
Moosa et al.

RESEARCH

Gene selection for cancer classification with the
help of bees
Johra Muhammad Moosa1*, Rameen Shakur2, Mohammad Kaykobad1 and Mohammad Sohel Rahman1

*Correspondence:

johra.moosa@gmail.com
1A`EDA Group, Department of

CSE, BUET, Dhaka-1205 Dhaka,

Bangladesh

Full list of author information is

available at the end of the article

Parameter Tuning
Different parameters have been experimentally tested for different values. For each

parameter value we ran the algorithm for at least 15 times. During these runs,

all the parameter values except for the parameter to be tuned are set to default.

The default values are given in Table S1. The average and standard deviation of

all the runs represent the performance of a specific value. The default parameter

values are set from intuition and preliminary runs. The parameter value for which

average fitness is maximum has been be picked as optimal parameter value unless

stated otherwise. Full factorial combination for parameter values is avoided assum-

ing that the parameters are not interdependent. For tuning the parameters, one of

the datasets (9 Tumors) among the ten is selected. The reason to select this dataset

is that it is a multiclass dataset and its gene size (5, 726) is neither too large nor

too small compared to the others (please refer to Table S2). Also it has moderate

sample size (60). So it is anticipated that the behavior of the parameters for this

dataset will more or less be reflected in all other datasets. The analysis of the tuned

parameters are discussed in the subsequent sections.

Brief attribute summary of the datasets are presented in Table S2. The datasets

contain both binary and multi class high dimensional data. The online supplement

to the datasets [1] used in this paper is available at http://www.gems-system.org.

The datasets are distributed as Matlab data files (.mat). Each file contains a matrix,

the columns consist of diagnosis (1st column) and genes, and the rows are the

samples.

Probability of Applying the Communication Operator, r4 To analyze this param-

eter values from {0.0, 0.1, 0.3, 0.5, 0.7, 1.0} have been used. The value 0.0 means

running the algorithm without applying the communication operator. On the other

hand the value 1.0 means applying the operator in each iteration. The experimental

results are presented in Table S3. From the experimental data we can see that use

of communication operator increases the accuracy while number of selected genes

tends to increase a little. With the increase of probability of utilizing the commu-

nication operator there is also an increase in accuracy. So this experiment indicates

that the communication operator indeed guides the bees in finding solution with

higher accuracy.

Use of Pheromone, uph To understand the contribution of pheromone in our algo-

rithm we need to observe the algorithm performance both with and without using

mailto:johra.moosa@gmail.com
http://www.gems-system.org


Moosa et al. Page 2 of 20

pheromone. Table S4 presents performance of the algorithm with and without using

pheromone. The accuracy remains almost unchanged with the use of pheromone.

But from the experimental results we can see that there is an enormous reduction

in the number of selected genes. The reason behind this improvement is that the

pheromone emphasizes the informative genes found in previous iterations. Much

more iterations will be needed to reach the target fitness if we rely mostly on ran-

dom exploration.

Probability of Local Search, probLS Values from 0 to 1, with step size 0.1 are

tested to tune this parameter. The results are listed in Table S5. The relation

between change in accuracy with probLS is presented in the Fig. S1. And the

relation between change in selected gene size with probLS is exhibited in the Fig. S2.

From the experimental values it is observed that with the increase of the probability

of employing local search, accuracy of the algorithm also increases. Selected gene

size tends to decrease with increasing probability of local search. Note also that

more application of the local search increases the running time.

Neighborhood Operator Destruction Size, nd For tuning the parameter nd, values

from {0.001, 0.005, 0.01, 0.015, 0.02, 0.025,

0.03, 0.035, 0.04, 0.05, 0.06, 0.08, 0.1, 0.15, 0.2} have been considered. The experimen-

tal results are presented in Table S6. The accuracy seems to improve with higher

values of nd. This is because large value of nd means that large number of genes

will be removed from the individual which also increases the probability of removing

more noisy genes. But high value of nd results in high number of selected genes,

because, too little or too big a jump at a time fails to find a potential neighbor. So,

if nd is too large, finding potential candidate after reducing the gene subset will be

less frequent. As a result the algorithm fails to achieve a small gene subset.

Pheromone Persistence Factor, ρ The amount of pheromone to be retained from

previous iterations is determined by ρ. So, (1 − ρ) is known as the pheromone

evaporation coefficient. In this experiment, the parameter ρ takes values from 0

to 1, with step size 0.1 are tested to tune this parameter. The performance for

different parameter values for ρ is presented in Table S7. The experimental outcome

shows that an increase in the value of ρ results in an increase in both accuracy

(upto 0.8) and selected gene set size. In each iteration, (1 − ρ) × 100% of the

current pheromones are evaporated. So increase in ρ means less evaporation and

thus, pheromone containing history of the previous iterations can retain longer. So

good solution components will contain high pheromone values for more iterations as

previous knowledge is remembered for much longer period of time. As a result during

the gene selection, they are more likely to be selected. Hence, bees ability to use their

experience while selecting genes also strengthens which results in higher accuracy.

