequilibrium) and this generates both a correlation
across the test statistics even when the null hypotheses are true, and a correlation in
the signal. That is, multiple SNPs neighboring a causal variant will have non zero as-
sociation with the expression of a gene: for all of these SNPs one would correctly reject
the null hypotheses, even if they all correspond to only one true biological discovery. We
note that, on the one hand, BH, while guaranteed to control FDR under independence or
special kinds of dependence, typically can handle the dependence between tests statis-
tics due to linkage disequilibrium, so that in this case it is not necessary to resort to the
more conservative BY. On the other hand, one has to be aware that the number of eSNP
discoveries is going to be larger than the number of true causal variants: the signal from
any true association will percolate to a number of nearby SNPs. One can argue that
SNPs, especially in studies with high density genotyping as GTEx, do not represent the
correct resolution to count discoveries: rather, one should consider clumps of SNPs with
correlated signal as one unit of discovery. This has been argued, for example in Sieg-
mund et al. (2011). Neither BH or BY simply applied to the SNP level tests would offer
control of the FDR for discoveries so defined. Research on procedures that offer this con-
trol is on going and we plan to update TreeQTL to include these once solid results are
available.

Partially to address this discrepancy between the number of associated SNPs and the
number of underlying causal variants, the eQTL field has often focused on the notion
of eGenes. This is the case of the GTEx pilot paper (Ardlie et al., 2015), which utilizes
a permutation-based approach to identify eGenes. Specifically, for each gene, the mini-
mal association p-value per gene is computed; the sample labels on the expression data,
gender, and PEER factors are then permuted, and the minimal association p-value is re-
computed. The empirical p-value is taken to be the proportion of times the permuted p-
value is less than the nominal p-value; since at most 10,000 permutations are performed,
the smallest possible empirical p-value is assumed to be 0.00009999 i.e. < 1/10,000. This
strategy is intended to account for the fact that multiple SNPs which are likely to be in
LD are being tested for association to each gene. The final set of eGenes is then taken
to be those with Storey q-value ≤ 0.05. For the whole blood pilot data set, 2,052 eGenes
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are identified as having Storey q-value ≤ 0.05 based on the empirical p-values. For com-
parison, 1,379 eGenes are identified when BH is applied at level 0.01 to the same set of
empirical p-values.

This approach is compatible with TreeQTL in that the empirical p-values could be
taken as input to the function get_eGenes(); the individual eAssociation hypotheses
could then be selected on the basis of the Matrix eQTL p-values using the hierarchical
procedure to adjust for selection bias. If instead we compute the gene-level p-values
within TreeQTL using the Simes’ rule and use BH for selection targeting level 0.01, we
obtain 1,588 eGenes, 1,453 of which were also reported as eGenes in Ardlie et al. Due
to the limited resolution of the permutation-based approach, direct comparison of the
gene-level p-values is not possible; in fact, 1,145 of the 2,052 reported eGenes have a
reported p-value of 0.00009999.
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