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Supplementary Figure 1. Prediction performance of CENTIPEDE, Wellington and Romulus. (A)
Example Receiver Operating Characteristic curves in K562 cells using three sources of DNase-seq
data. Areas under these ROC curves are indicated. Only the results for a subset of 4 representative
TFs are shown. (B) Areas under ROC curves aggregated as violin plots and compared between three
tools and three DNase-seq data sources. Median values and interquartile ranges are indicated. All
the TFs and cell lines (A549, HepG2 and K562) were considered jointly in this panel. ***, p-value
< 0.001. **, p-value < 0.01. *, p-value < 0.05. ns, non-significant.
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Supplementary Figure 2. Romulus outperforms the other tools in terms of area under Precision-
Recall curve. Prediction performance of CENTIPEDE, Wellington and Romulus in A549, HepG2
and K562 cells using three sources of DNase-seq data is shown. Apart from the AUC-PR values for
individual TFs, the averages are indicated for each cell line.
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Supplementary Figure 3. Romulus outperforms the other tools in terms of area under Receiver
Operating Characteristic curve. Prediction performance of CENTIPEDE, Wellington and Romulus
in A549, HepG2 and K562 cells using three sources of DNase-seq data is shown. Apart from the
AUC-ROC values for individual TFs, the averages are indicated for each cell line.
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Supplementary Figure 4. Romulus outperforms the other tools in terms of Spearman correlation
coefficient between binding predictions and ChIP-seq peak height. Prediction performance of CEN-
TIPEDE, Wellington and Romulus in A549, HepG2 and K562 cells using three sources of DNase-seq
data was assessed by applying each tool to calculate the binding probability (CENTIPEDE and Ro-
mulus: posterior probability, Wellington: 1−(p-value)). The probabilites less than 0.5 were clamped
down to 0, and the Spearman correlation coefficients between these probabilites and ChIP-seq peak
height were calculated. Apart from the correlation values for individual TFs, the averages are
indicated for each cell line.
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Supplementary Figure 5. Improvement of Romulus compared to Wellington in terms of area under
ROC curve significantly correlates with motif information content. All the cell lines (A549, HepG2
and K562) were considered jointly here. Pearson correlation values and p-values were calculated
after excluding the outliers with information content above 20 bits.
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Supplementary Figure 6. Receiver Operating Characteristic curves for the known dimers. The TF
in focus (OCT4, SOX2, AR or FOXA1), DNase-seq data source (UW or Duke), and conditions are
indicated. +Andro, androgen stimulated cells. siFOXA1, silenced FOXA1. siCTRL, control.
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Number of DNase I cuts
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Supplementary Figure 7. Distribution of the number of DNase I cuts learned by Romulus for
FOXA1 and its dimers in androgen-stimulated LNCaP cells. The curves show the Romulus negative
binomial model and the empirical distribution which is fitted to. Left: forward strand cuts, right:
reverse strand cuts.
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Genomic location with respect to the candidate binding site (base pairs)
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Supplementary Figure 8. Multinomial components of the models learned by Romulus for FOXA1
and its dimers in androgen-stimulated LNCaP cells. The first panel (blue background) corresponds
to the model with no dimer binding modes, and is shown here only for comparison. The other panels
correspond to all the binding modes in the model allowing for dimerization. The unbound mode
always follows the uniform distribution of cuts. The forward strand cuts (blue line) are considered
only upstream and within the binding site, while the reverse strand cuts (violet line) are considered
only within the binding site and downstream.
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Supplementary Figure 9. (A) Logarithm of complete likelihood of Romulus parameters obtained
using the default initialization procedure (x axis) compared to the highest complete likelihood
obtained in 10 random initializations (y axis). (B) As above, but compared to the difference in
complete likelihood between the default initialization and best random initialization. In total, 117
data points are shown in each panel, each point representing a combination of TF, cell type and
DNase I data source.
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Supplementary Figure 10. Binding in Closed Chromatin (BCC) values (x axis) compared to the
Spearman correlation between DNase I accessibility and motif score (y axis). The values are shown
for each combination of TF, DNase-seq data source and cell type. For each DNase-seq data source,
dashed vertical line indicates the mean, and solid vertical line indicates the threshold of one standard
deviation above the mean. In color are shown the TFs having a BCC value, in at least one case,
more than one standard deviation above the mean.
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Supplementary Tables