Again redundant and noisy genes that get selected also contributes for longer period

of time which results in higher selected genes size. The value 0.8 is set as the tuned

value for ρ as it shows the highest accuracy. When no pheromone is evaporated (ρ

is 1.0), the algorithm selects lowest number of genes. As the information about all

the components are stored and thus the most informative genes are detected. But

also for this value the obtained accuracy is lowest because of stagnation.
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Weight of Accuracy in Fitness, w1 The tradeoff between accuracy and the number

of selected genes is controlled by the parameter w1. In the fitness equation, w1 is the

weight for the accuracy whereas (1 − w1) is the weight for the number of selected

genes. To tune the parameter w1, values from {0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}
are considered. Results of using different parameters are given in Table S8. The

Fig. S3 represents a graph showing change in accuracy with respect to change in

w1. The graph shows increasing trend of accuracy. It reaches its peak at the value of

0.85 for w1. For further values accuracy remains almost same. Increase in w1 results

in increase in accuracy, which is expected because increase in w1 means accuracy is

weighted more. The Fig. S4 represents the graph showing the behavior of selected

gene size with respect to change in w1. Also increase of w1 means selected gene size

weighs less in fitness function. So for higher values of w1 the number of selected gene

is also high. From the graphs (Fig. S3 and S4) it is confirmed that the algorithm

perform best in the range of 0.7 to 0.85 considering both the constraints. The value

0.85 is selected as optimized value as it gives the highest accuracy.

Population Size, PS The values in the range of 10 to 50 with step size 5, are con-

sidered for tuning the parameter PS. Experimental results using different parameter

values are given in Table S9. Notable increase in PS shows negligible increase in

accuracy. Also a slight reduction of the selected gene set size is noticed up to a value

of 30. For population size 30, the number of selected gene is noticeably small but

again the value increases for higher population size. For population size 40 highest

accuracy is achieved.

Prefiltering Method We have considered two prefiltering methods: one is paramet-

ric (F -test) and the other is non-parametric (Kruskal-Walllis). The performance of

application of these two methods in our approach is reported in Table S10. Kruskal-

Wallis method shows better performance according to accuracy. This is expected

because Kruskal-Wallis is a nonparametric method which is known to be suitable

for gene selection [2, 3]. On the other hand, F -test seems to filter out the redundant

genes more effectively resulting in relatively smaller selected gene size (at least for

the dataset we used for parameter tuning, i.e., 9 Tumors). The performance of the

filtering methods depends on whether the dataset contains normal distribution or

not. So further study may consider choosing prefiltering method depending upon

the result of checking the normality of the dataset. We have used Kruskal-Wallis

method in our final experiments.

Selection Method at the Onlooker Bee Stage As the selection procedure at the on-

looker bee stage, Tournament Selection and Fitness-Proportionate Selection have

been reviewed. The experimental results are presented in Table S11. Fitness-

proportionate selection yields smaller size for the selected gene set. On the other

hand tournament selection provides slightly higher classification accuracy. We have

used tournament selection in our final experiments.

Kernel Method for SVM As the kernel method for SVM, use of both linear and

RBF kernels have been examined. The experimental results are presented in Ta-

ble S12. The outcome exhibits better performance for linear kernel according to
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both accuracy and the number of selected genes. This is because the linear kernel

is suitable for high dimensional, small sample sized data [4, 5]. Also, linear kernel is

reported to have shown better performance than RBF kernel for gene selection [6].

Notably however, one of the studies suggests that choice of kernel does not affect

performance in most of the cases [7].

Inertia Weight (w) Update Approach For updating the inertia weight w, we have

discussed two approaches (i.e., Eq. ?? and Eq. ??). The experimental outcome for

updating inertia weight is reported in Table S13. The random update method i.e.,

Eq. ?? gives better performance according to selected gene size while the Eq. ??

gives better accuracy. We have decided to use Eq. ?? to update the inertia weight

in our final experiments.

Local Search Local search procedure is used in both employed bee and onlooker

bee stages. As local search procedures, Hill Climbing (HC), Simulated Annealing

(SA), and Steepest Ascent Hill Climbing with Replacement (SAHCR) are proposed

for both the stages. Results employing different local search methods in these stages

are reported in Table S14. For all the experiments related to local search methods

we have kept the value of probLS to 1.0 unless stated otherwise.

Local Search at the Employed Bee Stage Performance of Hill Climbing as the local

search procedure at the employed bee stage with HC or SAHCR or SA as the local

search method at the onlooker bee stage has been examined. Hill climbing shows

satisfactory performance in this stage when HC or SAHCR is run at the onlooker

bee stage; the result is poor when SA is run as the local search method for onlooker

bee stage. Hill Climbing only exploits a potential solution. Upward movement of

HC gets lost by random walk of SA at the onlooker bee stage. Hill climbing is more

likely to get stuck in a local optima. So when HC is used for the employed bee stage,

the possibility to get stuck in a local optima for the employed bee is higher. As a

result we need combination of further exploitation and exploration by the onlooker

bee when HC is applied in employed bee stage.

Implementing SA at this stage performs well only with SAHCR at the onlooker

bee stage. Since SA needs parameters to be tuned to perform well, the choices of

SA parameters can have a significant impact on the method’s effectiveness. Here

for this experiment we have used SA parameter values without tuning. So it failed

to exhibit a good performance. But despite that, SAHCR at the onlooker bee stage

found good solution from SA outcome of the employed bees.

Use of SAHCR at the employed bee stage gives satisfactory performance irrespec-

tive of any local search method employed at the onlooker bee stage. SAHCR tweaks

multiple times in each iteration which allows it to explore enough to find a good

solution. Thus application of SAHCR results in increased running time compared

to SA and HC. Use of SA as the local search at the onlooker bee stage with SAHCR

at the employed bee stage shows comparatively poor performance. This can be at-

tributed to the fact that a potential solution found by SAHCR might get lost by

initial random walk of SA. Thus in this stage, we need an algorithm that will help

the employed bee to land in a potentially good slope so that, when the onlooker

bee exploits and explores further it can achieve a good solution.
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Local Search at the Onlooker Bee Stage HC at the onlooker bee stage shows poor

performance. HC will provide a good solution in this stage only if it starts from a

prospective slope supplied from the employed bee stage. Thus because of a lack of

exploration capability, HC performs poorly at this stage.

