
Supplementary Figure 1 | Experimental setup.

1548 1548.5 1549 1549.5 1550 1550.5 1551 1551.5 1552
Wavelength (nm)

0

0.2

0.4

0.6

0.8

1

1.2

Am
pl

itu
de

(a
.u

.)

From the cavity
From the grating

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (ns)

0

0.5

1

0

0.5

1

In
te

ns
ity

(a
.u

.)

Experiment
Numerical Simulations

a b

Supplementary Figure 2 | Experimental results. (a) The shape of the pulses coming a�er propagating in the cavity, before being reflected
by the output grating. Experimental andnumerical simulation results agreewell both qualitatively andquantitatively. (b) The optical spectrum
of the pulses a�er propagation through the cavity (blue), and a�er reflection from the grating (orange).
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Supplementary Figure 3 | Faraday instability diagrams. (a) The instability diagram for the caseof detunedgratings, butwithout dispersion
modulation. (b) The instability diagram for the case of dispersionmodulationwith undetuned gratings. (c) The instability diagram for the case
when neither dispersion or dissipation are modulated.
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Supplementary Figure 4 | Frequency scaling for di�erent net cavity group velocity dispersions.

Supplementary Note 1 Experimental setup
�e schematic diagram of the Raman �bre laser used in the experiment to study the properties of the dissipative Faraday insta-
bility is shown on the Supplementary Figure 1. �e resonator was formed of 2.2 km of OFS Raman �bre with normal dispersion
D = −20 ps nm−2 km−1, dispersion slope 0.031 ps nm−2 km−1 at 1550 nm, Raman gain coe�cient 2.5 (W⋅km)−1 and high nonlin-
earity 6.5 (W⋅km)−1. Two identical 1 nm wide �bre Bragg gratings (FBG) with high re�ectivity 97%, 3rd order super-Gaussian
pro�le and chromatic dispersion −53 ps2 were used as cavity mirrors. �ey were spectrally shi�ed by approximately 0.75 nm
and stabilised by Peltier elements. Pump radiation at 1450 nm was coupled into the cavity with the help of wavelength division
multiplexing coupler (WDM). Optical spectrum and intensity dynamics weremonitored from the 1% rejection port immediately
a�er re�ection from the output grating.
Fast 50 GHz DC-coupled photodetector and 33 GHz real-time oscilloscope were used to register the temporal intensity

dynamics. Optical spectra were measured using 0.02 nm resolution bandwidth optical spectrum analyser Yokogawa AQ2670C.
Intensity autocorrelator Femtochrome 103-XL was used for auto-correlation function (ACF) measurements. RF spectra were
obtained with 13.6 GHz electrical spectrum analyser.
With the gratings spectral shi� set by the Peltrier elements, the laser readilymode-locks as soon as the pump level is above the

lasing threshold of 0.85 W, and operates stably up to the pump powers 2.5 W.�e detuning of the gratings a�ects both the pulse
repetition rate and pulse timing jitter, which agrees well with the prediction given by the linear stability analysis and numerical
simulations.
Other combinations of normal dispersion �bres, such as OFS IDF, and FBGs with di�erent width and chromatic dispersion

values were also studied both numerically and experimentally, with the results that agree well with stability analysis predictions.
To provide another reference point, the radiation coming from the cavity was registered at the point before the output grating.

As expected, the pulses had close to parabolic shape Supplementary Figure 2a, with a characteristic dip in the middle, which,
again, was reproduced in the numerical simulations.

�e e�ect of spectral broadening that pulses experience during the propagation in the cavity is demonstrated on the Supple-
mentary Figure 2b, where the spectrum of laser radiation coming from the cavity, and incident on the FBGs (see Supplementary
Figure 1), is shown together with the spectrum of the optical pulses registered immediately a�er re�ection by the FBG. Depend-
ing on the pumppower, the spectrum can broaden by a factor> 2,maintaining nearly a �at top pro�le, typical for parabolic pulses.