Dataset Number of reads

Name Genome Browser track A549 HepG2 K562

Duke DNase OpenChromDnase 51.6 M 13.6 M 80.8 M
UW DNase UwDnase 33.3 M 22.1 M 35.8 M
UW DGF UwDgf 350.6 M 168.9 M 180.0 M

Supplementary Table 1. Numbers of reads in DNase-seq datasets used. Three ENCODE cell lines
were considered: A549, HepG2 and K562. UW, University of Washington; DGF, Digital Genomic
Footprinting.
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ChIP-seq peaks Motif instances

overlapping outside
Cell Transcription with without ChIP-seq ChIP-seq
type factor total motif motif peaks peaks ENCODE narrowPeak filename

K562 ATF3 16 011 2 162 13 849 4 298 160 472 HaibK562Atf3V0416101
K562 c-Myc 5 023 2 098 2 925 4 331 509 454 SydhK562Cmyc
K562 CTCF 56 058 25 788 30 270 26 432 41 170 UtaK562Ctcf
K562 JunD 26 674 2 600 24 074 5 070 112 079 UchicagoK562Ejund
K562 Max 46 171 16 419 29 752 34 226 1 131 646 HaibK562MaxV0416102
K562 NFE2 2 637 1 619 1 018 1 750 50 360 SydhK562Nfe2
K562 NRF1 4 211 2 609 1 602 5 960 20 440 SydhK562Nrf1Iggrab
K562 NRSF 15 849 2 055 13 794 2 112 2 750 HaibK562NrsfV0416102
K562 PU.1 28 677 18 514 10 163 20 262 549 324 HaibK562Pu1Pcr1x
K562 Sp1 7 206 2 830 4 376 4 861 137 043 HaibK562Sp1Pcr1x
K562 USF1 18 521 12 431 6 090 23 808 524 887 HaibK562Usf1V0416101
A549 ATF3 6 580 308 6 272 636 164 134 HaibA549Atf3V0422111Etoh02
A549 bHLHE40 3 123 1 225 1 898 2 667 254 098 SydhA549Bhlhe40Iggrab
A549 CEBP 38 845 25 305 13 540 46 517 1 722 846 SydhA549CebpbIggrab
A549 CTCF 45 732 23 536 22 196 24 289 43 313 UwA549Ctcf
A549 ELF1 8 611 5 075 3 536 6 937 348 641 HaibA549Elf1V0422111Etoh02
A549 ETS1 5 525 2 564 2 961 3 466 1 145 420 HaibA549Ets1V0422111Etoh02
A549 GABP 12 348 7 196 5 152 9 396 871 718 HaibA549GabpV0422111Etoh02
A549 Max 9 881 3 982 5 899 8 965 1 156 907 SydhA549MaxIggrab
A549 NRSF 11 970 1 938 10 032 1 861 3 001 HaibA549NrsfV0422111Etoh02
A549 USF1 8 004 4 710 3 294 9 452 539 243 HaibA549Usf1V0422111Etoh02
A549 YY1 10 259 2 148 8 111 2 079 52 873 HaibA549Yy1cV0422111Etoh02
A549 ZBTB33 7 152 626 6 526 1 052 14 443 HaibA549Zbtb33V0422111Etoh02
HepG2 ATF3 3 291 1 132 2 159 2 392 162 378 HaibHepg2Atf3V0416101
HepG2 c-Myc 4 413 1 762 2 651 3 558 510 227 UtaHepg2Cmyc
HepG2 CTCF 55 778 26 856 28 922 27 655 39 947 HaibHepg2Ctcfsc5916V0416101
HepG2 FOXA1 40 989 29 356 11 633 76 105 6 363 288 HaibHepg2Foxa2sc6554V0416101
HepG2 HNF4a 20 805 10 913 9 892 12 889 519 223 HaibHepg2Hnf4asc8987V0416101
HepG2 JunD 21 614 866 20 748 1 632 115 517 HaibHepg2JundPcr1x
HepG2 Max 11 854 4 707 7 147 10 726 1 155 146 SydhHepg2MaxIggrab
HepG2 MYB 17 898 8 016 9 882 10 306 2 389 507 HaibHepg2Mybl2sc81192V0422111
HepG2 NRF1 1 902 1 635 267 4 132 22 268 SydhHepg2Nrf1Iggrab
HepG2 NRSF 12 828 1 686 11 142 1 743 3 119 HaibHepg2NrsfV0416101
HepG2 RXR 17 063 6 976 10 087 9 044 1 265 842 HaibHepg2RxraPcr1x
HepG2 Sp1 25 477 3 599 21 878 6 087 135 817 HaibHepg2Sp1Pcr1x
HepG2 Srebp1a 2 585 293 2 292 307 327 401 SydhHepg2Srebp1Insln
HepG2 TBP 13 806 2 490 11 316 3 798 3 136 778 SydhHepg2TbpIggrab
HepG2 TR4 2 953 660 2 293 836 88 251 SydhHepg2Tr4Ucd
HepG2 USF1 21 890 14 809 7 081 27 503 521 192 HaibHepg2Usf1Pcr1x