SA at the onlooker bee stage also performs poorly. This can be attributed to the

fact that SA might go downhill sometimes. Initially SA performs mostly random

walk. At the onlooker bee stage, we need to upgrade the already found solution by

the employed bee. Therefore, it is expected for onlooker bees to exploit more than

to explore. But use of SA here might result in degradation of a potential solution. It

is expected that from the employed bee stage already the individual is in the slope

of a possible good solution. But because of its initial random walk, use of SA at

this stage makes the probability of loosing the progress by the onlooker bee high.

This mostly resulted in a poor performance.

In this stage SAHCR performs really well, because, besides exploitation it also

does enough exploration to find a good solution. In fact, the algorithm performs

best when SAHCR is applied in both stages. But use of SAHCR in both stages

increases the running time. Performance of SAHCR at the onlooker bee stage with

either HC or SA at the employed bee stage seems quite satisfactory. For onlooker

bee stage both SAHCR and HC perform significantly better than SA both with

respect to accuracy and selected gene size.

Hill Climbing For hill climbing the only parameter that is tuned is the iteration

count when HC is applied at the employed bee stage and SAHCR is applied in the

onlooker bee stage . Iteration count from 10 to 20 with step size 2 have been con-

sidered. Results of using different iteration counts for HC at the employed bee stage

are presented in Table S15. The experimental results show increase of selected gene

size with the increase of iteration count. Accuracy remains stable with changes in

iteration count. The accuracy reached highest at the value of 14. For this experiment

the probability of local search is set to 1.0.

Simulated Annealing To tune the SA parameters we applied SA at the employed

bee stage and SAHCR at the onlooker bee stage. To assess the contribution of

iteration count in SA, values from 10 to 20 with step size 2 have been considered.

For both default (0.4) and highest (1.0) value of probability of local search the

experiments are performed. The results are given in Table S16. Accuracy increase

with increased iteration count and reaches its peak at the value of 14 (20) for

probability of local search 1.0 (0.4). When probLS is 1.0, further increase in the

iteration count causes slight decrease in the accuracy. Also number of selected gene

tends to decrease with higher iteration count. For both accuracy and the number of

selected genes the value of 14 shows good performance which is set as the optimized

value for this parameter.

For simulated annealing the parameter temperature t is tuned using different

values from {1, 3, 5, 7, 10, 12, 15}. Experiments are performed for both default (0.4)

and highest (1.0) value of probability of local search. Performance measure of using

different values of t for SA at the onlooker bee stage is given in Table S17. Increasing

the value of t causes little degradation in accuracy but number of selected genes
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increases with the increase of t. Initially t is set to a high number, which causes

the algorithm to random walk in the search space. So, higher value of t means that

we do random walk for a longer period of time by accepting every newly created

solution regardless of how good it is. As a result the local search becomes poor at

exploitation, resulting in comparatively inferior solutions. In SA t decreases slowly,

eventually to 0, at which point the algorithm is doing just Hill Climbing.

The rate at which we decrease t is called the algorithm’s schedule. The parameter

schedule of simulated annealing is tuned using different values from 0.1 to 1 with

step size 0.1. Experiments are performed for both the highest (1.0) and the default

(0.4) probability of local search. The results of using different values for schedule

is presented in Table S18. The accuracy remains almost same with the change in

values of schedule.

Steepest Ascent Hill Climbing with Replacement The values from 10 to 20 with step

size 2 have been evaluated as the iteration count of SAHCR. For this experiment

SAHCR is set as local search method in onlooker bee stage and SA is set as local

search method in employed bee stage. The results of tuning iteration counts of

SAHCR are presented in Table S19. The results show increase of accuracy with

higher iteration count.

To review the consequence of applying different amount of tweak the values form

{5, 6, 7, 8, 9, 10, 12, 15, 20} are considered. The experimental outcomes are listed in

Table S20. Results of this experiment show improvement of accuracy with more

tweaking. The selected gene size also tends to decrease with higher number of tweaks

at both the stages. For all the experiments related to different parameter of SAHCR,

both the highest (1.0) and the default values of probLS are considered.

Percentage of Gene to be Selected from Prefiltering Step, thn After the filter-

ing technique is applied the genes are ranked. A percentage of top ranked genes

are selected to be passed on to the next stage. The parameter thn determines

the percentage of gene to be selected. The values for tuning thn are taken from

{0.004, 0.01, 0.02, 0.03, 0.04, 0.045, 0.05, 0.06, 0.065, 0.07, 0.075,

0.08, 0.085, 0.09, 0.1, 0.2} when Kruskal-Wallis test is utilized as the prefiltering tech-

nique. The results are presented in Table S21. We can see that too small value of thn

causes the filtering technique to discard most of the genes including the informative

ones, which results in poor predictive accuracy. For this dataset, the value 0.03 (171

genes selected from the prefiltering stage) gives the highest accuracy. For higher val-

ues of thn accuracy remains almost same. In fact the accuracy reduces a little for

high values of thn. The task of preprocessing step is to discard the irrelevant genes.

So higher value of thn gives lower accuracy because of the presence of noisy genes.

Again, too lower value of thn means informative genes are discarded in the prefilter-

ing step. The experimental results also support the finding [8, 9, 10, 11, 12, 13] that

the use of all the genes potentially hampers the classifier performance. Table S21

also reports the number of genes selected from the preprocessing stage.

Threshold to Select Gene from Prefiltering Step, thp The p-value for each gene is

computed and then all the genes are sorted according to the p-value in the filtering
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step. To select the top ranked genes form Kruskal-Wallis (F -test) we need to fix a

threshold and select all the genes having p-value less (greater) than the threshold.