Supplementary Note 2 The scaling of the Faraday Instability
In order to provide an estimation for the functional dependence of the maximally growing mode in the dissipative Faraday
instability, we considered the nonlinear Schrödinger equation for the electric �eld envelope ψ propagating in a �bre with normal
group velocity dispersion β2 > 0 and Kerr nonlinearity γ > 0:

∂ψ
∂z

= −i β2

2
∂2ψ
∂t2
+ iγ ∣ψ∣2 ψ. (1)

�e Bogoliubov modes, oscillatory perturbations on top of the homogeneous �eld background ψ0, are stable for focussing non-
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linearity and normal group velocity dispersion and obey the following dispersion relation:

k2 = β2ω2

2
(β2ω2

2
+ 2γ ∣ψ0∣2) . (2)

In presence of the periodic forcing of a system parameter with spatial frequency k, we expect the Bogoliubov modes having
wavenumber which is an integermultiple of half of the forcing frequency, to synchronize with the forcing and hence to be excited.
From the parametric resonance condition the �rst excited temporal mode has frequency ω which satis�es the dispersion relation
ω(k/2). For a dissipation modulation having spatial period equal to Λ, we have k = 2π/Λ and with help of Supplementary
Equation 2 in the long wavelength limit we obtain:

ω ≈ π

Λ
√

β2γ ∣ψ0∣2
. (3)

Supplementary Equation 3 shows that the instability frequency depends on the inverse of the squared root of the �eld inten-
sity and provides a phenomenological scaling formula for the systems with parametric modulations. �e Raman laser used in
our experiment is described by amuchmore complicatedmodel based on coupled generalised nonlinear Schrödinger equations,
where dissipation plays a key role and the in�uence of cross-phase modulation, spatial nonuniformity of the gain and group
velocity mismatch between pump and Stokes �elds are not negligible. Nevertheless, Supplementary Equation 3 provides the
basic functional dependence on the laser pump power. Such a scaling can be obtained for dissipative systems described by the
Complex Ginzburg-Landau Equation as well [1].

Supplementary Note 3 Instability diagrams and dispersion management
We stress the fact that the dispersive Faraday instability does not introduce substantial modi�cations to the main tongue of the
instability spectrum. In the case of pure dissipative modulation (unchirped gratings) the instability spectrum Supplementary
Figure 3a, is identical to that of Figure 3a of the main paper where both dispersive and dissipative modulation are present. If
the gratings were chirped but not detuned in frequency (purely dispersive modulation) we obtained the instability spectrum
depicted in Supplementary Figure 3b. �e tongue responsible for dispersive Faraday instability, located around 25–30 GHz,
occurs at about twice the frequency of the �rst dissipative Faraday instability tongue simply due to the fact that the modulation
period of dispersion is half of the modulation period of dissipation and this leads to a twice higher instability frequency as shown
by Supplementary Equation 3.

�e small gain and lower frequency tongue in Supplementary Figure 3b, is caused by the periodic power variation experienced
by the Stokes �eld due to the pumpingwhich takes place only on one side of the resonator and hencewith half of the group velocity
dispersion modulation frequency.
Indeed if neither dissipation, nor dispersion are modulated — considering unchirped and not detuned mirrors — only the

tongue due to periodic power variation and its second harmonic survive, as depicted in Supplementary Figure 3c. When chirped
mirrors are used, the second instability tongue due to periodic power variation overlaps with the �rst tongue induced by group
velocity dispersion (GVD) modulation (Supplementary Figure 3b): in that case the two e�ects enforce themselves.
We stress that both situations corresponding to Supplementary Figure 3b and Supplementary Figure 3c do not generate any

pulsations in our system. It is important to comment that, even though the periodicity of the dissipation and of the pump
depletion induced periodic power variation are the same, the tongue induced by the zig-zag modulation of the dissipation has a
di�erent and characteristic shape “attached” to the “zero” frequency as it is clearly depicted in Figure 3a of the main paper and
in Supplementary Figure 3a; and it is the only one that can explain the periodic pulsation observed in the system’s dynamics.
We emphasize what already mentioned in the main paper: dispersion management is necessary in the experiment in order

to stabilise the pulse train that otherwise will be less regular and not easily tunable. Such an extra degree of freedom makes
the systems much more �exible and versatile and provides a key tool for mode-locked lasers design. �e compensation of the
accumulated dispersion by the gratings also provides a convenient mechanism of pulse compression before the pulses are out-
coupled from the cavity. �e impact of the dispersionmodulation on the instability frequency and pulse repetition rate, however,
is not very large. On the Supplementary Figure 4 the frequency scaling for two di�erent sets of gratings is shown. �e �bre
dispersion at the Stokes wavelength was the same in both cases β2s = 56.1 ps2, while the dispersion of the gratings di�ered by a
factor of 2.
We have checked both numerically and experimentally that the purely dispersive Faraday instability was not able to excite

any regular pulsation in our system most likely due to the highly noisy nature of the Raman laser, and the absence of a suitable
saturable absorber or other pulse reshaping mechanism.
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