Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013.

Supporting Information

for Adv. Funct. Mater., DOI: 10.1002/adfm.201301744

Stalking the Materials Genome: A Data-Driven Approach to
the Virtual Design of Nanostructured Polymers

Curt M. Breneman,* L. Catherine Brinson,* Linda S.
Schadler,* Bharath Natarajan, Michael Krein, Ke Wu, Lisa
Morkowchuk, Yang Li, Hua Deng, and Hongyi Xu



DOI: 10.1002/adm201301744
Stalking the Materials Genome: A Data-Driven Approach to the Virtual Design of
Nanostructured Polymers

By C. M. BrenemanyL.C. Brinson* L.S Schadler* B. Natarajan M. Krein, K. Wy, L.
MorkowchukY. Li, H. Deng H. Xu

Supporting Information

I nformatics:

Polymer RepresentatioiMolecular Operating Environment (MOE) version 260 was
used to create 20-mer representations of polynmens inonomer units using a modified
version of MOE's built-in polymerization functioerminal attachment points were capped
with hydrogen. The backbone dihedral angles wetr¢os0° before geometry optimization.
The highly flexible nature of the olignomer struetsi make the full exploration of
conformation space impossible. To overcome thiblpra and find stable representation of
polymer structure with sufficient 3D informationskght tethering (10/300) was applied on
the backbone atoms. Energy minimization was thefopeed with a MMFF94x forcefield

with RMS tolerance of 0.05 kcal/mol. Alternateiops for polymer length were explored,
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Fig 1. RMSE change with chain length using color-bin descriptor.
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but a 20-mer length provided the best balance twemputational time required while
minimizing effects from capping hydrogens. Howe)-mers were created without
optimization; they were necessary to minimize tifeience of the end cap hydrogen atoms
when calculating RECON/TAE descriptors, which isfoomation-insensitive. Conformation
search test was then performed to make sure tldgcpom uncertainty due to conformation

variation is smaller than 5%.

Filler RepresentationMOE version 2008 was used to create a hollow, spherical silica
shell with formula SO7sH30. Each silicon atom has an outward-facing —OH gralf of
these were randomly assigned to be functional gattgghment points in order to achieve a
functionalization density of approximately 1/Arin order to eliminate apparent molecular
surface area in the interior of the shell, a sif&ilOsHg) component was added to the center
of the sphere for calculation of surface propertieanctional groups were added using
MOE’s QuaSAR-CombiGen tool, and completed bead®waergy minimized using a

MMFF94x forcefield with RMS tolerance of 0.01 kaatil.

Descriptors:Models for both the polar and dispersive compasmenpolymer surface
tension utilized full set of normalized RECON/TAEsttriptor (those insensitive to the scale
of chain length) and binned surface descriptorsef, the normalized RECON/TAE
descriptors describe the properties like localzahon potential, electrostatic potential and
other eletron density distribution topology infotina, as a subset of Transferable Atomic

Equivalent (TAE) fragmentd!

A new set of surface descriptors was developethisrproject using Connolly surfaces
encoded with Electrostatic Potential (EP) or Actiwme Pair (ALP) mappings, as calculated

by MOE!! The EP map covers a rage of -35 to 35 kcal/mdheyen Ewald-type screened
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molecular electrostatic potentfalThe ALP surface map displays hydrophobic, mildlyepo
and hydrogen-bonding regions. Resulting descrgtiake the form of 8-bin probability
density histograms for the intensity of each calweinnel (RGB) of each molecular surface
(one histogram per color per surface), computedguRi statistical softwar®. In addition, a
grayscale histogram was created for each surfatieebyaditional NTSC color-to-luminance
mapping of ((0.30*red) +(0.59*green) + (0.11*bludjpr polymer model, in order to further
increase the stability of the descriptor valuesgteof Gaussian smearing functions was
applied so that each bin value was representedzasissian function with the intergration
value equal to origin value, with standard deviatio be one bin width. The smearing
function was found to effective prevent descriptalue change due to the “value drifting”
between two adjacent bins. A small value cut-of-8) was also used to prevent uncertainty

of extreme small value, which is a pure numericabfem.