The values from {0.0005, 0.001, 0.002, 0.003, 0.005, 0.007, 0.009, 0.01, 0.02, 0.025, 0, 03,

0.04, 0.045} are taken into consideration to tune the parameter thp and Kruskal-

Wallis was set as the prefiltering method. The results of the experiments are re-

ported in Table S22. Increase in thp shows rapid increase in the selected gene size.

The highest accuracy is attained at the value of 0.001 (150 genes selected from

prefiltering stage). For further values of thp little declination in the accuracy is

noticed. This happens because with the increase of thp less genes are filtered which

results in the selection of noisy genes for the next stage. Thus the algorithm exhibits

unsatisfactory performance. From the both approaches it is apparent that for the

9 Tumors dataset informative genes are present in top 200 genes.

Weight of Individual Bee in Pheromone Deposition Equation, co The contribution

of the current bee Si, individual best pbesti, and global best gbest in pheromone

laying is determined by c0, c1, and c2 respectively. To find a suitable value for

the parameter c0, values from {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are

considered. The contribution of pbesti and gbest is kept the same, i.e., c1 = c2. Also

some of experiments for the values from {0.7, 0.6, 0.5, 0.4, 0.3, 0.2} for the variable

c0 while keeping the contribution of pbesti, i.e., c1 to 0 is performed. The value of c2

is calculated so that c0 + c1 + c2 = 1. The results are presented in Table S23. From

the observed results we can find that too low a value of c0 results in low accuracy

and the selected gene size. Gene subset remains small because the best solutions

contribute more to the pheromone. So only small number of components receive

high pheromone values and they get selected. But little exploration may cause the

algorithm to get stuck at local optima. Again too high a value for c0 masks the

contribution of good solution components obtained from personal and global best

solutions which also results in lower accuracy and higher selected gene size.

Maximum Number of Algorithm Iterations, MAX ITER This parameter gives

the maximum number of times the modified ABC will be run to achieve a single

solution. To tune the parameter the values are taken from the range 10 to 50

with step size 10. The experimental results are presented in Table S24. From the

outcome no significant correlation can be found. The accuracy remains almost the

same. Change in the selected gene size can be noticed with the variation in the value

of MAX ITER, but no actual relation is found. Also from the experimental data it

is observed that on average number of iterations needed by the algorithm to reach

to its final result remains almost the same for various values of MAX ITER. So

we can conclude that the algorithm converges really soon. As the selected value for

MAX ITER, 20 has been chosen, because it shows the best performance. Notably,

a higher value will result in a higher running time without improvement in the

accuracy. Besides the value 20 shows best performance.

Number of Trials without Improvement, limit A food source which cannot be im-

proved by a predetermined number (limit) of trials is abandoned by its employed

bee and the employed bee is converted to a scout. The variable triali keeps track of
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number of times fitness remains unchanged for the ith bee Si . To tune the parame-

ter limit, the values {5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 100, 200, 500, 800,∞} are used.

The value ∞ for the parameter limit means that no food sources are abandoned

by employed bees. In the other words there is no scout bees when limit is set to

∞. The results are reported in Table S25. Increase in limit exhibits improvement

of performance according to both accuracy (Fig. S5) and the number of selected

genes (Fig. S6). The accuracy is highest when the value of limit is 100. From the

graph presented in Fig. S5 increasing trend for accuracy is visible. But when limit

is very high, accuracy remains almost the same. For the number of selected gene

we can see from the graph presented in Fig. S6 that when limit is very low selected

gene size is very high. Otherwise decreasing trend is visible. Small value of limit

means that the individuals get random initialization more frequently. So there is

a possibility of discarding a potential solution before the individual gets chance

to exhaust it amply [14]. So a good solution might be lost in the midway. Thus

lower value of limit results in reduction in accuracy. Increase in limit also tends

to increases the average number of iterations needed for the algorithm to reach in

its final solution. This might be because larger value of limit means less random

exploration capability. So the algorithm needs more time to reach in the final so-

lution. When limit is too small or too large, the results obtained by our algorithm

are worse than those produced by using the moderate values of limit. Therefore,

results show that proper frequency of new solution production has useful effect on

the solution fitness, which can perform enough explorations to improve the search

ability of the algorithm. However, the balance between exploration and exploitation

processes will be altered whether limit is too small or too large, which will produce

worse solutions and cost much more running time. The obtained accuracy is highest

for the limit value 100. But high value of limit may result in less exploration.

Parameter Tuning of Different Evolutionary Algorithms

Different evolutionary algorithms can be considered as search method for gene se-

lection. In this section we will present performance of gene selection for utilizing

different evolutionary algorithms including genetic algorithm (GA), ACO, and ABC

in this section.

Genetic Algorithm Behavior of four parameters of genetic algorithms: population

size, crossover ratio (r), mutation ratio (m), and MAX ITER are studied. The

whole process is repeated for at least 15 times with genetic algorithm as search

method for each parameter combination. During these runs, all the parameter values

except for the parameter in consideration are set to default. The default values

for the parameters are given in Table S26. The values from {20, 30, 40, 50} are

considered to study the parameter PS. The Table S27 presents the performance

outcome for different values of PS. From the experimental outcome it is clearly

visible that increase in population results in increased performance both according

to accuracy and selected gene size upto population size 80. For further values a

little performance degradation is visible. So, the value 80 is selected as optimized

value for PS in GA. Values from {100, 200, 300, 400} are considered as maximum

iteration count. The value 100 is considered as default value for MAX ITER. The
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Table S28 presents the performance outcome for different values of MAX ITER.

