- 70. J. R. Engen, T. E. Wales, Analytical Aspects of Hydrogen Exchange Mass Spectrometry. *Annu. Rev. Anal. Chem.* **8**, 150605180052009 (2015).
- 71. D. Houde, S. A. Berkowitz, J. R. Engen, The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. *J. Pharm. Sci.* **100**, 2071-2086 (2011).
- 72. L. A. Diaz-Martinez, Y. Kang, K. J. Walters, D. J. Clarke, Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. *Cell Div.* **1**, 28 (2006).
- 73. F. Geng, W. P. Tansey, Similar temporal and spatial recruitment of native 19S and 20S proteasome subunits to transcriptionally active chromatin. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 6060--6065 (2012).

ACKNOWLEDGMENTS

For advice, assistance, or comments on the manuscript, we thank D. Chandler-Militello, M. Gill, J. Hanna, A. Kajava, R. King, Y. Lu, Y. Li, M. Pahre, and J. Roelofs. For gifts of reagents we thank D. Clarke, M. Glickman, F. He, Y. Ye, D. Komander, C. Larsen, J. Li, U. Nowicka, S. Sadis, and W. Tansey. This research was funded by grants from the National Institutes of Health (R37-GM043601 to D.F., CA136472 to K.J.W., and R01-GM101135 to J.R.E.), by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research to K.J.W., and by a research collaboration with the Waters Corporation (J.R.E). Atomic coordinates for the Rpn1 T1 site, Rpn1 T1:ubiquitin, and Rpn1 T1:K48 diubiquitin are available through the Protein Data Bank with accession codes 2n3t, 2n3u, and 2n3v/2n3w, respectively.

SUPPLEMENTARY MATERIALS

Figs. S1 to S34 Tables S1 to S5 References (50-73)

Fig. S1.

Resonance shifts in Rpn13 induced by ubiquitin are strongly attenuated in the Rpn13-KKAAD protein. ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn13 Pru domain wild-type (left), E41K/E42K/S93D (KKD, middle), and E41K/E42K/L43A/F45A/S93D (KKAAD, right) alone (black) and with unlabeled monoubiquitin at 5-fold molar excess (orange).

Fig. S2.

Assessment of Sem1 as a receptor for ubiquitin in the context of the proteasome. Proteasomes were purified as described from the strains listed above, and incubated with either ubiquitin conjugates (+) or buffer (-). Samples were resolved by native PAGE and visualized by suc-LLVY-AMC hydrolysis. While the incorporation of *rpn13-pru* into the *rpn10-uim* background attenuates the conjugate-induced electrophoretic mobility shift (compare lanes 2 and 6), deletion of *SEM1* shows no discernible effect.

Fig. S3.

Evidence for ubiquitin receptors in addition to Rpn10 and Rpn13 in the base. Base purified from strains containing the mutations *rpn10-uim* and *rpn13-pru* was purified as described and reconstituted with CP to form base-CP complexes. Base-CP was incubated with Cdc34-ubiquitin conjugates and resolved via native PAGE and developed as described previously.

Fig. S4.

Mapping of a ubiquitin binding site in Rpn1. (A) Schematic of Rpn1. The central toroid domain (purple) is flanked by an N-terminal domain (orange), and a C-terminal domain (green), and interrupted by a highly charged and presumably flexible loop (dotted line). The toroid is composed of a series of hairpins (numbered 1-11), each with an outer and inner helix, shown as upward and downward arrows, respectively. The first element of hairpin 1, rendered in grey, is an extended loop rather than an alpha helix. The inner helices pack against a central hairpin (labeled C). Regions of interest described in Figures 1-5 (outer helix 6) and Figure 6 (outer helix 3) are rendered in red. Outer helices that appear to form contacts with Rpt1 and Rpt2 are rendered in blue. This model is based on NMR data, cryo-EM data (47), analogy to the paralogous proteasome subunit Rpn2 (19), and prior modeling by Kajava (20); the crystal structure of Rpn1 has not been determined. (B) Endpoints of the toroidal elements, based on cryo-EM data (47). Residue ranges for each of the helices in the toroidal domain are indicated. Colored text indicates elements depicted in panel (A). (C) Ubiquitin conjugate binding assays were carried out as Figure 1C.

Fig. S5.

Chemical shift and secondary structure assignment of Rpn1₄₁₂₋₆₂₅. (A) Superimposed ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn1 fragments spanning 376-635 (grey) and 412-625 (orange). All dispersed signals have been assigned for Rpn1₄₁₂₋₆₂₅. (B) ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn1₄₁₂₋₆₂₅ with assignments for the disordered N-terminal portion displayed; these congest at regions characteristic of random coil. (C) Graphs of secondary structure (lower panel) and order parameters S2 (upper panel) calculated by TALOS+ from Rpn1₄₁₂₋₆₂₅ HN, H α , C α , C β , CO and N chemical shift assignments.