Models for the polar component of filler surfaceg®n utilized these color binned
surface descriptors (excluding grayscale) usingtiStbgrams bins instead of 8; models were
built using 8, 16, 32, 64, 128, and 256 histograms,tand 256 yielded the best performance.
Models for the dispersive component of filler segdension utilized MOE's i3D descriptor
packagé! less those descriptors relying on AM1, PM3, andD@calculations. This
descriptor setis conformationally sensitive angratent free, containing energy, charge, and
shape descriptors such as water accessible safeaetotal potential energy, electrostatic
potential, and dipole moment, for a total of 118atgtors before feature selection.

Model Building

PreprocessingBefore machine learning algorithms were employeddescriptors
showing zero variance across polymers were remfyeetthe descriptor matrix. Remaining

descriptors are standardized by subtraction of thean and division by their standard
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deviation across polymer samples. One descripasrr@moved from any pair of descriptors
showing a correlation coefficient greater than 0.85Hy single descriptor value lying outside
[-6,6] after standardization was either changeeitizer -6 or 6 as appropriate (polymer
dispersive model) or the descriptor was discargetly(ner polar model).Both filler models
used a threshold of [-4,4], and values outsidertmge were changed to -4 or 4 as

appropriate.

Feature SelectiorPartial least squares (PLS) sensitivity featurecein was utilized for
all MQSPR models. Briefly, descriptors are taker at a time and varied uniformly first up
and then down one standard deviation. A PLS misdalilt using the modified descriptor,
and the resulting change in the RMSE from a non#fisadddescriptor matrix is recorded.
Descriptors with high influence on RMSE are keptd éhose with low influence are
discarded. For the dispersive polymer model, founds of feature selection were completed
where the least influential 30% of descriptors waisgarded each round. For the polar
polymer model, five rounds were completed where 20%escriptors were discarded per
round.Filler models underwent 12 rounds of 20% t@mdarounds of 10% for polar and
dispersive models, respectively. The number ohdsuo complete and the percent of

descriptors to discard were optimized using a geiarch.

Descriptors remaining in the polymer dispersive eladter feature selection are:

FDKNA10
8EP_Red
3EP_Gray
Ffuk5
FDGNAG
PIPMin
Flapl2
6ALP_Blue
7EP_Blue

Descriptors remaining in the polymer polar modé&tiafeature selection are:
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FEP9
6EP_Green
PIPMax
7EP_Red
FDRNA10O
6EP_Red
7EP_Blue
FSIKA3
6ALP_Green
7EP_Gray
6EP_Blue
2EP_Green

Descriptors remaining in the filler dispersive mbalter feature selection are:

FASAH
std_dim1
vsurf_Wp3
vsurf_CP
vsurf_Wp6
npr2

E

FASA-
Vsurf CW1
Vsurf_IW8
E_ang
Vsurf_DW13
Vsurf_Wp7
E_oop
Vsurf CW2

Descriptors remaining in the filler polar modeleaffeature selection are:

124ALP_Red
180ALP_Red
205ALP_Red
212ALP Red
86ALP_Green
16ALP_Blue
72EP_Red
96EP_Red
163EP_Red
19EP_Green
56EP_Green
75EP_Green
205EP_BIlue
221EP_ Blue

For color descriptors, the leading number indic#iteshistogram bin, EP or ALP

designate the surface mapping, and the color iteBoahich color channel histogram is
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referenced. Names for i3D descriptors are takesttly from MOE. Complete descriptions

of these descriptors are available in MOE docuntiemt&!

Machine LearningFinal models were all built on feature selecteccdpsor matrices.
Classic multiple linear regression (MLR) models built using the In function in R\
Partial least squares (PLS) regression models lleusing the pls package in'R. The
number of latent variables to use was selectedyirounds of four-fold cross-validation.
Epsilon-insensitive support vector machine (SVMjression models were built on feature-
selected descriptor matrices using R package eX0Fart of the R libsvm packal§é!
Optimization of epsilon is handled internal to #1071 package. Grid search hyperparameter
selection for kernel parameter gamma and cost e was completed using ten rounds
of ten-fold bootstrap cross-validation, where tpémization criterion was cross-validated
PRESS R Gamma was searched over [1/50, 1/100, 1/20001/51000,
1/(0.75*number_of_samples), and 1/number_of_detsesp C was searched over 1,2,3,4,5.
Models using MLR, PLS, or SVM were chosen basedadiated performance RMSE. Both
polymer models use SVM, filler models use MLR an&Ror dispersive and polar
components of surface tension, respectively. Bagiping was achieved by dividing
experimental samples into random “training” andlitl@ion” subsets. Models built using the
training cases are used to predict the valueseovdtidation cases. This process is repeated
100 times resulting in 100 “bootstrap” models, eaamed on part of the original data. Each
bootstrap model is then used to predict the vatfiedl cases in each validation subset, so that
the ultimate prediction result is the average lafrge set of predictions made on each
molecule in the original dataset, but only whewas part of the validation set, and not in the
training set.Final bootstrap models were aggregatedpredictions from the aggregate used

for further studies.