The value 200 is selected as final value as it exhibits good performance considering

both the constraints. The values from 0.6 to 1.0 with step size 0.1 are considered

as crossover ratio. The default crossover rate is set to 1.0. The results are listed

in Table S29. Increase in crossover ratio (r) exhibits increased performance both

considering accuracy and selected gene size. But best result is found for crossover

rate 0.9. For mutation ratio (m) 0.1 and 0.01 are considered for tuning. The results

are presented in Table S30. Both accuracy and selected gene size decreases with high

values of m. For crossover ratio the value 0.9 is considered as final value. Mutation

ratio of 0.01 is set as the optimized value. For the parameter MAX ITER the value

200 is finalized as it shows good results both according to accuracy and selected

gene size.

Artificial Bee Colony For ABC, corresponding values for parameters are set ac-

cording to tuning presented in Section for the proposed method. The optimized

parameter settings for ABC is given in Table S31. The whole process is repeated for

at least 15 times with artificial bee colony algorithm as search method. The results

are presented in Table S32.

Ant Colony Optimization The whole process is repeated for at least 15 times with

ant colony optimization as search method for each parameter combination. As lo-

cal search method SAHCR with iteration count 12 and no. of tweaks 5 is used.

The value of ρ is set to 0.8. Tuning for two parameters of ACO: population size,

and MAX ITER is done. The default values for both the parameters are set to

20. For both the parameters values from {20, 30, 40, 50} are considered. When one

of the parameters is tuned the value of other parameter is kept default. The Ta-

ble S34 and S35 present the performance outcome for different values of PS and

MAX ITER respectively. For both PS and MAX ITER best results are found

for the value 40. The other parameter values are set as given in Table S33. Initially

pheromone values for all the components are set to 0. While updating pheromone

only the current solution and the gbest is considered.
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Figures

Supplementary Figure S1 Obtained accuracy with different values of probLS
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Supplementary Figure S2 Selected gene size with different values of probLS

Supplementary Figure S3 Obtained accuracy with different values of w1
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Supplementary Figure S4 Selected gene size with different values of w1

Supplementary Figure S5 Obtained accuracy with different values of limit
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Supplementary Figure S6 Selected gene size with different values of limit

Tables

Supplementary Table S1 Default parameter values for tuning

Parameter Default value Comments
probLS 0.4 Probability of local search in employed and onlooker bee stage
ρ 0.8 Pheromone persistence factor
w 1.4 Inertia weight
w1 0.85 Weight of accuracy in fitness equation
thn 0.1 Percentage of gene to be selected from preprocessing step
hc iter 12 Number of iterations for HC
sahc iter 12 Number of iterations for SAHCR
sahc tweak 5 Number of tweaks for SAHCR
sa iter 12 Number of iterations for SA
t 10 Value of temperature t for SA
schedule 0.5 Value of schedule for SA
tmax 5 Maximum pheromone value
tmin 0 Minimum pheromone value
c0 0.5 Weight of an individual in pheromone update
MAX ITER 20 Number of iterations
limit 5 Iterations to determine exhausted food source
nd 0.02 Percentage of genes to be removed in neighborhood operation
PS 20 Population size
r4 0.1 Probability of performing Communication Operation
lse SAHCR Local search in employed bee stage
lso SA Local search in onlooker bee stage
st Tournament Selection Selection procedure to be used in onlooker bee stage
kernel Linear Kernel to be used in SVM
wt Equation ?? Inertia weight update equation
uph True Whether to use pheromone or not
prefilter Kruskal-Wallis Prefiltering method
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Supplementary Table S2 Attributes of the datasets used for experimental evaluation

Nameofthedataset Sample size Number of genes Number of classes Reference
9 Tumors 60 5, 726 9 [15]
11 Tumors 174 12, 533 11 [16]
Brain Tumor1 90 5, 920 5 [17]
Brain Tumor2 50 10, 367 4 [18]
DLBCL 77 5, 469 2 [19]
Leukemia1 72 5, 327 3 [20]
Leukemia2 72 11, 225 3 [21]
Lung Cancer 203 12, 600 5 [22]
Prostate Tumor 102 10, 509 2 [23]
SRBCT 83 2, 308 4 [24]

Supplementary Table S3 Performance outcome for different values of parameter r4

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

0 82.87 0.02 25.72 4.3
0.1 84.74 0.03 53.33 53.65
0.3 82.92 0.02 26.38 7.37
0.5 84 0.02 37.8 46.47
0.7 85 0.03 40.8 39.4
1 85.52 0.02 30.75 5.93

Supplementary Table S4 Performance outcome for different values of parameter uph

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

FALSE 85 0.01 206.29 30.15
TRUE 84.74 0.03 53.33 53.65

Supplementary Table S5 Performance outcome for different values of parameter probLS

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

0 82.78 0.02 167.52 45.29
0.1 82.94 0.02 157.18 67.48
0.2 82.22 0.03 111 88.85
0.3 83.63 0.03 94.35 85.1
0.4 84.74 0.03 53.33 53.65
0.5 83.86 0.03 40.95 46.77
0.6 84.06 0.01 33.63 6.3
0.7 85.78 0.02 33 9.86
0.8 86.48 0.02 33.11 4.56
0.9 87.46 0.02 37.05 10.05
1 88.33 0.02 35.13 6.28