Fig. S6.

Identification of the ubiquitin-contact surface in the Rpn1 T1 site by using an NMRbased titration experiment. Amide signal shifting in ¹H, ¹⁵N HSQC spectra for ¹⁵N Rpn1₄₁₂₋₆₂₅ caused by addition of equimolar (black) or 2-fold molar excess (red) monoubiquitin. Designated helices as assigned in fig. S5 are included above the plot. Dotted lines indicates one standard deviation above average. Unassigned, overlapping, or proline groups are excluded from these analyses and indicated (*). CSP, chemical shift perturbation; p.p.m., part per million.

Fig. S7.

Two weak binding sites for monoubiquitin are identified from an NMR-based titration experiment. Shifting for indicated $Rpn1_{412-625}$ residues in Figure S6 is plotted with increasing ubiquitin: Rpn1 molar ratio and fit to the listed K_d values by using Microsoft Excel. CSP, chemical shift perturbation; p. p. m., part per million.

Fig. S8.

The Rpn1:ubiquitin interaction involves the hydrophobic patch of ubiquitin. (A) ¹H, ¹⁵N HSQC spectra of ¹⁵N ubiquitin (grey) and with (orange) equimolar Rpn1₄₁₂₋₆₂₅. (B) Signal shifting of ubiquitin amide groups upon addition of equimolar Rpn1₄₁₂₋₆₂₅ from (A) quantified and plotted. The dotted line in this figure and in (D) indicates one standard deviation above average. Secondary structure elements for ubiquitin are included above the plot. Resonances attenuated upon Rpn1 addition are indicated by an asterisk; these signals do not disappear but become weak. (C) Expanded region of ¹H, ¹³C HSQC spectra of ¹³C ubiquitin (grey) and with (orange) equimolar Rpn1₄₁₂₋₆₂₅. (D) Signal shifting of ubiquitin sidechain groups upon addition of equimolar Rpn1₄₁₂₋₆₂₅ from (C) is quantified and plotted. Overlapping groups excluded from this analysis are indicated by asterisks positioned just above the baseline. CSP, chemical shift perturbation; p. p. m., part per million.

Rpn1₄₁₂₋₆₂₅ undergoes concentration-dependent dimerization, most likely mediated by the inner helices of the toroid. (A) Molecular weight of Rpn1₄₁₂₋₆₂₅ present at varying protein concentration, assessed by dynamic light scattering. (B) Expanded regions of a ¹⁵N Rpn1₄₁₂₋₆₂₅ ¹H, ¹⁵N HSQC spectrum with amide signals from residues in helices or loops labeled in black or blue, respectively. Signals from H25, H27, and H29 are attenuated compared to those from H26 and H28. (C) Rpn1₄₈₂₋₆₁₂ surface diagram with exposed hydrophobic regions colored yellow. The orientation of the two views is rotated by 180°.

Fig. S10.

Deletions at the N- and C-terminal ends of Rpn1₄₁₂₋₆₂₅ **destabilize the protein fold.** ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn1 fragments spanning 432-625 (left), 446-625 (middle), and 465-592 (right). None of these spectra are of the quality displayed in fig. S5A for Rpn1₄₁₂₋₆₂₅.

Fig. S11.

NOE interactions between methyl groups were critical to resolving the structure of the Rpn1 T1 site. Unambiguous NOE assignments involving methyl groups were made by using 4D methyl-methyl HMQC-NOESY-HMQC experiments with 200 ms mixing times recorded on 2 H, 15 N, 13 C 1 H₃ -methyl (Ile δ 1, Leu, Val) labeled Rpn1₄₁₂₋₆₂₅ (not displayed) or 2 H, 15 N, 13 C 1 H₃ -methyl (Ile δ 1, Ala, Met), Leu/Val 13 C 1 H₃ ${}^{\text{proS}}$ labeled Rpn1₄₁₂₋₆₂₅. Selected regions from the spectrum recorded on the latter sample display NOE interactions between methyl protons of A489 and L493, I490 and L493, and L493 and A496; these define Rpn1 H25. All values are given in parts per million (ppm) units.

Fig. S12.

Amide-amide NOE interactions for H26 of the Rpn1 T1 site in its free and ubiquitin-bound state demonstrating an increased signal-to-noise ratio for the complex. The NOE patterns observed in ¹⁵N dispersed NOESY spectra recorded on ¹⁵N-labeled Rpn1₄₁₂₋₆₂₅ (left) or the ¹⁵N-labeled Rpn1₄₁₂₋₆₂₅:ubiquitin complex (right). All sample and acquisition parameters are identical; a mixing time of 200 ms was used and 900 MHz spectrometer equipped with a cryogenically cooled probe.