Experiment:

Materials: PMMA (Sigma Alrich, M,= 100000 g/mol), PS (Sigma Aldrich,,M 230000
g/mol) and PEMA (Scientific Polymer, 4 200000 g/mol) were used as procured. Prior to
use, P2VP (Scientific Polymer, ¥ 200000 g/mol) was left overnight in a vacuum ogén
100°C to evaporate residual monomer moleculesn@heparticles (14+4nm Silica in MEK)
were supplied by Nissan Inc. Octyldimethylmethobarse (CH-(CH,);-Si(CHg),-O-C,Hs),
Chloropropyldimethylmethoxysilane (ClsBs-Si(CHg),-O-CHs) and
Aminopropyldimethylethoxysilane (N#C3H;-Si(CH;g)-O-CyHs) were procured from Gelest
Inc. and used as received. These are monofunctiaaks, that ensure that only a single
molecular layer is attached to the nanoparticléaser HPLC grade anhydrous THF,
anhydrous Toluene and Hexanes were procured frehreFScientific, Sigma Alrich and
Mallincrodt Chemicals respectively. Silicon wafe2anches in diameter, with a 200nm thick
silica layer (Standard Deviation 2.58%) were predurom Silicon Quest Inc. High purity
Formamide (>99.5%) and Diiodomethane (99%), thé@ilmuids used in surface energy

measurement, were purchased from Sigma-Aldrich.

Methods:

Wafer surface modificationthe 2 inch was broken into 4 even quarters, whiete
cleaned and hydroxylated by immersing in a Pirdgtca (70:30 solution of 50, and 30%
H,0,) at 80C for 12 hours. The hydroxylated pieces were ririgddl water, blown dry and
left in a vacuum oven for 1-2 hours at $20The wafers were then surface modified through
direct nucleophilic substitution of the silanol gps, by immersing in a 3% solution of the
required monofunctional silane in Toluene for 3gjag an inert atmosphere. These were then

rinsed in ethanol, toluene and DI water, blown aing vacuum dried at 120 for 10 minutes.



Particle surface modificationA 16 mL solution of colloidal silica particles (3@ight%
in MEK) was diluted with 50 mL of THF. Around 0.5Lnof the silane was added and the
mixture was refluxed at 75°C overnight under puteogen protection. The reaction mixture
was then cooled to room temperature and precipiiat®00mL of hexanes. The particles
were then recovered by centrifugation at 3000rpnbfminutes and redispersed in THF using
sonication and precipitated in hexanes again. Wasrepeated twice. The surface

concentration of the silanes was found by thermagretric analysis to be ~1 molecule/im

Surface Energy Measuremeiite static contact angles of watgr €72 mJ/m, y$=21.8
mJ/nf,yP=51 mJ/n), formamide ¢, =58 mJ/M, y#=39 mJ/m,yP=19mJ/m) and
diiodomethaney, =50.8 mJ/, y{*=50.8 mJ/r,y”=0 mJ/nf) on the functionalized surfaces
were obtained by using the Droplmage software erRéame-Hart Goniometer. The contact
angles were then used to evaluate the surfaceies@fthese modified silicas using the
Owens-Wendt methdf. Surface energy is calculated by solving the foltaypequation for
two known liquids. It is based on Young Equation #me Good-Girifalco’s geometric mean
approximation of interaction energigg”

\/VstLd \/Vsppr (1)

cosf =—-1+2 + 2
YL YL

whereyd andyf are the dispersive components of the solid anddigurface energies
respectively;y? andy/ are the polar components of the solid and liga&pectivelyy, is the
total filler surface energy, given by the suny@fandy/. The surface energies of the
modified fillers (Amino, Octyl and Chloro silane wiied silica) shown in Table 1, are
average values calculated from the Owens-Wendttiemaolving for 2 liquids at a timét
was assumed that at our length scales the sunfergyeof a molecular cluster is similar to

that of a planar macroscopic surf&c&The surface energies of the matrix polymers in &abl
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1, were obtained by MQSPR prediction. These engngare used to calculates 8, AW,

andWs(shown in Table 2).