Total 670 214 283 494 386 720 449 140 26 312 163
Percentage 42.3% 57.7% 1.7% 98.3%

Supplementary Table 2. ChIP-seq datasets used as the reference classification of the candi-
date binding sites. These datasets were generated by the ENCODE Analysis Working Group
(AWG) using a uniform processing pipeline. The narrowPeak filenames follow the pattern “wgEn-
codeAwgTfbs. . . UniPk.narrowPeak.gz”, where only the changing “. . . ” part is given above.
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Transcription factor Motif identifier(s) in HOMER

ATF3 ATF3(bZIP)/K562-ATF3
bHLHE40 bHLHE40(HLH)/HepG2-BHLHE40
CEBP CEBP(bZIP)/CEBPb
c-Myc c-Myc(HLH)/LNCAP-cMyc
CTCF CTCF(Zf)/CD4+-CTCF
ELF1 ELF1(ETS)/Jurkat-ELF1
ETS1 ETS1(ETS)/Jurkat-ETS1
FOXA1 FOXA1(Forkhead)/LNCAP-FOXA1

FOXA1(Forkhead)/MCF7-FOXA1
GABP GABPA(ETS)/Jurkat-GABPa
HNF4a HNF4a(NR/DR1)/HepG2-HNF4a
JunD JunD(bZIP)/K562-JunD
Max Max(HLH)/K562-Max
MYB MYB(HTH)/ERMYB-Myb-ChIPSeq(GSE22095)
NFE2 NF-E2(bZIP)/K562-NFE2
NRF1 NRF1(NRF)/MCF7-NRF1
NRSF REST-NRSF(Zf)/Jurkat-NRSF
PU.1 PU.1(ETS)/ThioMac-PU.1
RXR RXR(NR/DR1)/3T3L1-RXR
Sp1 Sp1(Zf)/Promoter
Srebp1a Srebp1a(HLH)/HepG2-Srebp1a
TBP TATA-Box(TBP)/Promoter
TR4 TR4(NR/DR1)/Hela-TR4
USF1 USF1(HLH)/GM12878-Usf1
YY1 YY1(Zf)/Promoter
ZBTB33 ZBTB33/GM12878-ZBTB33

Supplementary Table 3. HOMER motif identifiers used for each TF. The corresponding sets of
significant motif instances were downloaded from HOMER. For FOXA1, two motifs were used, and
the union of corresponding two sets of motif instances was taken. For all the other TFs, one motif
was used.

ChIP-seq peaks Motif instances

overlapping outside
Transcription with without ChIP-seq ChIP-seq

Cell type factor Treatment total motif motif peaks peaks Source

H1-hESC OCT4 (POU5F1) 6 289 3 018 3 271 6 913 1 347 572 GSM447582
H1-hESC SOX2 20 035 16 645 3 390 78 824 1 282 668 GSM456570
LNCaP + Andro AR siCTRL 3 743 499 3 244 1 031 268 898 GSM686917
LNCaP + Andro AR siFOXA1 14 400 4 885 9 515 24 097 245 832 GSM686920
LNCaP + Andro FOXA1 siCTRL 36 344 14 656 21 688 99 797 1 856 212 GSM686926
LNCaP AR siCTRL 6 028 31 5 997 40 269 889 GSM686914
LNCaP AR siFOXA1 4 410 66 4 344 116 269 813 GSM686919
LNCaP FOXA1 siCTRL 46 299 21 418 24 881 158 319 1 797 690 GSM686925

Supplementary Table 4. ChIP-seq datasets used as the reference classification of the candidate
binding sites for dimerizing transcription factors. Motif instances were identified using TRANSFAC
motifs M00795 (OCT4), M01247 (SOX2), M00960 (AR) and M01012 (FOXA1), using motif score
threshold that provides 80% sensitivity. Last column indicates Gene Expression Omnibus identifier.
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Supplementary Methods

1 Prior probabilities of TF binding

To model the prior probabilities, we apply a logistic model against the unbound “pivot” case of
Zi = 0:

P (Zi = k)

P (Zi = 0)
= exp

(
β

(k)
0 +

∑
j

β
(k)
j γ

(k)
j x

(j)
i

)
, (1)

where k = 0 indicates no binding, k = 1 refers to binding as monomer, and k = 2, . . . ,K+1 refer to
the respective cooperative binding modes. This way, we have K + 1 outcomes separately regressed
against the pivot outcome Zi = 0.

