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In the main text, we introduced a computational model of motor recovery after

stroke that describes the close interaction between arm use and motor improvement.

In the next sections we provide a detailed description of the implementation of this

model and we present preliminary results from simulations.

Computational Model description
In reaching movements, movement extent and direction have different sources of

variable and systematic errors [1, 2], suggesting that hand paths are initially planned

in vectorial coordinates without taking into account joint motions. Our model com-

prises a motor unit formed by two lateralized motor networks of direction-tuned

cells, which generate vectorial planed movement trajectories, with specific extent

and direction (Figure S1). The activity of each motor neuron is determined by the

difference between the preferred direction of neuron i θip and the desired movement

direction θd [3, 4]:

y = [cos(θd − θip) +N(0, σSDN
i)]+ (1)

where[x]+ =
x, ifx > 0

0, ifx < 0

The angle for the planed trajectory is the vector sum of the activity of each

neuron i, and follows the same method as reported in [3]. In the network that codes

movement extent, the length of the planed movement trajectory is determined by

the weighted sum of activity of each neuron i in the network. Each weight wi updates

after execution as a function of error in extent given the activity of neuron i, rapidly

adjusting to the optimal extent of an angle dependent trajectory:
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δwi = η(Xe −Xd)yi(θd, θp,i). (2)

where η is a learning rate, Xe is the executed movement extent, and Xd is the

desired movement extent (i.e. the actual extent needed to reach the target position).

Each of these networks contained 20 neurons, and the learning rate η was set at

0.5.

After execution, a combination of error-based and use-dependent learning mech-

anisms [3] updates the motor cortex contra-lateral to the selected limb, modulating

the preferred angles of motor neurons to enhance performance accuracy in the future

execution of similar movements. Each of this networks contained 500 neurons with

uniformly distributed direction sensitivities (0-360 degrees). For the parameters in

this network we used the same values reported in [3].

Estimation of Energies

Planed trajectories in each hemisphere are transformed to intrinsic coordinates for

estimating their biomechanical cost (i.e. energy). In the last decade, several authors

referred to the general hypothesis that the nervous system optimizes performance

as a function of energy expenditure [5, 6, 7]. Following this line, a previous study

showed that humans prefer to select reaching movements which are biomechanically

easier to perform [8]. This implies that the brain codes information about the future

biomechanical costs of multiple movements, before deciding which one to execute.

To account for this bias in action selection an independent unit in our model esti-

mates the energies needed to achieve each planned joint angle. First, we add a unit

in the motor cortex which performs the transformation of planed movements from

vectorial coordinates to intrinsic coordinates. In order to compute the interaction

torques produced at each joint by motions of upper arm and forearm segments we

use the method described in [9] modified to account only for planar reaching move-

ments with fixed shoulder positions (i.e. constrained trunk movements). Interaction

torques for shoulder (Ts) and elbow (Ts) for each limb h (i.e. left or right) are given

by:

Th,s = αθ̈s + βθ̈e + γθ̇e
2
− 2 ∗ γθ̇sθ̇s (3)

Th,e = εθ̈e + βθ̈s + γθ̇s
2

where

α = msr
2
s + Is +me[l

2
s + r2e + 2lsre cos(θe)] + Ie

β = melsre cos(θe) +mer
2
e + Ie

γ = melere sin(θe)
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ε = mer
2
e + Ie

This transformation needs to take into account the anthropometric properties of

the moving arm (mass of upper-arm ms, mass of forearm me, center of mass of upper

arm rs and forearm re, length of upper arm ls and forearm le, and moments of inertia

at center of mass of the upper arm Is and forearm Ie). We used anthropometrical

data from [10].

The expected energies for a specific action a are computed as the sum of the

multiplication of angular velocity (θ̇) and torques (T ) for shoulder and elbow at

each time step t until the final time step n:

Ea =

n∑
t=0

Ts(t)θ̇s(t) + Te(t)θ̇e(t) (4)

Action Selection

The action selection module is a variation of an interactive race model [11] divided

in two competing units corresponding to two possible actions (i.e. reaching with

the left limb or with the right limb). Each of them recursively accumulates action-

specific activity Ah for each hand h given the expected reward of this action. In

addition, it is recursively inhibited by the competing action network activity. As

a result, targets appearing at left or right workspace will show higher probability

of being reached by the ipsilateral hand. In addition, a noise term, N, is added

to represent noise in input to account for exploration in action selection. Activity

(Aa,h) for action a (i.e. joint rotations for reaching towards an specific location) and

limb h is given by:

Aa,h(t) = Aa,h(t− 1) + srQa,h − seEa,h − saAa,h−1(t) +N(t) (5)

where Qa,h is the expected reward, and Aa,h−1 is the accumulated activity for

the competing action (i.e. selecting the other hand). sr, se, and sa are scalars

for the expected reward, expected energies and activity of the competing action

respectively. This accumulation of activity in the action selection module simulates

an increase in striatal dopamine, which outputs an action choice after reaching a

threshold [12].

After action execution, the expected reward for the selected movement is updated

in memory given the reward prediction error, that is, the difference between the

actual reward R and the expected reward Q retrieved from memory [3]. These

updates minimize the square of the reward prediction error. For the acquisition of

expected rewards Q we used the same methods and parameters reported in [3].

Scalars used in the action selection rule were sr= 0.4, se= 100, and sa= 0.7. Scalar

values were found to provide greater influence for action selection to the expected

reward, followed by expected energies and the activity of the competing action.

Noise in the interactive race model is normally distributed, with zero mean and

standard deviation 0.15, and threshold for action selection was set to 1.