Table 1. Surface Energies of Surface Functionalized Siligé Rolymer Matrix

Surface Energyy; Dispersivey Polar y
Filler

[mJ/m?] [mJ/m? [mJ/m?
Amino func. Silica 43.64 37.85 5.79
Octyl func. Silica 32.30 29.16 3.14
Chloro func. Silica 36.21 30.45 5.76

Surface Energyy, Dispersivey,{,d Polary,’
Polymer

[mI/m?] [mJ/m?| [mJ/m?|

48.32 44.89 3.43
Polystyrene
Poly(Methyl Methacrylate) 36.51 s2.44 4.07
Poly(Ethyl Methacrylate) 33.02 sl 2.02
Poly(2-Vinyl Pyridine) 48.56 42.93 5.63

Preparation of Nanocompositeldanopatrticles in anhydrous THF were mixed with a 5%
anhydrous THF solution of matrix polymer. This noibé was sonicated using a Sonics and
Materials Vibracell VCX 600 Watt sonicator with &ggped microtip. Sonicated solutions
were poured into clean aluminum boats and the sblwvas driven off in a clean oven at’80
and vacuum dried at 120 for 16 hours. The samples were then pressediogebone

shaped samples and annealed afC4®S, PMMA, P2VP) and 12Q (PEMA) for 24 hours.

Microscopy and Image AnalysiSanocomposite samples were embedded in an epoxy
resin and microtomed into 60-80 nm thick slicesigs diamond knife. These sections were
transferred onto a copper grid and imaged usirlg@L.32010 transmission electron
microscope (TEM).

The micrographs thus obtained were processed towemoise and reduced to a resolution of
300x300 pixels. These images were binarized (kdackwhite) using a 2 step process that
ensures that the number of particles present ialéquhe experimental volume fraction.

After image binarization was completed, clustersenrdicated on the pixilated 2D image.
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The radius of each clustag)and the intercluster distanag)(between every cluster pairwas
calculated and the averageof these values fronditferent images gaveandr4in pixels
(Note: Only one image is used in Amino-PEMA). lbshd be noted that. is taken as the
average of radius of each filler weighed by theaarkthe filler in the 2D binary images, such
that the existence of single dispersed fillers wilt largely lower the.. Theser.andrgvalues

in pixels were then be converted to nanometeragusie scale bar. Calculate@ndrgvalues

are shown in Table 2.

Glass Transition Temperaturé&he T4s of nanocomposite samples were measured using
Differential Scanning Calorimetry (DSC) and Dynarklechanical Thermal Analysis
(DMTA). On the DSC, samples were subjected to tR@€ to 130C cycles at a ramp rate of
10C/min. TheTy values reported are averages from the seconchamdheating cycles.
Temperature sweeps on the DMTA were run fron€36 150C at a frequency of 1Hz. The

Ty measured is the temperature at the peak loss fgats).
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Table 2. Calculated values of energetic parametersy and measured values 47

System Cos(0) Wee/Wee AW, Ws rq-8 wt% ATg-8wt%  ra -3 wt% ATy-3 wt%
[mJ/m? [mJ/m?] [nm] [2C] [nm] [2C]

Chloro PMMA 1.00 1.05 0.62 -4.29 278.46 -4.58 190.85 -3.72
Amino P2VP 1.00 1.09 0.85 -7.90 156.13 -8.93 193.58 -6.49
Octyl PMMA 1.00 112 0.95 -8.51 291.86 -5.78 418.63 -5.50
Octyl PS 1.00 112 3.48 -11.57 266.71 -0.62 462.30 -1.58
Chloro PS 1.00 1.04 6.16 -8.86 374.69 -2.38 422.74 -1.33
Chloro PEMA 0.96 0.98 3.13 -0.45 449.31 -1.65 595.94 -0.88
Amino PS 0.92 0.95 4.71 -0.71 714.71 -0.47 974.90 -0.70
Amino PMMA 0.91 0.96 0.24 331 902.96 -0.84 1610.60 2.37
Amino PEMA 0.79 0.90 2.57 -0.08 1039 -0.35 1666.10 -0.095

Finite Element Analysis (FEA):