For clarity of presentation, we impose an additional constraint such that γ
(k)
j = 0 implies

β
(k)
j = 0. In other words, β

(k)
j = 0 for the partner motifs not involved in k-th binding mode. We

can now explicitly formulate P (Zi = 0) by summing up Equation 1 for k = 1, . . . ,K + 1:∑K+1
k=1 P (Zi = k)

P (Zi = 0)
=

K+1∑
k=1

exp
(
β

(k)
0 +

∑
j

β
(k)
j γ

(k)
j x

(j)
i

)
(2)

1− P (Zi = 0)

P (Zi = 0)
=

K+1∑
k=1

exp
(
β

(k)
0 +

∑
j

β
(k)
j γ

(k)
j x

(j)
i

)
(3)

P (Zi = 0) =
1

1 +
∑K+1

k=1 exp
(
β

(k)
0 +

∑
j β

(k)
j γ

(k)
j x

(j)
i

) . (4)

Applying the above to Equation 1, we obtain an explicit formulation for all the probabilities P (Zi =
k) where k > 0:

P (Zi = k) =
exp

(
β

(k)
0 +

∑
j β

(k)
j γ

(k)
j x

(j)
i

)
1 +

∑K+1
l=1 exp

(
β

(l)
0 +

∑
j β

(l)
j γ

(l)
j x

(j)
i

) . (5)

2 Chromatin state component

Our primary interest is

pi =

K+1∑
k=1

P (Zi = k | Xi) = 1− P (Zi = 0 | Xi), (6)

i.e. the probability of the motif instance i to be bound in any binding mode.
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Taking the complement and following the Bayes’ theorem, we get

1− pi = P (Zi = 0 | Xi) =
P (Xi | Zi = 0)P (Zi = 0)∑K+1

k=0 P (Xi | Zi = k)P (Zi = k)
(7)

1

1− pi
=

K+1∑
k=0

P (Xi | Zi = k)P (Zi = k)

P (Xi | Zi = 0)P (Zi = 0)
= 1 +

K+1∑
k=1

P (Xi | Zi = k)P (Zi = k)

P (Xi | Zi = 0)P (Zi = 0)
(8)

pi
1− pi

=

K+1∑
k=1

P (Xi | Zi = k)P (Zi = k)

P (Xi | Zi = 0)P (Zi = 0)
. (9)

We make a simplifying assumption that all the chromatin state data included in the model are
independent, given its binding state Zi. Hence, the conditional probability P (Xi | Zi = k) is a
product of the corresponding conditional probabilities:

P (Xi | Zi = k) = P ((DNase+
i,j)j | Zi = k) · P ((DNase−i,j)j | Zi = k) · . . . . (10)

For brevity, we discuss the formulas for the forward strand DNase I component only; they are
analogous for the reverse strand and for other types of data. The negative binomial component in
binding mode k quantifies the total number of DNase I cuts on the forward strand

DNaseSum+
i =

∑
j

DNase+
i,j (11)

and is naturally parametrized by the success probability p+(k) ∈ (0, 1) and the real-valued number
of failures r+(k) > 0.

The multinomial component quantifies the probability of a particular spatial distribution of the
total number of DNase I cuts on a given strand. For each binding mode k and positional data
type (e.g. DNase I cuts on forward strand), we divide the positions j into one or more bins. Let

us denote by DNaseBin
+(k)
j the bin number for position j in binding mode k. For clarity, let us

assume that the bins are numbered by positive integers. In this study, we take 20 bp long bins
outside the motif site, and single-basepair bins within the motif site. Moreover, for the unbound
mode (k = 0) we put all the positions in a single bin:

DNaseBin
+(k)
j =


1 for k = 0 and any j

dj/20e for k > 0 and j = 1, . . . , 200

190− j for k > 0 and j = 201, . . . , 200 + L.