Supplementary Table S6 Performance outcome for different values of parameter nd

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

0.001 82.92 0.02 34.63 27.07
0.005 83.24 0.02 46.56 50.24
0.01 82.11 0.02 29.07 7.53
0.015 83.43 0.02 42.24 48.67
0.02 84.74 0.03 53.33 53.65
0.025 83.67 0.03 53.6 61.46
0.03 83.67 0.03 55.47 57.56
0.035 84.56 0.03 42.27 46.12
0.04 83.89 0.02 61.27 56.08
0.05 84.13 0.02 46.61 47.84
0.06 84.11 0.02 87.07 60.15
0.08 85.11 0.03 56.53 53.95
0.1 85.22 0.02 78.97 57.94
0.15 84.83 0.02 62.85 35.22
0.2 85.09 0.02 79.17 36.87
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Supplementary Table S7 Performance outcome for different values of parameter ρ

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

0 83.75 0.03 46.5 62.43
0.1 83.42 0.02 42.79 47.47
0.2 82.46 0.02 40.29 46.67
0.3 83.33 0.03 52.61 58.76
0.4 82.54 0.02 48.32 60.92
0.5 83.33 0.02 40.74 44.62
0.6 83.29 0.02 55.87 67.62
0.7 83.44 0.02 60.02 67.77
0.8 84.74 0.03 53.33 53.65
0.9 84.08 0.02 56.74 65.82
1 82.89 0.02 37.73 45.92

Supplementary Table S8 Performance outcome for different values of parameter w1

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

0.5 80.78 0.03 24.47 5.24
0.6 80.78 0.04 26.67 6.51
0.65 80.98 0.03 24.32 6.88
0.7 80.96 0.02 21.05 2.8
0.75 81.89 0.02 23.67 3.85
0.8 83.22 0.03 28.07 6.54
0.85 84.74 0.03 53.33 53.65
0.9 84.67 0.03 62.6 72.74

Supplementary Table S9 Performance outcome for different values of parameter PS

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

10 82.28 0.02 59.52 60.21
15 83.78 0.03 73.11 73
20 84.74 0.03 53.33 53.65
25 84.83 0.02 53.21 56.76
30 82.98 0.02 27.68 6.92
35 83.75 0.02 38.55 43.31
40 85.08 0.02 37.1 43.38
45 84.64 0.03 34.26 31.42
50 84.39 0.02 33.5 30.94

Supplementary Table S10 Performance outcome for different values of parameter Prefiltering Method

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

F -test 82.32 0.02 44 49.72
Kruskal-Wallis 84.74 0.03 53.33 53.65

Supplementary Table S11 Performance outcome for different values of parameter Selection Method

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

Fitness-Proportionate Selection 84.2 0.03 41.43 47.47
Tournament Selection 84.74 0.03 53.33 53.65

Supplementary Table S12 Performance outcome for different values of parameter Kernel

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

RBF 83.18 0.02 149.73 74.03
Linear 84.74 0.03 53.33 53.65



Moosa et al. Page 16 of 20

Supplementary Table S13 Performance outcome for different values of parameter Inertia weight
update equation

Values Accuracy No. of selected gene
Avg. S.D. Avg. S.D.

Eq. ?? 83.78 0.02 35.2 12.5
Eq. ?? 84.74 0.03 53.33 53.65

Supplementary Table S14 Performance outcome for different local search methods in employed bee
and onlooker bee stage

Local search Accuracy No. of selected gene
Employed Bee Onlooker Bee Avg. S. D. Avg. S. D.
HC HC 87.98 0.02 119.96 34.52
HC SA 83.04 0.02 159.24 91.51
HC SAHCR 94.91 0.02 58.44 16.2
SAHCR HC 90.89 0.02 51.07 28.02
SAHCR SA 88.33 0.02 35.13 6.28
SAHCR SAHCR 96.27 0.02 48.06 9.41
SA HC 85.69 0.03 53.63 36.9
SA SAHCR 94.22 0.02 61.47 13.93
SA SA 82.16 0.03 98.88 67.34

Supplementary Table S15 Performance outcome for different iteration counts for Hill Climbing in
employed bee stage

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

10 95.11 0.02 43.73 6.11
12 94.91 0.02 58.44 16.2
14 95.19 0.01 57.44 19.4
16 94.91 0.01 52.11 16.43
18 95.09 0.01 53.44 15.19
20 94.81 0.01 62.28 20.78

Supplementary Table S16 Performance outcome for different

iteration counts for Simulated Annealing in employed bee stage
probLS 1.0 probLS 0.4

Values Accuracy # selected gene Accuracy # selected gene
Avg. S. D. Avg. S. D. Avg. S. D. Avg. S. D.

10 94.17 0.02 52 8.94 89.67 0.02 47.27 25.87
12 94.22 0.02 61.47 13.93 89.9 0.02 52.24 27.47
14 94.9 0.01 56.25 15.84 89.33 0.02 58.67 34.16
16 93.77 0.01 49.68 6.38 89.38 0.02 56.38 32.85
18 93.98 0.02 55.94 16.59 89 0.02 60.65 36.69
20 93.93 0.02 58.64 19.54 90.48 0.03 45.04 17.07