The Rpn1 T1 site structure does not change upon binding to ubiquitin or K48-linked diubiquitin. (A) Selected regions from a ¹H, ¹³C dispersed NOESY experiments acquired with ¹³C-labeled Rpn1₄₁₂₋₆₂₅ free (left), ¹³C-labeled Rpn1₄₁₂₋₆₂₅ mixed with equimolar unlabeled ubiquitin (middle) or ¹³C-labeled Rpn1₄₁₂₋₆₂₅ mixed with equimolar unlabeled K48-linked diubiquitin (right) highlighting inter-residue NOE interactions between L506 (H26), L530 (H27), I542 (H28) and L573 (H29), which are displayed in a ribbon diagram of Rpn1₄₈₂₋₆₁₂ (D). (B, C) Selected regions from 4D methyl-methyl HMQC-NOESY-HMQC experiments acquired with ²H, ¹⁵N, ¹³C¹H₃ -methyl (Ileδ1, Ala, Met), Leu/Val ¹³C¹H₃^{proS} labeled Rpn1₄₁₂₋₆₂₅ free (B) or ²H, ¹⁵N, ¹³C¹H₃ -methyl (Ileδ1, Leu, Val) labeled Rpn1₄₁₂₋₆₂₅ mixed with equimolar unlabeled K48-linked

diubiquitin (C), illustrating NOE interactions between methyl protons of L506 (H26), L530 (H27), I542 (H28) and L573 (H29). All values are given in parts per million (ppm) units.

Fig. S14.

Intermolecular NOEs reflect the presence of two ubiquitin-binding surfaces on the Rpn1 T1 site. (A, B) Selected regions from a ¹H, ¹³C half-filtered NOESY experiment acquired with ¹³C-labeled ubiquitin and equimolar unlabeled Rpn1₄₁₂₋₆₂₅ (A) or ¹³C-labeled Rpn1₄₁₂₋₆₂₅ and equimolar unlabeled ubiquitin (B) highlighting intermolecular NOE interactions. Breakthrough diagonal peaks are labeled (blue 'D'). Two sets of observed NOE interactions between Rpn1 and ubiquitin are distinguished with black and green labels. Signals that were also observed in a control ¹³C-half-filtered 3D NOESY spectrum acquired on free ¹³C-labeled Rpn1₄₁₂₋₆₂₅ are labeled (light blue asterisks); these are breakthrough peaks and not from intermolecular interactions. (C) Ribbon diagram of the Rpn1 T1 site illustrating the distance between the methyl groups of L508 and T544 in

red. (**D**) Model structure of the Rpn1 T1 site (blue) complexed with K6-linked diubiquitin (orange and yellow) formed by linking G76 from the ubiquitin at H28/H30 to the K6 sidechain from the ubiquitin at H26 for the structure displayed in Fig 2B. The model structure was energy minimized by using Schrodinger.

Fig. S15.

Spin labeling experiments report on the Rpn1 T1 interaction with ubiquitin and K48-linked diubiquitin. (A) ¹H, ¹⁵N HSQC spectrum of 0.3 mM ¹⁵N-labeled Rpn1₄₁₂₋₆₂₅ mixed with equimolar ubiquitin in which G75 is replaced with cysteine and adducted to the spin label TEMPO (orange), and following quenching by 5 mM ascorbic acid (grey). Rpn1 signals attenuated by the spin label are labeled. (B) ¹H, ¹⁵N HSQC spectrum of 0.3 mM K48-linked diubiquitin with ¹⁵N-labeling at either the proximal (left panel) or distal (right panel) ubiquitin and mixed with equimolar Rpn1₄₁₂₋₆₂₅ (L518C, C538A, C606A) spin labeled with MTSL (orange), and following quenching by 5 mM ascorbic acid (grey). Ubiquitin signals attenuated by the spin label on Rpn1 are labeled.

Fig. S16.

Structure of the Rpn1 T1:monoubiquitin complex. Backbone trace for the ten lowest energy Rpn1 T1:ubiquitin structures from 50 linear starting structures superimposed by secondary structure elements of ubiquitin and Rpn1₄₈₂₋₆₁₂. Rpn1 T1, blue; ubiquitin, orange and yellow. These structures were calculated by using the constraints summarized in Table S2. Briefly, intermolecular distance constraints determined by ¹³C-half-filtered 3D NOESY experiments on samples of ¹³C-labeled monoubiquitin:unlabeled Rpn1₄₁₂₋₆₂₅:unlabeled monoubiquitin were used, as well as intramolecular restraints for Rpn1₄₈₂₋₆₁₂ as determined from ¹⁵N/¹³C NOESY spectra acquired on ¹⁵N/¹³C-labeled Rpn1₄₁₂₋₆₂₅:monoubiquitin. PRE-derived intermolecular distance constraints were also used. Published constraints for free ubiquitin (PDB: 1D3Z) were used, as the ubiquitin structure does not change upon complex formation.

Fig. S17.

