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Supporting Information 

Informatics: 

Polymer Representation: Molecular Operating Environment (MOE) version 2009 [1] was 

used to create 20-mer representations of polymers from monomer units using a modified 

version of MOE's built-in polymerization function.  Terminal attachment points were capped 

with hydrogen.  The backbone dihedral angles were set to 0° before geometry optimization. 

The highly flexible nature of the olignomer structures make the full exploration of 

conformation space impossible. To overcome this problem and find stable representation of 

polymer structure with sufficient 3D information, a slight tethering (10/300) was applied on 

the backbone atoms. Energy minimization was then performed with a MMFF94x forcefield 

with RMS tolerance of 0.05 kcal/mol.  Alternate options for polymer length were explored, 

Fig 1. RMSE change with chain length using color-bin descriptor. 
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but a 20-mer length provided the best balance between computational time required while 

minimizing effects from capping hydrogens.  However, 50-mers were created without 

optimization; they were necessary to minimize the influence of the end cap hydrogen atoms 

when calculating RECON/TAE descriptors, which is conformation-insensitive. Conformation 

search test was then performed to make sure the prediction uncertainty due to conformation 

variation is smaller than 5%.    

 

Filler Representation: MOE version 2009 [1] was used to create a hollow, spherical silica 

shell with formula Si30O75H30.  Each silicon atom has an outward-facing –OH group; half of 

these were randomly assigned to be functional group attachment points in order to achieve a 

functionalization density of approximately 1/nm2.  In order to eliminate apparent molecular 

surface area in the interior of the shell, a small (Si4O8H8) component was added to the center 

of the sphere for calculation of surface properties.  Functional groups were added using 

MOE’s QuaSAR-CombiGen tool, and completed beads were energy minimized using a 

MMFF94x forcefield with RMS tolerance of 0.01 kcal/mol. 

 

Descriptors: Models for both the polar and dispersive components of polymer surface 

tension utilized full set of normalized RECON/TAE descriptor (those insensitive to the scale 

of chain length) and binned surface descriptors.  Briefly, the normalized RECON/TAE 

descriptors describe the properties like local ionization potential, electrostatic potential and 

other eletron density distribution topology information, as a subset of Transferable Atomic 

Equivalent (TAE) fragments.[2]   

 

A new set of surface descriptors was developed for this project using Connolly surfaces 

encoded with Electrostatic Potential (EP) or Active Lone Pair (ALP) mappings, as calculated 

by MOE.[3]  The EP map covers a rage of -35 to 35 kcal/mole using an Ewald-type screened 
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molecular electrostatic potential.[4] The ALP surface map displays hydrophobic, mildly polar, 

and hydrogen-bonding regions.  Resulting descriptors take the form of 8-bin probability 

density histograms for the intensity of each color channel (RGB) of each molecular surface 

(one histogram per color per surface), computed using R statistical software.[5] In addition, a 

grayscale histogram was created for each surface by the traditional NTSC color-to-luminance 

mapping of ((0.30*red) +(0.59*green) + (0.11*blue)). For polymer model, in order to further 

increase the stability of the descriptor values, a set of Gaussian smearing functions was 

applied so that each bin value was represented as a Gaussian function with the intergration 

value equal to origin value, with standard deviation to be one bin width. The smearing 

function was found to effective prevent descriptor value change due to the “value drifting” 

between two adjacent bins. A small value cut-off (1e-4) was also used to prevent uncertainty 

of extreme small value, which is a pure numerical problem.   

  

Models for the polar component of filler surface tension utilized these color binned 

surface descriptors (excluding grayscale) using 256 histograms bins instead of 8; models were 

built using 8, 16, 32, 64, 128, and 256 histogram bins, and 256 yielded the best performance.  

Models for the dispersive component of filler surface tension utilized MOE’s i3D descriptor 

package,[1] less those descriptors relying on AM1, PM3, and MNDO calculations.This 

descriptor setis conformationally sensitive and alignment free, containing energy, charge, and 

shape descriptors such as water accessible surface area, total potential energy, electrostatic 

potential, and dipole moment, for a total of 117 descriptors before feature selection. 