(12)

Note that binding modes may differ in the way the positions are split into bins.

For a given binding mode k, we associate a free parameter λ
+(k)
b with each bin b = 1, . . . , B+(k).

However, for the multinomial distribution we must provide a vector of probabilities covering every
single position in the vicinity of the motif instance. Hence, we calculate the actual multinomial

coefficients λ̃
+(k)
j by taking λ

+(k)
b for b = DNaseBin

+(k)
j and normalizing λ

+(k)
b so that

∑
j λ̃

+(k)
j = 1.

By definition, the multinomial coefficients λ̃
+(0)
j for the unbound state are equal, i.e. there is no

positional preference for DNase I cuts in the null model.
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The joint probability of the DNase I positional data is obtained by the superposition of the
negative binomial and multinomial components:

P ((DNase+
i,j)j | Zi = k)

= NegativeBinomial
(

DNaseSum+
i | p

+(k), r+(k)
)

·Multinomial
(

(DNase+
i,j)j | DNaseSum+

i , (λ
+(k)
b )b

)
. (13)

Now we can explicitly formulate the probabilities:

NegativeBinomial
(

DNaseSum+
i | p

+(k), r+(k)
)

=
Γ
(
r+(k) + DNaseSum+

i

)
Γ
(
DNaseSum+

i + 1
)

Γ(r+(k))
(p+(k))r

+(k)

(1− p+(k))DNaseSum+
i (14)

Multinomial
(

(DNase+
i,j)j | DNaseSum+

i , (λ
+(k)
b )b

)

= DNaseSum+
i !
∏
j

(
λ̃

+(k)
j

)DNase+i,j

DNase+
i,j !

= Γ
(
DNaseSum+

i + 1
)∏

j

(
λ̃

+(k)
j

)DNase+i,j

Γ
(
DNase+

i,j + 1
) , (15)

where Γ is the standard gamma function, i.e. a continuous extension of the factorial function.

3 Expectation-Maximization approach

To estimate the model parameters

Θ =
(

(β
(k)
j )j,k, (p

+(k))k, (p
−(k))k, (r

+(k))k, (r
−(k))k, (λ

+(k)
b )b,k, (λ

−(k)
b )b,k

)
, (16)

we apply the Expectation-Maximization approach. We use a common technique: instead of maxi-
mizing the likelihood function

L(Θ) =
∏
i

P (Xi | Θ) (17)

with unknown latent state, we maximize the complete likelihood function

LC(Θ) =
∏
i

P (Xi, Zi | Θ) =
∏
i

P (Xi | Zi,Θ)P (Zi | Θ), (18)

which is more tractable.
The complete likelihood function, as stated above, is defined only for Zi = 0, . . . , K + 1.

However, we may rewrite it using indicator functions Z
(k)
i such that Z

(k)
i = 1 if Zi = k and
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Z
(k)
i = 0 otherwise:

LC(Θ) =
∏
i

K+1∏
k=0

P (Xi | Zi = k,Θ)Z
(k)
i P (Zi = k | Θ)Z

(k)
i . (19)

Let us denote by 〈Z(k)
i 〉 the expected value of Z

(k)
i . It holds that 〈Z(k)

i 〉 = P (Zi = k). Taking the

expected value of LC(Θ) with respect to all Z
(k)
i , we obtain a real-domain function of Θ:

〈LC(Θ)〉 =
∏
i

K+1∏
k=0

P (Xi | Zi = k,Θ)〈Z
(k)
i 〉P (Zi = k | Θ)〈Z

(k)
i 〉. (20)

The formulas will easier to manipulate after taking the logarithm:

log〈LC(Θ)〉 =

LA(Θ)︷ ︸︸ ︷∑
i

K+1∑
k=0

〈Z(k)
i 〉 logP (Xi | Zi = k,Θ)

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉 logP (Zi = k | Θ)︸ ︷︷ ︸

LB(Θ)

. (21)

Our goal is to maximize the (log-transformed) expected value of the complete likelihood function
LC . Note that the value of the first component, LA, depends on (p+(k))k, (p−(k))k, (r+(k))k,

(r−(k))k, (λ
+(k)
b )b,k and (λ

−(k)
b )b,k, while the value of the second component, LB , depends only on

the parameters in Θ not listed previously, namely on (β
(k)
j )j,k. Therefore, we can maximize LA and

LB separately.