Many amino acids involved in binding to ubiquitin and Rad23 are conserved between human and yeast Rpn1. Rpn1 sequence alignment from *Saccharomyces cerevisiae* and *homo sapiens* shading identical (black) and conserved (grey) residues, and indicating those that interact with ubiquitin in red. Secondary structure assignments as determined by NMR are included above the sequence.

Fig. S18.

The structural integrity of the Rpn1 toroid is maintained in the Rpn1-ARR mutant. (A) ¹H, ¹⁵N HSQC spectra of 0.4 mM ¹⁵N Rpn1₄₁₂₋₆₂₅ (grey) superimposed with 0.2 mM ¹⁵N Rpn1₄₁₂₋₆₂₅ with D541A, D548R, and E552R substitutions (Rpn1-ARR, orange). Signals from D541, D548, and E552 in the Rpn1 T1 WT spectrum are labeled in red; these are as expected missing from the Rpn1 T1 ARR spectrum. Signals from amino acids that are spatially close to D541, D548, or E552 also shift in some cases and these are labeled in black; dashed arrows are used to indicate likely positions in the Rpn1-ARR spectrum. Signals from amino acids in H26, H27, H29 and H30 that are unchanged by the D541A, D548R, and E552R substitutions are labeled in blue; these unperturbed signals throughout the T1 region indicate that its overall structure is maintained. (B) Ribbon diagram of the Rpn1 T1 site with D541, D548, and E552 illustrated in red and their neighboring amino acids, which show shifting in (A), displayed in beige. Various amino acids located in H26, H27, H29 and H30 that are unaffected by the D541A, D548R, and E552R substitutions are labeled in beige. Various amino acids located in H26, H27, H29 and H30 that are unaffected by the D541A, D548R, and E552R substitutions are displayed in beige. Various amino acids located in H26, H27, H29 and H30 that are unaffected by the D541A, D548R, and E552R substitutions are displayed in beige.

Fig. S19.

ITC measurements indicate lost binding to K48 diubiquitin at the Rpn1 T1 site following D541A D548R E552R mutations. ITC analysis of Rpn1₄₁₂₋₆₂₅ D541A D548R E552R (ARR, right) or wild-type (left) binding to K48 diubiquitin. The binding isotherms (top) were integrated to give the enthalpy change as a function of the molar ratio of K48 diubiquitin to Rpn1 (left, bottom) or Rpn1-ARR (right, bottom).

Fig. S20.

Mapping of the Rpn1 T1 residues involved in binding to the Rad23^{UBL} domain. ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn1₄₁₂₋₆₂₅ (black) and with equimolar Rad23^{UBL} (orange). Rpn1 signals that shift away from their unligated state following the addition of Rad23^{UBL} domain are labeled.

Fig. S21.

ITC measurements indicate lost binding to the Rad23^{UBL} domain following incorporation of the D541A D548R E552R mutations into the Rpn1 T1 site. ITC analysis of Rpn1₄₁₂₋₆₂₅ D541A D548R E552R (ARR, right) or wild-type (left) binding to the Rad23^{UBL} domain. The binding isotherms (top) were integrated to give the enthalpy change as a function of the molar ratio of Rad23^{UBL} domain to Rpn1 (left, bottom) or Rpn1-ARR (right, bottom).

Fig. S22.

Rpn1-ARR proteasomes show no evident defects in composition, assembly, or in vivo abundance. (A) Proteasomes were purified in duplicate samples from strains with the background *rpn10-uim rpn13-pru rad23* Δ *dsk2* Δ *ddi1* Δ , resolved on SDS-PAGE, and stained with Coomassie Blue. (B) The same proteasome samples as shown in panel (A) were resolved via native PAGE, and active species were visualized with suc-LLVY-AMC as previously described. (C) Extracts of *rad23* Δ *dsk2* Δ *ddi1* Δ strains with the indicated additional mutations were prepared, and samples were directly resolved on native PAGE, with active proteasome species visualized by suc-LLVY-AMC hydrolysis. (D) The same extracts as shown in panel (C) were resolved by SDS-PAGE, blotted, and probed for Rpn1.

Fig. S23.

Residual Rad23 cannot account for the ubiquitin-binding deficit of the Rpn1-ARR proteasomes. (A) Regulatory particle with the indicated variations in Rpn1 was purified as described, and 3 µg was resolved by SDS-PAGE and stained with Coomassie blue. (B) Recombinant Rad23 was purified, resolved by SDS-PAGE, and stained with Coomassie blue. (C) Purified regulatory particles (from A) and purified recombinant Rad23 (from B) were resolved via SDS-PAGE, blotted, and probed with antibody to Rad23. Signals were quantified as described. The asterisk denotes a nonspecific cross-reactive band. (D) Regulatory particles were purified from *rpn10-uim rpn13-pru rad23* $\Delta dsk2\Delta ddi1\Delta$ strains, and incubated with core particle. Reconstituted proteasomes were incubated with ubiquitin conjugates or buffer and resolved via native PAGE. Active proteasome species were visualized by suc-LLVY-AMC hydrolysis.