Model Building 

 

Preprocessing: Before machine learning algorithms were employed any descriptors 

showing zero variance across polymers were removed from the descriptor matrix.  Remaining 

descriptors are standardized by subtraction of their mean and division by their standard 
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deviation across polymer samples.  One descriptor was removed from any pair of descriptors 

showing a correlation coefficient greater than 0.85.  Any single descriptor value lying outside 

[-6,6] after standardization was either changed to either -6 or 6 as appropriate (polymer 

dispersive model) or the descriptor was discarded (polymer polar model).Both filler models 

used a threshold of [-4,4], and values outside this range were changed to -4 or 4 as 

appropriate. 

 

Feature Selection: Partial least squares (PLS) sensitivity feature selection was utilized for 

all MQSPR models.  Briefly, descriptors are taken one at a time and varied uniformly first up 

and then down one standard deviation.  A PLS model is built using the modified descriptor, 

and the resulting change in the RMSE from a non-modified descriptor matrix is recorded.  

Descriptors with high influence on RMSE are kept, and those with low influence are 

discarded.  For the dispersive polymer model, four rounds of feature selection were completed 

where the least influential 30% of descriptors were discarded each round.  For the polar 

polymer model, five rounds were completed where 20% of descriptors were discarded per 

round.Filler models underwent 12 rounds of 20% and ten rounds of 10% for polar and 

dispersive models, respectively.  The number of rounds to complete and the percent of 

descriptors to discard were optimized using a grid search. 

 

Descriptors remaining in the polymer dispersive model after feature selection are: 

FDKNA10 
8EP_Red 
3EP_Gray 
Ffuk5 
FDGNA6 
PIPMin 
Flapl2 
6ALP_Blue 
7EP_Blue 

Descriptors remaining in the polymer polar model after feature selection are: 
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FEP9 
6EP_Green 
PIPMax 
7EP_Red 
FDRNA10 
6EP_Red 
7EP_Blue 
FSIKA3 
6ALP_Green 
7EP_Gray 
6EP_Blue 
2EP_Green 

Descriptors remaining in the filler dispersive model after feature selection are: 

FASA H  
std_dim1 
vsurf_Wp3 
vsurf_CP 
vsurf_Wp6 
npr2 
E 
FASA- 
Vsurf_CW1 
Vsurf_IW8 
E_ang 
Vsurf_DW13 
Vsurf_Wp7 
E_oop 
Vsurf_CW2 

Descriptors remaining in the filler polar model after feature selection are: 

124ALP_Red 
180ALP_Red 
205ALP_Red 
212ALP_Red 
86ALP_Green 
16ALP_Blue 
72EP_Red 
96EP_Red 
163EP_Red 
19EP_Green 
56EP_Green 
75EP_Green 
205EP_Blue 
221EP_Blue 

For color descriptors, the leading number indicates the histogram bin, EP or ALP 

designate the surface mapping, and the color indicates which color channel histogram is 
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referenced.  Names for i3D descriptors are taken directly from MOE.  Complete descriptions 

of these descriptors are available in MOE documentation.[1] 

 

Machine Learning: Final models were all built on feature selected descriptor matrices.  

Classic multiple linear regression (MLR) models were built using the ln function in R.[5]  

Partial least squares (PLS) regression models were built using the pls package in R.[5]  The 

number of latent variables to use was selected using 20 rounds of four-fold cross-validation. 

Epsilon-insensitive support vector machine (SVM) regression models were built on feature-

selected descriptor matrices using R package e1071, a part of the R libsvm package.[6,7]  

Optimization of epsilon is handled internal to the e1071 package.  Grid search hyperparameter 

selection for kernel parameter gamma and cost parameter C was completed using ten rounds 

of ten-fold bootstrap cross-validation, where the optimization criterion was cross-validated 

PRESS R2.  Gamma was searched over [1/50, 1/100, 1/200, 1/500, 1/1000, 

1/(0.75*number_of_samples), and 1/number_of_descriptors].  C was searched over 1,2,3,4,5.  

Models using MLR, PLS, or SVM were chosen based on validated performance RMSE.  Both 

polymer models use SVM, filler models use MLR and PLS for dispersive and polar 

components of surface tension, respectively.  Bootstrapping was achieved by dividing 

experimental samples into random “training” and “validation” subsets. Models built using the 

training cases are used to predict the values of the validation cases.  This process is repeated 

100 times resulting in 100 “bootstrap” models, each trained on part of the original data. Each 

bootstrap model is then used to predict the values of all cases in each validation subset, so that 

the ultimate prediction result is the average of a large set of predictions made on each 

molecule in the original dataset, but only when it was part of the validation set, and not in the 

training set.Final bootstrap models were aggregated and predictions from the aggregate used 

for further studies. 
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Experiment: 