Supplementary Table S17 Performance outcome for different temperature (t) values for Simulated
Annealing in employed bee stage

probLS 1.0 probLS 0.4
Values Accuracy # selected gene Accuracy # selected gene

Avg. S. D. Avg. S. D. Avg. S. D. Avg. S. D.
1 94.54 0.02 55.28 17.35 89.44 0.02 56.33 33.72
3 95 0.01 53.53 14.88 88.26 0.03 73.91 50.12
5 94.12 0.02 55.06 20.4 89.24 0.03 52.5 28.85
7 94.11 0.01 56.93 17.39 89.21 0.03 53.05 24.6
10 94.22 0.02 61.47 13.93 89.9 0.02 52.24 27.47
12 93.82 0.02 52 10.91 89 0.02 52.47 19.18
15 94.38 0.02 67.38 22.01 89.27 0.02 44 9.47
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Supplementary Table S18 Performance outcome for different values of the parameter schedule for
Simulated Annealing in employed bee stage

probLS 1.0 probLS 0.4
Values Accuracy # selected gene Accuracy # selected gene

Avg. S. D. Avg. S. D. Avg. S. D. Avg. S. D.
0.1 93.51 0.02 58.74 15.82 90.56 0.02 44.13 7.07
0.2 94.22 0.02 52.53 16 89.78 0.02 52.73 20.97
0.3 93.89 0.02 56.47 10.9 89.74 0.02 59.63 24.61
0.4 94.22 0.02 51.2 18.04 89.67 0.02 53.52 23.17
0.5 94.22 0.02 61.47 13.93 89.9 0.02 52.24 27.47
0.6 94.33 0.01 54.07 17.02 88.67 0.03 46.07 26.73
0.7 93.56 0.01 53.87 9.32 89.56 0.03 49.67 24.76
0.8 93.86 0.01 50.11 12.13 90.22 0.03 52.2 29.81
0.9 94.6 0.02 54.9 15.59 89.22 0.03 54.47 39.27
1 94.48 0.02 51.94 14.22 89 0.03 60.2 35.32

Supplementary Table S19 Performance outcome for different iteration counts for Steepest Ascent
Hill Climbing with Replacement in onlooker bee stage

probLS 1.0 probLS 0.4
Values Accuracy # selected gene Accuracy # selected gene

Avg. S. D. Avg. S. D. Avg. S. D. Avg. S. D.
10 94.13 0.02 49.05 7.95 88.61 0.02 43.89 20.55
12 94.22 0.02 61.47 13.93 89.9 0.02 52.24 27.47
14 95.33 0.02 61.8 15.47 90.67 0.03 54.27 22.08
16 95.42 0.02 56.13 13.9 90.94 0.02 44.13 9.13
18 95.59 0.01 65.88 15.09 91.83 0.02 58.43 29.58
20 96.56 0.01 65.63 10.68 92.11 0.02 60.67 15.51

Supplementary Table S20 Performance outcome for different values of the parameter tweak for
Steepest Ascent Hill Climbing with Replacement

probLS 1.0 probLS 0.4
Values Accuracy # selected gene Accuracy # selected gene

Avg. S. D. Avg. S. D. Avg. S. D. Avg. S. D.
5 94.22 0.02 61.47 13.93 89.9 0.02 52.24 27.47
6 95.37 0.02 50.94 10.41 89.39 0.02 45.18 25.57
7 94.8 0.02 50.29 16.29 89.78 0.02 47 11
8 95.56 0.02 47.6 13.06 91.59 0.03 40.41 5.66
9 96.33 0.01 48.75 12.11 91.62 0.03 43.61 16.07
10 96.14 0.02 48.32 9.97 92.55 0.02 46.18 19.63
12 96.85 0.01 52.67 14.65 93.13 0.03 48.06 14.84
15 96.97 0.01 46.41 10.98 92.78 0.02 36.2 6.21
20 98.04 0.01 41.76 6.33 93.52 0.02 41.22 14.74

Supplementary Table S21 Performance outcome for percentage of genes selected in prefiltering
stage, thn

Values # genes selected Accuracy No. of selected gene
from prefiltering Avg. S.D. Avg. S.D.
stage

0.004 22 73.78 0.02 9.2 1.9
0.01 57 83 0.01 21.33 2.82
0.02 114 86.11 0.01 34.4 9.16
0.03 171 86.81 0.02 41.43 20.35
0.04 229 85.45 0.02 41.36 24.47
0.045 257 85.25 0.03 47.11 30.02
0.05 286 85 0.03 47.27 34.65
0.06 343 83.11 0.02 30.87 24.66
0.065 372 85.33 0.03 51 45.36
0.07 400 84.58 0.02 36 32.17
0.075 429 84.21 0.03 33.58 24.98
0.08 458 85.33 0.02 55.27 51.97
0.085 486 84.56 0.02 50.47 56.56
0.09 515 83.67 0.02 48.6 51.35
0.1 572 84.74 0.03 53.33 53.65
0.2 1145 84.38 0.02 171.63 193.37
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Supplementary Table S22 Performance outcome for threshold of p-value in prefiltering stage, thp

Values # genes selected Accuracy No. of selected gene
from prefiltering Avg. S.D. Avg. S.D.
stage

0.0005 91 85.89 0.02 27.53 7.33
0.001 150 85.92 0.01 36.9 12.69
0.002 235 85.21 0.02 43.58 25.61
0.003 298 85.1 0.03 39.5 30.17
0.005 413 84.82 0.02 64.05 51.94
0.007 506 84.56 0.02 56.47 52.2
0.009 577 83.73 0.02 48.05 54.48
0.01 605 83.52 0.03 73.5 78.97
0.02 867 83.86 0.02 91.32 117.88
0.025 989 84.44 0.02 145.39 147.8
0.03 1083 83.92 0.02 139.1 167.76
0.04 1259 85.1 0.02 234.75 213.27
0.045 1327 84.31 0.03 196.94 202.61

Supplementary Table S23 Performance outcome for different values of c0

c0 c1 c2 Accuracy No. of selected gene
Average S. D. Average S. D.