Fig. S24.

Rpn1 targets ubiquitinated PY-Sic1 to the proteasome for degradation. Purified RP from the indicated yeast strains was reconstituted with purified CP, and the resulting proteasomes were assayed for degradation of ubiquitinated PY-Sic1. Rpn5, an RP subunit, was probed as loading control. Based on the results with CP alone, it is likely that a component of the residual PY-Sic1 degradation seen with *rpn1-ARR rpn10-uim rpn13-pru* proteasomes is RP-independent and ubiquitin-independent.

Fig. S25.

Mutations in intrinsic proteasomal ubiquitin receptors do not affect cellular levels of the proteasomal shuttling receptor Rad23. This experiment is a control for Figure 4E and other phenotypic studies. Extracts were prepared from yeast strains bearing the indicated mutations in genes encoding intrinsic ubiquitin receptors. Lysates were resolved by SDS-PAGE, blotted, and probed with antibodies to proteasome-associated UBL protein Rad23. Proteasome subunit Rpn5 and Pgk1 were probed as loading controls.

Fig. S26.

The Rpn1 T1 site binds the recombinant UBL domain of Dsk2. (A) Proteasome association with Dsk2^{UBL} evaluated by mobility shift assay. Proteasomes were purified from $rad23\Delta dsk2\Delta ddi1\Delta$ yeast strains bearing the indicated intrinsic ubiquitin receptor mutations, and incubated with GST-Dsk2^{UBL} at 100-fold molar excess. Complexes that include GST-Dsk2^{UBL} were resolved by native PAGE, and visualized using LLYV-AMC. The Dsk2 shift seen in lane 2 is either missing or strongly attenuated in lane 8. (B) ¹H, ¹⁵N HSQC spectra of ¹⁵N Rpn1₄₁₂₋₆₂₅ (black) and with equimolar Dsk2^{UBL} (orange). Rpn1 T1 signals that shift away from their unbound state following the addition of Dsk2^{UBL} domain are labeled.

Although fig. S26 clearly indicates that T1 is a Dsk2-binding site, there may be an alternative Rpn1-binding site for Dsk2 that is encompassed by amino acids 196-369 (18). We observed a defect in Rad23 association with the proteasome with endogenous material (Figure 4E), but in the case of Dsk2, this experiment is complicated by the high off rate (0.165 sec⁻¹) of Dsk2 from Rpn1 (*18*). Consequently, there could be significant association to the T1 site in cells that cannot be observed with endogenous material because Dsk2 dissociation occurs in the control WT sample during proteasome purification. This problem is even worse in the case of the UBL-UBA protein Ddi1 (*18*). Further studies will be required to resolve these issues.

А

¹⁵N(p.p.m.)

Fig. S27

The T1 site of Rpn1 participates in Gcn4 degradation *in vivo*. *rpn10-uim rpn13-pru* yeast strains bearing TAP-tagged GCN4 integrated at the endogenous chromosomal locus, and other mutations as indicated, were incubated in cycloheximide (CHX) for the indicated times. Lysates were prepared, resolved by SDS-PAGE, blotted, and probed for Gcn4-TAP. Pgk1 serves as a loading control.

Fig. S28

NOESY spectra record abundant intermolecular NOEs between the Rpn1 T1 site and K48-linked diubiquitin. Intermolecular NOE interactions from half-filtered ¹H, ¹³C NOESY experiments detected for unlabeled Rpn1₄₁₂₋₆₂₅ and K48-linked diubiquitin with proximal **(A)** or distal **(B)** ubiquitin ¹³C labeled, or for ¹³C labeled Rpn1₄₁₂₋₆₂₅ and unlabeled K48-linked diubiquitin **(C)**. Breakthrough diagonal peaks are indicated (blue [']D'). Two sets of observed NOE interactions between the Rpn1 T1 site and K48 diubiquitin are labeled in black and green. Signals that were also observed in a control ¹³C-half-filtered 3D NOESY experiment acquired on free ¹³C-labeled Rpn1₄₁₂₋₆₂₅ sample

are labeled (light blue asterisks); these are breakthrough peaks from intramolecular NOEs.

Fig. S29.