We found no closed-form solution for β
(k)
j that maximizes LB(Θ), hence we apply the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) numerical optimization procedure here. This method uses the
function values and gradients to build up a representation of the surface to be maximized. Substi-
tuting Equation 5 to the definition of LB , we get:

LB(Θ) =
∑
i

K+1∑
k=0

〈Z(k)
i 〉
(
β

(k)
0 +

∑
j

β
(k)
j γ

(k)
j x

(j)
i

)

−
∑
i

log
(

1 +

K+1∑
l=1

exp
(
β

(l)
0 +

∑
j

β
(l)
j γ

(l)
j x

(j)
i

))K+1∑
k=0

〈Z(k)
i 〉. (22)

Note that the last factor,
∑K+1

k=0 〈Z
(k)
i 〉, is equal to 1 and may thus be omitted. Differentiating LB

with respect to β
(k)
j , we get:

∂LB

∂β
(k)
j

=
∑
i

〈Z(k)
i 〉γ

(k)
j x

(j)
i −

∑
i

exp
(
β

(k)
0 +

∑
j β

(k)
j γ

(k)
j x

(j)
i

)
γ

(k)
j x

(j)
i

1 +
∑K+1

l=1 exp
(
β

(l)
0 +

∑
j β

(l)
j γ

(l)
j x

(j)
i

) . (23)
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Now let us focus on the other component of log〈LC(Θ)〉, i.e. LA. For clarity, let us assume that
DNase-seq data is the only kind of positional data provided. The derivations follow analogously
for any other independent positional datasets. Substituting Equations 10 to the definition of LB in
Equation 21, we get:

LA(Θ) =

L+
A(Θ)︷ ︸︸ ︷∑

i

K+1∑
k=0

〈Z(k)
i 〉 logP ((DNase+

i,j)j | Zi = k)

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉 logP ((DNase−i,j)j | Zi = k)︸ ︷︷ ︸

L−A(Θ)

. (24)

The two components, L+
A and L−A, depend on distinct sets of parameters in the same manner. Hence,

we can maximize them separately. Without loss of generality, we will discuss the optimization
procedure for L+

A. From Equations 13 to 15, we have:

L+
A(Θ) =

∑
i

K+1∑
k=0

〈Z(k)
i 〉 log

(
Γ
(
r+(k) + DNaseSum+

i

)
Γ
(
DNaseSum+

i + 1
)

Γ(r+(k))

· (p+(k))r
+(k)

(1− p+(k))DNaseSum+
i

)

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log

Γ
(
DNaseSum+

i + 1
)∏

j

(
λ̃

+(k)
j

)DNase+i,j

Γ
(
DNase+

i,j + 1
)


=
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ

(
r+(k) + DNaseSum+

i

)
−
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ

(
DNaseSum+

i + 1
)
−
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ(r+(k))

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉r

+(k) log(p+(k)) +
∑
i

K+1∑
k=0

〈Z(k)
i 〉DNaseSum+

i log(1− p+(k))

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ

(
DNaseSum+

i + 1
)

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉

∑
j

DNase+
i,j log

(
λ̃

+(k)
j

)
−
∑
i

K+1∑
k=0

〈Z(k)
i 〉

∑
j

log Γ
(
DNase+

i,j + 1
)
. (25)
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Eliminating the additive inverse terms and noting that
∑K+1

k=0 〈Z
(k)
i 〉 = 1, we get:

L+
A(Θ) =

∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ

(
r+(k) + DNaseSum+

i

)
−
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ(r+(k))

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉r

+(k) log(p+(k)) +
∑
i

K+1∑
k=0

〈Z(k)
i 〉DNaseSum+

i log(1− p+(k))

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉

∑
j

DNase+
i,j log

(
λ̃

+(k)
j

)
−
∑
i

∑
j

log Γ
(
DNase+

i,j + 1
)
. (26)

Note that only the first three summands depend on (r+(k))k, only the third and fourth depends

on (p+(k))k, and only the fifth depends on the parameters (λ
+(k)
b )b,k, which give rise to

(
λ̃

+(k)
j

)
j,k

.

Hence, we may find the values of (λ
+(k)
b )b,k that maximize LA independently of the other parameters.

We need to maximize
K+1∑
k=0

∑
j

log
(
λ̃

+(k)
j

)∑
i

〈Z(k)
i 〉DNase+

i,j (27)

subject to the constraint
∑

j λ̃
+(k)
j = 1 for each k. Since k-th element in the sum above depends

only on
(
λ̃

+(k)
j

)
j

and consequently only on (λ
+(k)
j )j , we can maximize each element of the sum

independently. We use a common technique, and for a given k maximize the expression∑
j

log
(
λ̃

+(k)
j

)∑
i

〈Z(k)
i 〉DNase+

i,j + L ·
(

1−
∑
j

λ̃
+(k)
j

)
, (28)

where L is called the Lagrange multiplier.