Materials: PMMA (Sigma Alrich, Mw= 100000 g/mol), PS (Sigma Aldrich, Mw= 230000 

g/mol) and PEMA (Scientific Polymer, Mw= 200000 g/mol) were used as procured.  Prior to 

use, P2VP (Scientific Polymer, Mw= 200000 g/mol) was left overnight in a vacuum oven at 

100ºC to evaporate residual monomer molecules. The nanoparticles (14±4nm Silica in MEK) 

were supplied by Nissan Inc. Octyldimethylmethoxysilane (CH3-(CH2)7-Si(CH3)2-O-C2H5), 

Chloropropyldimethylmethoxysilane (Cl-C3H6-Si(CH3)2-O-C2H5)  and 

Aminopropyldimethylethoxysilane (NH2-C3H6-Si(CH3)2-O-C2H5) were procured from Gelest 

Inc. and used as received. These are monofunctional silanes, that ensure that only a single 

molecular layer is attached to the nanoparticle surface. HPLC grade anhydrous THF, 

anhydrous Toluene and Hexanes were procured from Fisher Scientific, Sigma Alrich and 

Mallincrodt Chemicals respectively.  Silicon wafers, 2 inches in diameter, with a 200nm thick 

silica layer (Standard Deviation 2.58%)  were procured from Silicon Quest Inc. High purity 

Formamide (>99.5%) and Diiodomethane (99%), the probe liquids  used in surface energy 

measurement, were purchased from Sigma-Aldrich. 

Methods:  

 

Wafer surface modification: The 2 inch was broken into 4 even quarters, which were 

cleaned and hydroxylated by immersing in a Piranha Etch (70:30 solution of H2SO4 and 30% 

H2O2) at 80⁰C for 12 hours. The hydroxylated pieces were rinsed in DI water, blown dry and 

left in a vacuum oven for 1-2 hours at 120⁰C. The wafers were then surface modified through 

direct nucleophilic substitution of the silanol groups, by immersing in a 3% solution of the 

required monofunctional silane in Toluene for 3 days, in an inert atmosphere. These were then 

rinsed in ethanol, toluene and DI water, blown dry and vacuum dried at 120⁰C for 10 minutes. 
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Particle surface modification: A 16 mL solution of colloidal silica particles (30 weight% 

in MEK) was diluted with 50 mL of THF. Around 0.5 mL of the silane was added and the 

mixture was refluxed at 75°C overnight under pure nitrogen protection. The reaction mixture 

was then cooled to room temperature and precipitated in 500mL of hexanes. The particles 

were then recovered by centrifugation at 3000rpm for 5 minutes and redispersed in THF using 

sonication and precipitated in hexanes again. This was repeated twice. The surface 

concentration of the silanes was found by thermogravimetric analysis to be ~1 molecule/nm2. 

 

Surface Energy Measurement: The static contact angles of water (�� =72 mJ/m2, ���=21.8 

mJ/m2,���=51 mJ/m2), formamide (�� =58 mJ/m2, ���=39 mJ/m2,���=19mJ/m2) and 

diiodomethane (�� =50.8 mJ/m2, ���=50.8 mJ/m2,���=0 mJ/m2) on the functionalized surfaces 

were obtained by using the DropImage software on the Rame-Hart Goniometer. The contact 

angles were then used to evaluate the surface energies of these modified silicas using the 

Owens-Wendt method.[8] Surface energy is calculated by solving the following equation for 

two known liquids. It is based on Young Equation and the Good-Girifalco’s geometric mean 

approximation of interaction energies.[9,10]  

���	 = −1 + 2
�������

��
+ 2

���
���

�

��
 

 (1) 

 

where ��� and ��� are the dispersive components of the solid and liquid surface energies 

respectively;  ��� and ��� are the polar components of the solid and liquid respectively.�� is the 

total filler surface energy, given by the sum of ��� and ���.  The surface energies of the 

modified fillers (Amino, Octyl and Chloro silane modified silica) shown in Table 1, are 

average values calculated from the Owens-Wendt equation, solving for 2 liquids at a time. It 

was assumed that at our length scales the surface energy of a molecular cluster is similar to 

that of a planar macroscopic surface.[11] The surface energies of the matrix polymers in Table 
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1, were obtained by MQSPR prediction. These energies were used to calculate cos θ, ∆Wa, 

and Ws(shown in Table 2). 
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Table 1. Surface Energies of Surface Functionalized Silica and Polymer Matrix 