Structures of the Rpn1 T1 site complexed with K48-linked diubiquitin. Backbone traces for the ten lowest energy Rpn1 T1:K48-linked diubiquitin structures from 50 linear starting structures with superimposed secondary structure for the extended **(A)** or contracted **(B)** binding mode. Rpn1₄₈₂₋₆₁₂, blue; distal ubiquitin, orange; proximal ubiquitin, yellow. These structures were calculated from the data summarized in Table S2. Briefly, intermolecular distance constraints were used as determined by ¹³C-half-filtered 3D NOESY experiments on samples of ¹³C-labeled Rpn1₄₁₂₋₆₂₅:unlabeled K48-linked diubiquitin and of K48-linked diubiquitin with the proximal or distal ubiquitin ¹³C-labeled mixed with equimolar unlabeled Rpn1₄₁₂₋₆₂₅. PRE-derived intermolecular distance constraints for Rpn1₄₈₂₋₆₁₂ were used from ¹⁵N/¹³C NOESY acquired on ¹⁵N/¹³C-labeled Rpn1₄₁₂₋₆₂₅:K48-linked diubiquitin as well as from 4D methyl–methyl HMQC-NOESY-HMQC experiments (fig. S13A (right

panel) and S13C). Published constraints were used for ubiquitin (PDB: 1D3Z), as its structure was unchanged.

Fig. S30.

Model of K48 triubiquitin bound to the Rpn1 T1 site for the extended binding mode in the context of proteasome ATPase ring. This image was generated by using the Rpn1 T1:K48 diubiquitin structure from Figure 5A and cryoEM-based coordinates (PDB 4CR2). Cyclin B (PDB 2B9R) was used as the model substrate (beige). The ATPase ring is displayed in pink, the CP α -ring in dark grey, and CP β -ring in light grey.

Fig. S31.

Ion mobility spectrometry allows for greater peptide separation of the base complex digest. Recombinant Rpn1 (top panel) was separated via UPLC using a linear 6 min gradient while base samples (middle, bottom panels) used linear 9 min gradients. All analyses employed MSE data-independent acquisition. Further peptide separation of the base complex digest was accomplished by leveraging the ion mobility capabilities of the SYNAPT G2Si mass spectrometer (bottom panel).

Fig. S32.

Rpn1 is conformationally stable within the context of the base complex. Deuterium uptake for Rpn1 peptides (solid lines below the sequence) derived from pepsin digestion of the base complex was measured at various time points from 10s to 4 h. The amount of deuterium incorporation in each peptide is indicated according to the color scheme at right. Rpn1 domain architecture is color coded as in Figs. 6A and S4A.

Rpn1_{free} vs Rpn1_{base} vs Rpn1_{free}:Ubp6

Fig. S33.

Ubp6 binding to the base complex induces highly localized stabilization in Rpn1. Temporal deuterium uptake was plotted for Rpn1 peptides resulting from digestion of recombinant Rpn1 (black), the base complex (blue), and Ubp6-bound base complex (red). Differences in the measured values were calculated according to Eq. 6 (Supplemental methods) and plotted in Figs. 6A and 6B.

Fig. S34.

Ubp6 interaction with the proteasome does not require the Rpn1 T1 site, the Rpn10-UIM site, or the Rpn13 PRU site. Proteasomes were purified from strains bearing all combinations of intrinsic ubiquitin receptor mutations. Washes prior to elution included 100 mM NaCl, creating more stringent conditions for Ubp6 association. Purified material was resolved by 10% SDS-PAGE, blotted, and probed with antibodies to Ubp6. Rpn5 was probed as a loading control.

Table S1.Structural statistics for the Rpn1 T1 site.

	Rpn1 ₄₈₂₋₆₁₂
NMR distance and dihedral constraints	
Distance constraints	
Total NOE	1242
Intra-residue	576
Inter-residue	666
Sequential $(i-j =1)$	178
Medium-range $(i-j \le 4)$	241
Long-range $(i-j > 5)$	247
Hydrogen bonds	59
Total dihedral angle restraints	182
φ (°)	91
ψ(°)	91
Structure statistics [§]	
Ramachandran plot (%)	
Most-favorable region	94.6
Additionally allowed region	4.7
Generously allowed region	0.7
Disallowed region	0
RMSD from Average Structure (Å)	
Backbone	0.80 ± 0.14
Heavy	1.32 ± 0.21

[§]Statistics for the II° structural elements of Rpn1₄₈₂₋₆₁₂ for the region spanning H26-H31.

Table S2.		
Structural Statistics for Rpn	1 T1:ubiquitin and Rpn1	T1:K48 diubiquitin.

