Supplementary Material

The active site of O-GlcNAc transferase imposes constraints on substrate sequence

Shalini Pathak^{1,a}, Jana Alonso^{1,a}, Marianne Schimpl^{1,a}, Karim Rafie^a, David E. Blair^a, Vladimir S. Borodkin^a, Osama Albarbarawi^a, and Daan M. F. van Aalten^{a,b,2}

Contents

- Figure S1. ETD fragmentation spectra
- Table S2.
 X-ray diffraction data collection and structure refinement statistics
- Fig. S2 Unbiased difference electron density for ligands

Figure S3. List of 32 hexapeptides derived from the peptide library hits used to generate the sequen for Fig. 4

Figure S4. Tolerance of different OGT isoforms for single amino acid substitutions

Figure S1.

ETD fragmentation followed by Proteome Discoverer search against a generic database that contains the full-length protein and the peptides submitted to glycomapping are shown below. c [+1] ions are in orange, y [+1] are in blue, and z [+1] are in green. The peptide sequence with the fragments identified is showed below the spectrum. The Thr(t)/Ser(s) amino acid that carries the O-GlcNAc is in bold lowercase.

1. Protein RBL2_HUMAN

ĸſeſnſsſpjajvjt pjvj**s**jtjaj

ĸſĔſŊſŚſ₽ſĂſVſŦſ₽ſVſŚſ*ŧ*ſĂſ

2. M phase phospho protein-9 (MPP9_HUMAN)

3. ELK1_HUMAN

T L[[]T[[]P[[]V]L[[]L]T P]S**[s**]L_]P_JS I

6. α -crystallin B chain

5

8. RET

10. SCG

12. GSK3 β

13. Kv2.1

K^ſŴſŢ∫K∫ŖjŢjĹjSjĔjŢj**s**jSjSj

Extracted from: Z:\Mass Spec data\LTQ-ETD\20130614\\VT_13_Act500.raw #2118 RT: 10.80 ITMS, ETD, z=+3, Mono m/z=571.73914 Da, MH+=1713.20285 Da, Match Tol.=1.2 Da

K^rwTJKJRj*t*jLjSjEjTjSjS S

14. M phase phospho protein-9

15. Early E1A32Kd

Extracted from: Z:\Mass Spec data\LTQ-ETD\20130625\IVT_9_Act500_NoDE.raw #2316 RT: 12.30 ITMS, ETD, z=+3, Mono m/z=562.07208 Da, MH+=1684.20169 Da, Match Tol.=1.2 Da

16. Tau

۱⁻ ۲۷₋۲۷₋۲ ۲₋۲ ۲₋۲

17. Rhodopsin-OPSD

A S^ra^rt^vs^rk_tt_je_jt_j**s**_jq v

V Ρ^ΓS^Γ**s**^ΓR_JG^ΓD^ΓY_J**m**_JT_JM_JQ_JM

19. Lamin B1

14

S^SV^TVJTS<mark>S</mark>YSJVJG

21. CGKI

23. BCKD kinase

24. Phospholipase C-γ-2

26. Desmocollin-3

Table S2.

X-ray diffraction data collection and structure refinement statistics. Values for the highest resolution shell are given in brackets.

	hOGT +	hOGT +	hOGT +	hOGT +					
	UDP-5SGlcNAc +	UDP-5SGlcNAc +	UDP-5SGlcNAc +	UDP-5SGlcNAc +					
	RB-like 2 (411—422)	keratin-7 (7—19)	Ret (660—672)	lamin B1 (179—191)					
Data collection									
Beamline,		ג כבס ט כ ככ ט ו		104 1 0 022 Å					
wavelength	ID30A-3, 0.9077 A	1D23-2, 0.073 A	104-1, 0.922 A	104-1, 0.922 A					
Space group	F222	<i>P</i> 321	<i>P</i> 321	F222					
Cell dimensions	a=138.53, b=151.61,	a=b= 275.1,	a=b=274.6,	a=138.18, b=150.18,					
(Å)	<i>c</i> =200.43	c=143.1	c=142.3	<i>c</i> =199.24					
Pecolution(A)	46.20-2.05 (2.16-	25.00-3.15 (3.32-	91.26-3.38 (3.56-	30.00-2.40 (2.53-2.40)					
Resolution (A)	2.05)	3.15)	3.38)						
R _{merge}	0.070 (0.826)	0.122 (0.508)	0.144 (0.674)	0.104 (0.719)					
/σ	17.4 (2.5)	5.5 (1.6)	7.4 (2.1)	11.8 (2.4)					
CC _{1/2}	0.99 (0.85)	0.99 (0.91)	0.97 (0.60)	0.99 (0.82)					
R _{meas}	0.076 (0.897)	0.172 (0.714)	0.197 (0.887)	0.114 (0.78)					
R _{pim}	0.029 (0.349)	0.121 (0.502)	0.100 (0.449)	0.044 (0.30)					
Completeness	100 (100)	99.4 (99.4)	00.4 (00.1)	99.9 (100)					
(%)	100 (100)	. ,	99.4 (99.1)						
Redundancy	6.7 (6.6)	1.7 (1.7)	3.4 (3.0)	6.5 (6.7)					
Refinement	46.20—2.05 Å	25.00—3.15 Å	30.00—3.38 Å	30.00-2.40					
No. total	443070	183993	284765	263631					
reflections	443970								
No. unique	65800	106474	84183	40463					
reflections	03009								
R _{work} , R _{free}	0.195 / 0.229	0.190 / 0.217	0.193 / 0.222	0.187 / 0.235					
No. atoms									
Protein	5516	22140	22056	5489					
Nucleotide	30	156	156	39					
sugar									
Peptide	47	292	205	50					
B-factor									
average									
Protein	44.75	54.43	70.84	45.17					
Nucleotide	36 11	46.01	66.81	31.43					
sugar									
Peptide	44.13	69.76	95.12	60.43					
R.m.s. deviation									
S									
Bond lengths	0.010	0.095	0.075	0.012					
(A)			4.15						
Bond angles	1.381	1.31	1.19	1.49					
(°)									
Pdb ID	4XIE	4XIF	4XI9	5BNW					