Filler 
Surface Energyγγγγf 

[mJ/m2]
 

Dispersiveγγγγf
d 

[mJ/m2] 

Polar γγγγf
p 

[mJ/m2] 

Amino func. Silica 43.64 37.85 5.79 

Octyl func. Silica 32.30 29.16 3.14 

Chloro func. Silica 36.21 30.45 5.76 

Polymer 
Surface Energyγγγγp 

[mJ/m2]
 

Dispersiveγγγγp
d 

[mJ/m2] 

Polarγγγγp
p 

[mJ/m2] 

Polystyrene 
48.32 44.89 3.43 

Poly(Methyl Methacrylate) 
36.51 32.44 4.07 

Poly(Ethyl Methacrylate) 33.02 31 2.02 

Poly(2-Vinyl Pyridine) 48.56 42.93 5.63 

 

Preparation of Nanocomposites: Nanoparticles in anhydrous THF were mixed with a 5% 

anhydrous THF solution of matrix polymer. This mixture was sonicated using a Sonics and 

Materials Vibracell VCX 600 Watt sonicator with a stepped microtip. Sonicated solutions 

were poured into clean aluminum boats and the solvent was driven off in a clean oven at 80⁰C 

and vacuum dried at 120⁰C for 16 hours. The samples were then pressed into dog-bone 

shaped samples and annealed at 140⁰C (PS, PMMA, P2VP) and 110⁰C (PEMA) for 24 hours.  

Microscopy and Image Analysis: Nanocomposite samples were embedded in an epoxy 

resin and microtomed into 60-80 nm thick slices using a diamond knife. These sections were 

transferred onto a copper grid and imaged using a JEOL-2010 transmission electron 

microscope (TEM).  

The micrographs thus obtained were processed to remove noise and reduced to a resolution of 

300x300 pixels. These images were binarized (black and white) using a 2 step process that 

ensures that the number of particles present is equal to the experimental volume fraction. 

After image binarization was completed, clusters were indicated on the pixilated 2D image. 



    

 11 

The radius of each cluster (rc) and the intercluster distance (rd) between every cluster pairwas 

calculated and the averageof these values from two different images gaverc and rdin pixels 

(Note: Only one image is used in Amino-PEMA). It should be noted that rc is taken as the 

average of radius of each filler weighed by the area of the filler in the 2D binary images, such 

that the existence of single dispersed fillers will not largely lower the rc.These rcand rdvalues 

in pixels were then be converted to nanometers, using the scale bar. Calculated rcand rdvalues 

are shown in Table 2. 

 

Glass Transition Temperature: The Tgs of nanocomposite samples were measured using 

Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis 

(DMTA). On the DSC, samples were subjected to three 20◦C to 130◦C cycles at a ramp rate of 

10◦C/min. The Tg values reported are averages from the second and third heating cycles. 

Temperature sweeps on the DMTA were run from 35◦C to 150◦C at a frequency of 1Hz. The 

Tg measured is the temperature at the peak loss factor (tanδ).  
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Table 2. Calculated values of energetic parameters, rc, rd and measured values of ∆Tg 

System Cos(θθθθ) WPF/WFF ∆∆∆∆Wa 

[mJ/m2] 

Ws 

[mJ/m2] 

rd-8 wt% 

[nm] 

∆∆∆∆Tg-8 wt% 

[ºC] 

rd -3 wt% 

[nm] 

∆∆∆∆Tg-3 wt% 

[ºC] 

Chloro PMMA 1.00 1.05 0.62 -4.29 278.46 -4.58 190.85 -3.72 

Amino P2VP 1.00 1.09 0.85 -7.90 156.13 -8.93 193.58 -6.49 

Octyl PMMA 1.00 1.12 0.95 -8.51 291.86 -5.78 418.63 -5.50 

Octyl PS 1.00 1.12 3.48 -11.57 266.71 -0.62 462.30 -1.58 

Chloro PS 1.00 1.04 6.16 -8.86 374.69 -2.38 422.74 -1.33 

Chloro PEMA 0.96 0.98 3.13 -0.45 449.31 -1.65 595.94 -0.88 

Amino PS 0.92 0.95 4.71 -0.71 714.71 -0.47 974.90 -0.70 

Amino PMMA 0.91 0.96 0.24 3.31 902.96 -0.84 1610.60 2.37 

Amino PEMA 0.79 0.90 2.57 -0.08 1039 -0.35 1666.10 -0.095 

 