	Rpn1 ₄₈₂₋₆₁₂ :ubiquitin		Rpn1 ₄₈₂₋₆₁₂ :K48 diubiquitin	
	site1 (H28/H30)	site2 (H26)	extended	contracted
Intermolecular NOE	80	26	104	100
Intermolecular PRE	18	6	19	8
Intramolecular NOE				
Rpn1 ₄₈₂₋₆₁₂	13	10	1	310
ubiquitin/K48 diubiquitin*	23	86	4772	
Hydrogen bonds				
Rpn1 ₄₈₂₋₆₁₂	5	9	59	
ubiquitin/K48 diubiquitin*	27		54	
Total dihedral angle restraints				
Rpn1 ₄₈₂₋₆₁₂	155 155		55	
ubiquitin/K48 diubiquitin*	47		94	
Structure statistics [§]				
Ramachandran plot (%)				
Most-favorable region	86.0		85.2	85.6
Additionally allowed region	13.0		13.5	13.6
Generously allowed region	1.0		1.3	0.8
Disallowed region	0.0		0.0	0.0
RMSD from Average Structure (Å)				
Backbone	0.58 ± 0.12	0.74 ± 0.27	0.84 ± 0.16	0.80 ± 0.16
Heavy	1.08 ± 0.17	1.25 ± 0.27	1.28 ± 0.20	1.25 ± 0.19

*Taken from PDB 1D3Z

[§]Statistics for the II° structural elements of Rpn1₄₈₂₋₆₁₂ for the region spanning H26-H31 and ubiquitin.

Yeast Strains

All yeast strains are isogenic to SUB61 or SUB62, both of which have the genotype *lys2-801 leu2-3*, 2-112 $ura3-52 his3\Delta 200 trp1-11$.

Strain	Genotype	Figure
SUB62	MATa	1A, 4G
YSS794a	MATa rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	1A
YSS786a	MATa rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	1A
YSS1101a	MATa rpn13::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	1A
YSS366a	MATa RPN11-TEV-ProA::HIS3 rpn13-pru::natMX rpn10-uim::kanMX	1B
SDL135	MATa PRE1-TEV-ProA::HIS3	1B, 4A, 4B
YSS865a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	4A, 4E
YSS869a	MATα RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	4A, 4E
YSS884a	MATa RPN1-WT::TRP1 rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS891a	MATa rpn1-ARR::TRP1 rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS883a	MATa RPN1-WT::TRP1 rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS890a	MATa rpn1-ARR::TRP1 rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS882a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS889a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS881d	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS888a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4C
YSS913a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4B, 4D, 7B
YSS914a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4B, 4D, 7B
YSS1155d	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4D, 7B
YSS1158a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	4D, 7B
YSS868a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1	4E
YSS872a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1	4E

Yeast Strains

Strain	Genotype	Figure
YSS992a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX GIC2-TAP::HIS3	4F
YSS994a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX GIC2-TAP::HIS3	4F
YSS984a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX GIC2- TAP::HIS3	4F
YSS986a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX GIC2- TAP::HIS3	4F
YSS857a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	4G
YSS857d	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	4G
YSS861a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	4G
YSS861d	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	4G
SUB61	ΜΑΤα	4G
SY1689c	MATα RPN11-TEV-ProA2::HIS3	7A
SY1689d	MATα RPN11-TEV-ProA2::HIS3	6C, 6D
SY1690b	MATa RPN11-TEV-ProA2::HIS3 rpn1-D431Y-Q434Y::TRP1	6C
SY1691b	MATα RPN11-TEV-ProA2::HIS3 rpn1-D431Y-Q434Y::TRP1	6C
SY1692b	MATα RPN11-TEV-ProA2::HIS3 rpn1-L430A-D431A-Q434A-Q435A::TRP1	6C
SY1693b	MATα RPN11-TEV-ProA2::HIS3 rpn1-L430A-D431A-Q434A-Q435A::TRP1	6C
SY1694b	MATα RPN11-TEV-ProA2::HIS3 rpn1-AKAA::TRP1	6C, 6D
SY1695b	MATα RPN11-TEV-ProA2::HIS3 rpn1-AKAA::TRP1	6C
SY1214	MATa ProA-TEV-Rpt1::HIS3 rpn13-pru::natMX rpn10-uim::kanMX	7A, S3
SY1210	MATa ProA-TEV-Rpt1::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	7A
SY1724	MATa ProA-TEV-Rpt1::HIS3 rpn1-AKAA::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	7A

Yeast Strains

Strain	Genotype	Figure
SY1702a	MATα RPN11-TEV-ProA::HIS3 ubp6::URA3 rpn13-pru::natMX rpn10- uim::kanMX sem1::hphMX	S2
SY1704a	MATα RPN11-TEV-ProA::HIS3 ubp6::URA3 rpn13-pru::natMX rpn10- uim::kanMX	S2
SY1703a	MATa RPN11-TEV-ProA::HIS3 ubp6::URA3 rpn10-uim::kanMX sem1::hphMX	S2
SY1705a	MATα RPN11-TEV-ProA::HIS3 ubp6::URA3 rpn10-uim::kanMX	S2
YSS913c	MATa RPN11-TEVProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22A, S22B
YSS9141	MATa RPN11-TEVProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22A, S22B
YSS913a	MATa RPN11-TEVProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22A, S22B, S23D
YSS914a	MATa RPN11-TEVProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22A, S22B, S23D
YSS884a	MATa RPN1-WT::TRP1 rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS891a	MATa rpn1-ARR::TRP1 rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS883a	MATa RPN1-WT::TRP1 rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS890a	MATa rpn1-ARR::TRP1 rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS882a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS889a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS881a	MATa RPN1-WT::TRP1 rpn10-uim::kanMX rpn13-KKAAD::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS888a	MATa rpn1-ARR::TRP1 rpn10-uim::kanMX rpn13-KKAAD::natMX rad23::hphMX dsk2::CaURA3MX ddi1::LEU2MX	S22C
YSS860a	MATa RPNI-WT::TRP1	S22D
YSS864a	MATa rpn1-ARR::TRP1	S22D
YSS859a	MATa RPN1-WT::TRP1 rpn10-uim::kanMX	S22D
YSS863a	MATa rpn1-ARR::TRP1 rpn10-uim::kanMX	S22D
YSS858a	MATa RPN1-WT::TRP1 rpn13-pru::natMX	S22D
YSS862a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX	S22D
YSS857a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	S22D
YSS861a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX	S22D