0 0.5 0.5 83.75 0.02 34.8 28.57
0.01 0.495 0.495 83 0.02 29.87 8
0.05 0.475 0.475 83.22 0.02 62.6 64.16
0.1 0.45 0.45 83.25 0.02 60.32 65.14
0.2 0.4 0.4 82.4 0.02 41.56 52.24
0.3 0.35 0.35 83.22 0.03 61.13 70.85
0.4 0.3 0.3 83.44 0.03 79.13 82.08
0.5 0.25 0.25 84.74 0.03 53.33 53.65
0.6 0.2 0.2 84.35 0.04 37.94 38.5
0.7 0.15 0.15 83.79 0.03 69.82 72.87
0.8 0.1 0.1 82.78 0.02 42.07 49.95
0.9 0.05 0.05 83.67 0.03 58.8 71.09
0.2 0 0.8 84.69 0.03 58 65.48
0.3 0 0.7 84 0.04 27.87 6.15
0.4 0 0.6 83.13 0.03 29.88 8.35
0.5 0 0.5 82.65 0.01 38.53 49.01
0.6 0 0.4 83.11 0.02 35.73 39.98
0.7 0 0.3 84 0.02 42 55.26

Supplementary Table S24 Performance outcome for different values of parameter MAX ITER

Values Accuracy No. of selected gene Average number of iterations
Avg. S.D. Avg. S.D. needed to reach the final solution

10 83.78 0.03 44.2 48.33 5.07
20 84.74 0.03 53.33 53.65 6.27
30 83.92 0.03 46.12 59.66 5.47
40 84.22 0.02 40.6 44.42 6.6
50 83.44 0.02 51.67 61.27 7.93
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Supplementary Table S25 Performance outcome for different values of parameter limit

Values Accuracy No. of selected gene Average number of iterations
Avg. S.D. Avg. S.D. needed to reach the final solution

5 84.74 0.03 53.33 53.65 6.27
7 84.21 0.03 71.95 66.13 7.37
10 85.22 0.02 29.13 7.03 7.13
12 86.56 0.02 30.27 6.63 6.93
15 87.75 0.02 31.15 5.22 7.75
20 89.42 0.02 32.65 6.17 9.3
25 89.82 0.02 33.79 8.22 11
30 91.42 0.02 36.75 6.64 11.85
35 91.94 0.02 35.89 5.85 11.61
40 92.08 0.02 37.69 7.36 15.94
100 94.12 0.02 32.35 5.96 18.53
200 93.04 0.02 34.44 7.97 17.94
500 93.56 0.02 31.97 6.85 18.67
800 93.66 0.02 35.08 7.1 18.75
∞ 93.7 0.02 33.89 8.28 19.26

Supplementary Table S26 Default values for tuning GA parameters

Parameter Default value
PS 20
MAX ITER 100
r 1.0
m 0.1

Supplementary Table S27 Performance outcome for different values of PS for GA

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

20 80.48 0.01 281.07 11.21
30 80.89 0.01 279.97 9.93
40 80.97 0.01 278.67 12.37
50 81.44 0.01 278.8 12.95
60 81.56 0.01 276.13 7.06
70 81.67 0.01 279.07 11.98
80 81.78 0.01 280.6 11.38
90 81.44 0.01 276.8 11.91
100 81.67 0.01 277.47 15.38

Supplementary Table S28 Performance outcome for different values of MAX ITER for GA

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

100 80.48 0.01 281.07 11.21
200 80.72 0.01 282.3 10.31
300 80.33 0.01 277.6 9.86
400 80.89 0.01 285.8 15.06

Supplementary Table S29 Performance outcome for different values of r for GA

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

1 80.48 0.01 281.07 11.21
0.9 80.83 0.01 280.93 12
0.8 80.44 0.01 281.97 11.94
0.7 79.78 0.01 283.7 14.4
0.6 80.17 0.01 284.57 14.12

Supplementary Table S30 Performance outcome for different values of m for GA

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

0.01 80.48 0.01 281.07 11.21
0.1 79.94 0.01 277.83 10.61
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Supplementary Table S31 Parameter values for tuning ABC parameters

Parameter Value
w1 0.85
thn 0.065
MAX ITER 20
limit 35
nd 0.035
PS 25
selection method Tournament Selection
kernel Linear
prefilter Kruskal-Wallis

Supplementary Table S32 Performance of Artificial Bee Colony algorithm in gene selection

Criteria Best Avg. S.D. Worst
Accuracy 91.67 87.67 0.02 85
# Genes 57 75.67 14.18 97

Supplementary Table S33 Default values for tuning ACO parameters

Parameter Default value Comments
ρ 0.8 Pheromone persistence factor
w 1.4 Inertia weight
w1 0.85 Weight of accuracy in fitness equation
thn 0.1 Percentage of gene to be selected from preprocessing step
sahc iter 12 Number of iterations for SAHCR
sahc tweak 5 Number of tweaks for SAHCR
tmax 5 Maximum pheromone value
tmin 0 Minimum pheromone value
c0 0.5 Weight of an individual in pheromone update
MAX ITER 40 Number of iterations
nd 0.02 Percentage of genes to be removed in neighborhood operation
PS 40 Population size
kernel Linear Kernel to be used in SVM
wt Equation ?? Inertia weight update equation
uph True Whether to use pheromone or not
prefilter Kruskal-Wallis Prefiltering method

Supplementary Table S34 Performance outcome for different values of PS for ACO

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

20 81.83 0.01 275.03 14.93
30 82.78 0.01 272.89 11
40 82.93 0.01 271.24 11.95
50 82.78 0.01 273.33 12.97

Supplementary Table S35 Performance outcome for different values of MAX ITER for ACO

Values Accuracy No. of selected gene
Avg. S. D. Avg. S. D.

20 81.83 0.01 275.03 14.93
30 81.67 0.01 270.24 13.87
40 82.16 0.01 273.41 9.67
50 81.48 0.02 270.48 13.02