Finite Element Analysis (FEA): 

Construction of 2-point correlation function: In order to reconstruct and/or generate the 

dispersion morphology in 3D, for the FEA of model composites, via predicted surface energy 

parameters, a 2-point correlation function was utilized.[12]The histogram of the 2-point 

correlation probability was measured in the binary images obtained through the image 

analysis process. The following expression was heuristically built to fit with the 2-point 

correlation probabilities, considering the necessary boundary conditions prescribed for a 2-

point correlation function byJiao et al.[12] 

���� = ����� ����
�� � + ���  tanh �%&�

��'
� + ��� ���

�'
� sin �%&�

��'
�*    (2)  

Heuristic-empirical expressions for rc and rd: Although the energetics of filler aggregation in 

glassy polymer nanocomposites, have been qualitatively explained in literature and in our 

paper, analytical quantitative expressions have rarely been formulated. We used a heuristic 
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method to construct empirical expressions to enable a priori prediction. The order of the VF 

term in the expression for rc (i.e. the dependence of rc on volume fraction) was determined by 

comparing the rcat different loadings (3 and 8 weight %) for the same composite system. 

Using the same methodology and considering the work of Tong et al.,[13] we determined the 

form of VF in the expression of rd. The dependence of rcand rd on surface energy was 

heuristically characterized through functions of a energy correlation variable xcorr. The fitting 

parameters in these functions were determined through an optimization process that 

minimized the difference between measured and predicted rcand rd values.  

FE simulation of DMTA temperature sweeps: FEA was performed using the ABAQUS 

software package. 3D representative volume element (RVE) geometries of PNCs with 

30x30x30 hexahedron elements were reconstructed using the predicted 2-point correlation 

function. One XoY surface was fixed and the other was assigned with an oscillatory 

displacement boundary with frequency of 1Hz. This is consistent with the loading frequency 

used in the DMTA experiment. The properties of the polymer matrix were obtained from the 

experimentally determined Prony series at reference temperature and the corresponding 

shifting factors required for time-temperature superposition. External python scripts for 

ABAQUS were developed to update the Prony series of polymer matrix and interphase at 

different temperatures and to control the simulation procedure. The complex tensile modulus 

was obtained from the output of the simulation at each temperature. The final output curves 

for E’/E’’/ tanδ over T, were then used to predict ∆Tg. 

Web Tool: 

After being validated using best-practices methods,[2] both the dispersive and polar bootstrap 

aggregate polymer surface energy models were incorporated into a web-based toolkit to 

facilitate their use by the broader community, and to provide a front end for our hybrid 

MQSPR/Finite Element Analysis (FEA) modeling tool.  Currently, the MQSPR portion of the 
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tool allows users to compute surface energy components for either existing or designed 

polymers, which can then be used together with the predictedsurface energy components of 

the selected nanofiller as part of a larger web-based hybrid tool discussed at the end of the 

paper.In practice, the web-based toolkit is divided into three major components across two 

sites:   

The first provides the user with a simplified front end for designating polymer matrix 

structures, nanoparticulate core type (silica is the only option at this point) and volume 

fraction, along with a drop-down menu of nanoparticle surface functionalizations.  While 

stepping through the web-based tool, the user receives information on surface energies, 

dispersion paramaters and eventually thermomechanical properties.  See: 

http://reccr.chem.rpi.edu/polymerizer to utilize the webtool.  
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Figure 1. Actual screenshots of the Polymerizer MQSPR/FEA nanocomposite prediction 

webtool input and several stages of its output.    The workflow of the multi-scale tool is 

analogous to the flowchart shown Figure 1, which illustrates the process of defining the 

polymer matrix, particle functionality and volume fraction, leading to predictions of surface 

energies, the resulting 3D particle distributions, and the tanδ curve. 

 

Image Processing:  

Figure1: was prepared using Adobe Photoshop. 
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Figure 2: a.Images are screenshots from MOE and b.Plots are results plotted by the MQSPR 

tool. 

Figure 3: The graph was plotted using GNUplot and the labels were added on Adobe 

Photoshop 

Figure 4: The image was prepared using Adobe Photoshop. The inset micrographs were 

obtained using Transmission Electron Microscopy. 

Figure 5.a, b and c: were plotted on OriginPro and d. is a screenshot from the FEA 

environment.  

Figure 6: a and b were plotted using Origin Pro.   
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