Figure S2. a-b Unbiased F_o - F_c difference electron density for ligands (UDP-5S-GlcNAc and peptide) contoured at 2.25 σ . **c-d** Unbiased, NCS-averaged F_o - F_c difference electron density for ligands (UDP-5S-GlcNAc and peptide) contoured at 3.5 σ . **e,f** Previously reported OGT substrate complexes. The entire sequence of the peptides used in the study is given; underlined residues are represented in the final model.

Figure S3.

List of 32 hexapeptides derived from the peptide library hits used to generate the sequon for Fig. 4.

Protein							Hexapeptide													
RBL2_HUMAN	Κ	Е	Ν	S	Р	Α	V	Т	Р	V	S	Т	Α							
MPP9_HUMAN		κ	R	Е	1	Μ	L	Т	Ρ	V	Т	V	А							
ELK1_HUMAN		L	Т	Ρ	V	L	L	Т	Ρ	S	S	L	Ρ	S	I.					
FOXO1					Т	F	R	Р	R	Т	S	S	Ν	Α	S	Т	I.			
ETS1		А	D	V	Р	L	L	Т	Ρ	S	S	к	Е							
α -crystallin B chain								F	Ρ	Т	S	Т	S	L	S	Р	F	Υ	L	R
Keratin 7				S	Ρ	V	F	Т	S	R	S	А	А	F	S	G				
RET			А	Q	А	F	Р	V	S	Υ	S	S	S	G	А					
MYB-related B protein		D	S	А	Ν	S	L	Т	Ρ	К	S	Т	Ρ							
SCG	Е	L	Т	L	к	Р	Р	s	Ρ	Т	S	Е	А							
RBL2_HUMAN	G	L	G	R	S	1	Т	S	Ρ	Т	Т	L	Υ							
GSK3β		G	Е	Ρ	Ν	V	S	Y	1	А	S	R	Υ							
					R	G	Е	Р	Ν	V	S	Υ	1	Α	S	R	Υ			
Kv2.1	К	W	Т	К	R	Т	L	s	Е	Т	S	S	S							
						К	W	Т	К	R	Т	L	S	Е	Т	S	S	S		
MPP9_HUMAN								Т	Ρ	V	Т	V	А	Y	S	Ρ	к	R	S	Ρ
Early E1A32kD	А	I	L	R	R	Ρ	Т	S	Ρ	V	S	R	Е							
Rhodopsin-OPSD	А	S	А	Т	V	S	К	Т	Е	Т	S	Q	V							
						А	S	А	Т	V	S	К	Т	Е	Т	S	Q	V		
Insulin receptor substrate-1								V	Ρ	S	S	R	G	D	Υ	Μ	Т	Μ	Q	М
Lamin B1	Κ	L	S	Ρ	S	Ρ	S	S	R	V	Т	V	S							
Lamin A						S	S	V	Т	V	Т	R	S	Y	R	S	V	G		
				S	S	V	Т	V	Т	R	S	Υ	R	S	V	G				
	S	S	V	Т	V	Т	R	S	Υ	R	S	V	G							
CGKI					Т	Н	1	G	Ρ	R	Т	Т	R	Α	Q	G	1			
ELK1						1	н	F	W	S	Т	L	S	Р	I.	А	Ρ	R		
BCKD kinase				Е	R	S	К	Т	V	Т	S	F	Υ	Ν	Q	S				
					Е	R	S	к	Т	V	т	S	F	Y	Ν	Q	s			
Phospholipase C-y-2		R	D	I	Ν	S	L	Y	D	V	S	R	М	Y						
HSP27								Р	А	Υ	S	R	А	L	S	R	Q	L	S	s
Desmocollin-3				Υ	Ν	Υ	Е	G	R	G	S	V	А	G	S	V				
DOUBLIN				Κ	D	L	Υ	L	Ρ	L	S	L	D	D	S	D				

Figure S4.

Tolerance of different OGT isoforms for single amino acid substitutions.

OGT activity on the reference peptide KKVPVSRA was measured with two different constructs of the enzyme possessing a different number of TPR repeats. Nucleocytoplasmic OGT (ncOGT) is the longest (full length) natural OGT isoform, whereas the truncated construct, OGT (312-1031), was used for crystallographic studies and library screening due to its increased stability. The reference peptide KKVPVSRA represents the optimal OGT hexapeptide sequen except for position -3, where Val was used in order to avoid a potential second O-GlcNAc acceptor. Two N-terminal Lys residues were added, in order to aid peptide solubility. Assay details are given in the Online Methods section. The average of three measurements is shown, with error bars depicting the s.e.m. Activity for each enzyme isoform was normalized to the reference peptide.