Results from the model
We implemented a computational model of hand selection to study the effect of dif-

ferent CIMT and RIMT therapy combinations on arm use and functional recovery.
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First, we ran simulations of 2000 trials of training in order to obtain a model of a

healthy subject. As in [3], we simulated a stroke by removing those direction-tuned

cells in the motor unit that were sensitive to a specific set of angles (0-90 degrees)

corresponding to the upper right workspace. Next, we provided 500 additional tri-

als of training (Figure S4). We observed that immediately after neural removal,

the accuracy of executed movements towards targets appearing at the upper-right

workspace was affected, reaching a mean directional error of 30 degrees. At this

stage, we simulated various combinations of two different treatments, CIMT and

RIMT. The first combination variable consisted of forcing the use of the paretic

limb with a certain probability (from 0 to 0.9), and the second variable consisted

of amplifying the visuomotor feedback with a certain factor (from -0.9 to 0.9). The

negative or positive sign of this factor indicates a reduced or an increased directional

error feedback respectively. In all simulations, the amplification factor G was fixed

to 0.5 (see Equation 1), which reduced the extent of the movement (i.e. length of

the movement trajectory) required to reach the target location to half. The model

adjusted accordingly to simulate shorter trajectories, consequently reducing the as-

sociated expected energy.

We used this model of recovery to simulate the effects of 190 combinations of

rehabilitation therapies (10 variations of CIMT x 19 variations of RIMT) on hand

selection patterns and performance in accuracy. Each therapy consisted of 3000 tri-

als of training plus 2500 follow-up trials with no treatment. Results show that CIMT

alone (0.9 CIMT and 0 RIMT) would promote paretic arm use (Figure S2). How-

ever, when both therapies are combined (0.3 CIMT and 0.7 RIMT) equal results

can be achieved. We observed very similar effects in the relearning of motor control

(Figure S3), showing that those treatments that were most effective in promoting

arm use did also induce the greater functional recovery. Contrarily, the amplifica-

tion of error feedback discouraged the selection of the paretic limb and hampered

recovery. In addition, preventing error-based learning by reducing error feedback in

90% impeded recovery.

We performed an analysis of arm use and motor function in a trial-by trial ba-

sis to further explore the model’s dynamics under four representative conditions:

no therapy, pure CIMT, pure RIMT, and a combination of 30% CIMT and 70%

RIMT (CIMT+RIMT). Results show that the averaged probability of choosing the

paretic limb and mean directional errors across trials (within a 500 trial-window)

Figure S3 increased in all treatment conditions. We identified a threshold of perfor-

mance (15 degrees of directional error), that initiated a virtuous loop of recovery

by promoting spontaneous use of the paretic limb. This bistable dynamics induced

further performance improvement and restored typical hand selection patterns at

follow-up. Contrarily, the no-therapy condition progressively discouraged the use of

the affected limb and predicted further deterioration.

Finally, we used this modeling approach to explore the potential of these rep-

resentative rehabilitation conditions for inducing cortical reorganization (Figure

S4). Early simulated training trials mimicked a healthy subject with uniformly dis-

tributed direction-tuned cells. In the left cortex, these distribution showed a bias for

recruiting more neurons sensitive to directions corresponding with the workspace

ipsilateral to the contralateral limb (i.e. right limb). After inducing the stroke,
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all treatment conditions induced positive cortical changes by redistributing intact

neurons for covering those movement directions affected by the lesion. After the

follow-up period, the distribution of direction-tuned cells across all possible input

angles became more uniform, resembling a healthy subject. Notice however that

the total number of cells was reduced. Contrarily, no treatment lead to an atypical

distribution of neural resources.
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Figure 1 Model diagram. Motor cortex receives the target angle (given by target location at the
current trial) as input for movement planing (blue box). Planed trajectories in each hemisphere
are transformed to intrinsic coordinates for estimating their biomechanical cost (i.e. energy).
Expected energies and expected reward for each planed movement compete for action selection
(red box). After execution of the selected action, all networks in the hemisphere contralateral to
the selected limb reorganize through error-based learning and use-dependent learning. Expected
rewards for the executed action are updated based on actual reward. Green arrows in diagram
stand for these three learning mechanisms. Continuous arrows indicate excitatory connections
while dashed arrows indicate inhibitory connections.
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Figure 2 Probability of using the affected arm and directional error simulations. A: Results from
simulations showing the probability of selecting the paretic limb (averaged within 500
trials-window), for each treatment condition after follow-up (5500 trials after stroke). B: Results
from simulations showing mean directional error of reaching movements executed using the
paretic limb for those targets located at the affected workspace. Both results were computed for
each treatment condition after follow-up (5500 trials after stroke). X-axis indicates the ratio of
directional error suppressed after execution (RIMT conditions). Y-axis indicates the ratio of
treatment trials in which the use of the paretic limb was forced (CIMT conditions).
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Figure 3 Simulation of therapy outcome. Probability of selecting the paretic limb (left) and
averaged directional error for targets appearing in the affected workspace (500 trials-window) for
each of the four selected therapies: no specific therapy, CIMT, RIMT, and a combination of CIMT
and RIMT protocols. Grey shadow indicates trial windows within the treatment period (3000
trials).

Figure 4 Simulations of Cortical reorganization Cortical reorganization of the left motor cortex
for four simulations: after training (healthy subject), after stroke (neural removal), and after
follow-up. Each simulation corresponds with one of the four selected treatment conditions: 0.7
RIMT, 0.9 CIMT, the combination of 0.3 CIMT and 0.7 RIMT, and no specific treatment. Polar
plots show the distribution of neurons in motor cortex given their preferred direction in angle bins
of 30 degrees.