Construction of 2-point correlation functioin order to reconstruct and/or generate the

dispersion morphology in 3D, for the FEA of modehtosites, via predicted surface energy

parameters, a 2-point correlation function wasaed!*?The histogram of the 2-point

correlation probability was measured in the binargiges obtained through the image

analysis process. The following expression wasistcally built to fit with the 2-point

correlation probabilities, considering the necesbsaundary conditions prescribed for a 2-

point correlation function byJiao et

f(x) = VFexp(

c

_:x) + VF? [tanh (2%) + exp (;—;C) sin (

Snx)]
2rq

@)

Heuristic-empirical expressions fog and 1z Although the energetics of filler aggregation in

glassy polymer nanocomposites, have been quaétatexplained in literature and in our

paper, analytical quantitative expressions hawdydreen formulated. We used a heuristic
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method to construct empirical expressions to enalpieori prediction. The order of théF
term in the expression fog (i.e. the dependence fon volume fraction) was determined by
comparing theat different loadings (3 and 8 weight %) for thensacomposite system.
Using the same methodology and considering the wbilong et al™® we determined the
form of VF in the expression af. The dependence ofandry on surface energy was
heuristically characterized through functions @ngrgy correlation variabbe,,. The fitting
parameters in these functions were determined ¢fran optimization process that

minimized the difference between measured and gtestti;andry values.

FE simulation of DMTA temperature sweepgEA was performed using the ABAQUS
software package. 3D representative volume elefRE) geometries of PNCs with
30x30x30 hexahedron elements were reconstructed tis predicted 2-point correlation
function. One XoY surface was fixed and the othasassigned with an oscillatory
displacement boundary with frequency of 1Hz. Thisansistent with the loading frequency
used in the DMTA experiment. The properties ofgibb/mer matrix were obtained from the
experimentally determined Prony series at referésmgerature and the corresponding
shifting factors required for time-temperature sppsition. External python scripts for
ABAQUS were developed to update the Prony serigmlyimer matrix and interphase at
different temperatures and to control the simukapoocedure. The complex tensile modulus
was obtained from the output of the simulationasthetemperature. The final output curves

for E'/E”/ tarv overT, were then used to prediTy,.
Web Tool:

After being validated using best-practices metH8dsmth the dispersive and polar bootstrap
aggregate polymer surface energy models were incatgd into a web-based toolkit to
facilitate their use by the broader community, emgrovide a front end for our hybrid

MQSPR/Finite Element Analysis (FEA) modeling to@urrently, the MQSPR portion of the
13



tool allows users to compute surface energy commusifer either existing or designed
polymers, which can then be used together wittpthdictedsurface energy components of
the selected nanofiller as part of a larger welketdsy/brid tool discussed at the end of the
paper.In practice, the web-based toolkit is divided three major components across two

sites:

The first provides the user with a simplified framd for designating polymer matrix
structures, nanoparticulate core type (silica ésdhly option at this point) and volume
fraction, along with a drop-down menu of nanopé&taurface functionalizations. While
stepping through the web-based tool, the uservesénformation on surface energies,
dispersion paramaters and eventually thermomechigmioperties. See:

http://reccr.chem.rpi.edu/polymerizer utilize the webtool.
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Polymerizer / Graphical Structure Input

Press e Bulld Polymer bumoe., draw the polymer and thes prew
Prostict Proporsios: tration i e oditor wisdow,

Use e asternk 0 defing i poal Sk See e Docwnonkition e doal,
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NI i beusteny of Mot £ Newana

o) Rensselaer

Glass Transition Temperature (degrees Centigrade): 123.7

Predicted Viscoelastic Response

I mage Processing:

Polymer and Particle Models

Predicted Morphology

Figure 1. Actual screenshots of the Polymerizer MQSPR/FBAatomposite prediction
webtool input and several stages of its outpdihe workflow of the multi-scale tool is
analogous to the flowchart shown Figure 1, whitibsttates the process of defining the
polymer matrix, particle functionality and volumadtion, leading to predictions of surface

energies, the resulting 3D particle distributicasd the tadi curve.

Figurel: was prepared using Adobe Photoshop.
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Figure 2: a.Images are screenshots from MOE arldtb.&e results plotted by the MQSPR

tool.

Figure 3: The graph was plotted using GNUplot dredlabels were added on Adobe

Photoshop

Figure 4: The image was prepared using Adobe PhoposThe inset micrographs were

obtained using Transmission Electron Microscopy.

Figure 5.a, b and c: were plotted on OriginPro @n@ a screenshot from the FEA

environment.

Figure 6: a and b were plotted using Origin Pro.
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