Let us recall that the multinomial coefficients λ̃
+(k)
j are equal to the corresponding parameters

λ
+(k)
b such that b = DNaseBin

+(k)
j . Now let us fix the bin b and define the set Jb grouping all the

positions j falling within bin b:

Jb =
{
j : DNaseBin

+(k)
j = b

}
. (29)

Differentiating Formula 28 with respect to λ
+(k)
b and setting the derivative equal to zero, we get:

0 =
∑
j∈Jb

1

λ
+(k)
b

∑
i

〈Z(k)
i 〉DNase+

i,j − L · |Jb|. (30)

Note that the above is a decreasing function of λ
+(k)
b , hence we capture a local maximum here.

Hence,

L · |Jb|λ+(k)
b =

∑
j∈Jb

∑
i

〈Z(k)
i 〉DNase+

i,j (31)

and summing this equation over all b = 1, . . . , B+(k), we get

L ·
B+(k)∑
b=1

|Jb|λ+(k)
b =

B+(k)∑
b=1

∑
j∈Jb

∑
i

〈Z(k)
i 〉DNase+

i,j . (32)
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We should now note that

1 =
∑
j

λ̃
+(k)
j =

B+(k)∑
b=1

∑
j∈Jb

λ̃
+(k)
j =

B+(k)∑
b=1

|Jb|λ+(k)
b . (33)

Now Equation 32 becomes

L =

B+(k)∑
b=1

∑
j∈Jb

∑
i

〈Z(k)
i 〉DNase+

i,j , (34)

and substituting the above into Equation 31, we obtain the desired solution:

λ
+(k)
b =

∑
j∈Jb

∑
i〈Z

(k)
i 〉DNase+

i,j

|Jb|
∑B+(k)

c=1

∑
j∈Jc

∑
i〈Z

(k)
i 〉DNase+

i,j

. (35)

To increase the robustness of the model, we employ a shrinkage estimator of the parameters

(λ
+(k)
b )b,k. For each b and k, we take the regularized estimator

δλ
+(k)
b + (1− δ) |Jb|∑

b |Jb|
, (36)

where the mixing parameter δ is by default equal to 0.5.
Now we will find the values of (p+(k))k that maximize LA independently of the other parameters.

Differentiating Equation 26 with respect to p+(k) and setting the derivative equal to zero, we obtain
the closed form for p+(k):

0 =
∂L+

A

∂p+(k)
=
∑
i

〈Z(k)
i 〉r

+(k) 1

p+(k)
−
∑
i

〈Z(k)
i 〉DNaseSum+

i

1

1− p+(k)
(37)

p+(k)
∑
i

〈Z(k)
i 〉DNaseSum+

i = (1− p+(k))
∑
i

〈Z(k)
i 〉r

+(k) (38)

p+(k) =

∑
i〈Z

(k)
i 〉r+(k)∑

i〈Z
(k)
i 〉DNaseSum+

i +
∑

i〈Z
(k)
i 〉r+(k)

. (39)

Again, the above is a decreasing function of p+(k), indicating a local maximum here.
It remains to establish the values of (r+(k))k that maximize LA. Let us recall that only the

first four summands in Equation 26 depend on (r+(k))k or (p+(k))k. We start with substituting
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Equation 39 into these four summands:

L′+A (Θ) =
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ

(
r+(k) + DNaseSum+

i

)
−
∑
i

K+1∑
k=0

〈Z(k)
i 〉 log Γ(r+(k)) +

∑
i

K+1∑
k=0

〈Z(k)
i 〉r

+(k) log

(∑
l

〈Z(k)
l 〉r

+(k)

)

−
∑
i

K+1∑
k=0

〈Z(k)
i 〉r

+(k) log

(∑
l

〈Z(k)
l 〉DNaseSum+

l +
∑
l

〈Z(k)
l 〉r

+(k)

)

+
∑
i

K+1∑
k=0

〈Z(k)
i 〉DNaseSum+

i log

(∑
l

〈Z(k)
l 〉DNaseSum+

l

)