Yeast Strains

Strain	Genotype	Figure
YSS865a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	S24, S25, S23A, S23C, S34
YSS869a	YSS869a MATa RPN11-TEVProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX rpn10- uim::kanMX	
SDL135	MATa PRE1-TEV-ProA::HIS3	S22D, S24
YSS868a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1	S25, S34
YSS872a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1	S25, S34
YSS867a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1 rpn13-pru::natMX	S25, S34
YSS871a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn13-pru::natMX	S25, S34
YSS866a	MATa RPN11-TEV-ProA::HIS3 RPN1-WT::TRP1 rpn10-uim::kanMX	S25, S34
YSS870a	MATa RPN11-TEV-ProA::HIS3 rpn1-ARR::TRP1 rpn10-uim::kanMX	S25, S34
YSS988a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX GCN4-TAP::HIS3	S27
YSS990a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX rad23::hphMX dsk2::CaURA3MX GCN4-TAP::HIS3	S27
YSS980a	MATa RPN1-WT::TRP1 rpn13-pru::natMX rpn10-uim::kanMX GCN4- TAP::HIS3	S27
YSS982a	MATa rpn1-ARR::TRP1 rpn13-pru::natMX rpn10-uim::kanMX GCN4- TAP::HIS3	S27

Table S4. Antibodies

Antigen	Source	Reference	Secondary antibody information	Working concentration
Rpn5	Finley Lab	(26)	rabbit	1:5,000
Rpn1	Finley Lab	this study	rabbit	1:5,000
Ubp6	Finley Lab	this study	rabbit	1:50,000
Rad23	Finley Lab	this study	rabbit	1:5,000
Dsk2	Michael Glickman	(29)	chicken	1:1,000
Ddi1	Duncan Clarke	(72)	rabbit	1:5,000
Pre6	William Tansey	(73)	mouse	1:2,000
Pgk1	Promega	459250	mouse	1:10,000
ubiquitin	Santa Cruz Biotech	sc-8017	mouse	1:1,000
GST	Santa Cruz Biotech	sc-138	mouse	1:10,000
T7 epitope	EMD Millipore	69048-3	HRP-conjugated	1:10,000
Flag epitope	Sigma-Aldrich	F3165	HRP-conjugated	1:5,000
РАР	Sigma-Aldrich	P1291	protein complex with HRP	1:1,000

plasmid name	recombinant protein	N-terminal	C-terminal	Figure
		tag	tag	
pUB406	Rpn1	GST		1C
YSp274	Rpn1-ARR	GST		3C-3D
YSp33	Rpn1-N	GST		S4C
YSp105	Rpn1-M	GST		S4C
YSp125	Rpn1-C	GST		S4C
YSp158	Rpn1-412-625	GST		2A
YSp271	Rpn1-412-625-ARR	GST		2A
pTXB1-Rpn1	Rpn1	Intein		6A-6B
pUB414	Rpn10	GST		1C, 3D
nUB417	Rpn10_LUM	GST		3C-3D
VSn64	Rpn13	GST		1C
VSn308	Rpn13-pru	GST		1C
YSp20	Rpn13	GST		<u>S1</u>
YSp1	Rpn13-KKD	GST		S1
YSp13	Rpn13-KKAAD	GST		S1
pBM1d	Dsk2-UBL	GST		4D
pRG63	Rad23-UBL	GST		4D
YSp103	Rad23∆UBA		FLAG- /Intein	3D
YSp104	Rad23∆UBL∆UBA		FLAG- /Intein	3D
YSp46	Rad23		FLAG- /Intein	S23B- S23C
pDL83	Ubp6-UBL	GST		7A
pTYB12-Ubp6	Ubp6	Intein		7B
pET15b-Ubp6	Ubp6	His		6A-6B
pGEX-6P-1-Ubp6	Ubp6	GST		6D

Table S5.Plasmids for the expression of recombinant proteins