−
∑
i

K+1∑
k=0

〈Z(k)
i 〉DNaseSum+

i log

(∑
l

〈Z(k)
l 〉DNaseSum+

l +
∑
l

〈Z(k)
l 〉r

+(k)

)
. (40)

Unfortunately, there seems to be no closed-form solution for r+(k) that maximizes L′+A (Θ). Here
we again apply the BFGS numerical optimization. For brevity, let us introduce the digamma

function, ψ(x) = Γ′(x)
Γ(x) . Differentiating L+

A with respect to r+(k), we get:

∂L+
A

∂r+(k)
=

∂L′+A
∂r+(k)

=
∑
i

〈Z(k)
i 〉ψ

(
r+(k) + DNaseSum+

i

)
−
∑
i

〈Z(k)
i 〉ψ(r+(k))

+ log

(∑
i

〈Z(k)
i 〉r

+(k)

)∑
i

〈Z(k)
i 〉+

∑
i

〈Z(k)
i 〉

− log

(∑
i

〈Z(k)
i 〉DNaseSum+

i +
∑
i

〈Z(k)
i 〉r

+(k)

)∑
i

〈Z(k)
i 〉

−
∑

i〈Z
(k)
i 〉∑

i〈Z
(k)
i 〉DNaseSum+

i +
∑

i〈Z
(k)
i 〉r+(k)

∑
i

〈Z(k)
i 〉r

+(k)

−
∑

i〈Z
(k)
i 〉∑

i〈Z
(k)
i 〉DNaseSum+

i +
∑

i〈Z
(k)
i 〉r+(k)

∑
i

〈Z(k)
i 〉DNaseSum+

i . (41)

Writing the above equation using p+(k) as defined in Equation 39, we get:

∂L+
A

∂r+(k)
=
∑
i

〈Z(k)
i 〉ψ

(
r+(k) + DNaseSum+

i

)
− ψ(r+(k))

∑
i

〈Z(k)
i 〉

+
(

log
(
p+(k)

)
+ 1− p+(k)

)∑
i

〈Z(k)
i 〉 −

p+(k)

r+(k)

∑
i

〈Z(k)
i 〉DNaseSum+

i . (42)

Now the numerical optimization procedure referred to above is used to find the local maximum.
The Expectation-Maximization procedure was initialized by assigning the prior probabilities as

described in Methods. The default initialization procedure can be overridden by directly providing
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the initial values of the prior likelihoods. Our choice of the procedure was motivated by the fact
that the total number of DNase-seq cuts in the vicinity is a very simple and reasonably accurate
predictor for the motif instance to be bound. We expect that other procedures may perform
comparably well, and to test this hypothesis we tried initializing the algorithm randomly, by putting
P (Zi = 1)/P (Zi = 0) = 100 for a random 10% of motif instances. The random initialization
performed surprisingly well in terms of AUC-PR and AUC-ROC when compared to the default one
(Supplementary Figure 9). After applying the random initialization 5 times for each combination
of TF, cell type and DNase I data source, we concluded that the random procedure missed the
maximum found by the default procedure in 2.7% of the cases. Moreover, in no case the random
procedure outperformed the default one, confirming the robustness of the latter.

We iterate the Expectation-Maximization procedure, in each iteration getting a revised vector
of parameters Θt, until the posterior probabilities do not change by more than 0.001, i.e.

max
i,k

∣∣P (Zi = k | Xi,Θt+1)− P (Zi = k | Xi,Θt)
∣∣ < 0.001. (43)

In most of the cases described here, the algorithm converged in less that 30 iterations.

4 Correlation between DNase I accessibility and motif score

The correlation was calculated for each TF motif, DNase-seq data source and cell type. We consid-
ered 500 bp long genomic windows, starting each 50 bp. For each window, we calculated the total
number of DNase I reads mapped within the window, as a measure of DNase I accessibility. We
also took the highest motif score for a genomic sequence within the window as the motif score for
the whole window.

To allow for a balanced comparison between DNase I accessibility and motif score, we took all
the windows overlapping the ChIP-seq peaks for the given TF, and additionally an equal number
of randomly chosen windows not overlapping such a peak. Within these windows, we calculated
the Spearman correlation coefficient between DNase I accessibility and motif score (Supplementary
Figure 10). We found no clear trend between these correlation coefficients and Binding in Closed
Chromatin (BCC) values (Supplementary Figure 10). This was also the case when we considered
the correlation calculated within all the genomic windows, or only within the windows overlapping
the ChIP-seq peaks.
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