

Supplemental Figure 1. N- and C-terminal regions of CNGC12 possess CaMBDs. (A), Domain organization of CNGC12. The location of six TM helices (1-6), pore-forming region (P), CNBD, αC-helix, and IQ motif were determined based on sequence alignment. Locations of the NT and CT motifs were determined in the present study. (B) Summary of *in vitro* CaM-binding assays shown in **(C)**. Fragments representing different regions of CNGC12 (as indicated by a.a. numbers) were recombinantly expressed as fusion proteins and subjected to HRP-CaM overlay assays. Fragments that produced a band in a HRP-CaM overlay (O/L) assay **(C)** are indicated with +. **(C)** Expression and CaM-binding of CNGC12 fusion proteins were determined via immunoblot (IB) (top panels) and HRP-CaM overlay (bottom panels), respectively.

Supplemental Figure 2. ITC analysis of the NT^{mut} (L27E/K28E) and IQ^{mut} (I672D/Q573A) peptides. Data were collected, analyzed, and presented as outlined in Figure 3. (A) 150 μ M NT^{mut} peptide was titrated into 16 μ M CaM81. No binding was measured. (B) 140 μ M IQ^{mut} peptide was titrated into 16 μ M CaM81. The data were best fitted to a two-site model, with calculated Kd values of 107 and 252 nM.

Supplemental Figure 3. The V607E mutation disrupts CaM-binding to the CT motif. (A) Cterminal fragments corresponding to a.a. 581-649 of CNGC12 featuring individual point mutations were expressed as 6xHis-tagged recombinant proteins and assayed for HRP-CaM-binding. (B) Ca²⁺/CaM ND-PAGE assay with CT and Ctmut peptides. Closed and open arrows indicate the migration of CaM and CaM-peptide complex, respectively. Numbers indicate the molar ratio of peptide:CaM. (C) ITC analysis of CT^{mut} peptide binding to Ca²⁺/CaM. 150 μ M CT^{mut} peptide was titrated into 16 μ M CaM81, and data were analyzed as described in Figure 3. A K_d value of 116 nM was calculated from measurements, which corresponds to an approximately 16-fold decrease in affinity compared to the WT CT peptide.

Supplemental Figure 4. The $\Delta 8$ mutation (CNGC12 a.a. 32-39) disrupts the CaM-binding to the N-terminus of CNGC12. The N-terminus (representing CNGC12 a.a. 1-43) of WT or mutant CNGC12 was expressed recombinantly and assayed for CaM-binding with 50 nM HRP-CaM in the presence of 1 mM CaCl₂.

Supplemental Figure 5. PCD induction by NT mutants is increased at lower temperature. *N. benthamiana* leaves were infiltrated at 22 °C and left at 22 °C or shifted to 16 °C 24 hpi. Areas were infiltrated with HC-Pro from TEV alone (TEV) or co-infiltrated with GFP-tagged constructs labeled as indicated in the legend. (A and B) *N. benthamiana* leaves 4 dpi at 22 °C (A) or 16 °C (B). Scale bars = 1 cm. (C) Conductivity of regions expressing CNGC11/12 or NT mutants (NT^{mut} or Δ 8) was significantly increased at 16 °C relative to 22 °C (* represents p<0.05, student's t-test). Values shown are averages of three replicates (error bars = standard deviation).

В

Supplemental Figure 6. Phenotypic analysis of myc-tagged CNGC12 construct expression in *N. benthamiana*.. Areas were infiltrated with the HC-Pro construct alone (TEV) or co-infiltrated with TEV and constructs: WT-m : CNGC12-myc, NT-m : CNGC12^{L27E/K28E}-myc, 11/12-m : CNGC11/12-myc, 11/12-IQ-m : CNGC11/12^{I564D/Q565A}-myc, 11/12-CT-m : CNGC11/12^{V599E}-myc. Experiments were performed as described for Figures 6 and 7, and results are shown 4 dpi. (A) Phenotypes of leaves 4 dpi. Red circles indicate areas showing visible signs of PCD. Scale bar = 1 cm. (B) Trypan blue (TB) staining for cell death. Yellow lines indicate the border of infiltrated vs uninfiltrated areas. Scale bar = 0.1 mm.

AAFFIQAAWRKHCKRKLSKTR RLYSQQW**R**SWAAFFIQAAWRKHCKR RLYSQQW**C**SWAAFFIQAAWRKHCKR

Supplemental Figure 7. The S58 mutant of CNGC11/12 (R577C) partially disrupts CaMbinding to the IQ motif. Spectra of 0.2 mM ¹⁵N-CaM in 10 mM Tris-Cl, 150 mM NaCl, 10 mM CaCl₂, pH 7.5 in the absence (A and B) or presence of 5 mM DTT. Overlaid spectra are shown for CaM alone (black) and CaM in the presence of equimolar peptide, as indicated. (A) The WT extended peptide induces a shift in ¹⁵N-CaM spectra indicative of interaction. (B) The S58 peptide induces only minor changes in the spectra of ¹⁵N-CaM under normal conditions, suggesting this peptide cannot bind CaM; however binding can be partially restored under reducing conditions (C).

Supplemental Figure 8. Low temperature does not restore PCD-induction by CNGC11/12-

 IQ^{mut} . *N. benthamiana* leaves were infiltrated at 22° C with Agrobacterium carrying constructs as labeled in figure legend. For temperature shift, plants were moved 24 hpi into a 16° C growth chamber. Images show leaves 3 dpi (48 h at 16° C). Areas showing PCD are circled in red. Scale bar = 1 cm.

Supplemental Table 1. CNGC12 CaMBD peptides. Postion refers to the a.a. sequence of CNGC12 corresponding to each peptide. Mutations are bolded.

Name	Position	Sequence
NT	16-40	VDGKLKSVRGRLKKVYGKMKTLENW
NT ^{mut}	16-40	VDGKLKSVRGR EE KVYGKMKTLENW
IQ	568-588	AAFFIQAAWRKHCKRKLSKTR
IQ ^{mut}	568-588	AAFF DA AAWRKHCKRKLSKTR
СТ	600-623	NLASTLYVSRFVSKALQNRRKDTA
CT ^{mut}	600-623	NLASTLY E SRFVSKALQNRRKDTA

All peptides used for biophysical analyses of CaM-binding (ITC or NMR) were synthesized to high purity (>90%) by GenScript (Piscataway, NJ, USA) or Peptide 2.0 (Chantilly, VA, USA).

Supplemental Table 2. Calculated parameters from ITC measurements. Values correspond to isotherms shown in Figure 3. The stoichiometry (*N*, no. sites/mol), binding constant (*K*, in cal/mol), heat change (ΔH , in cal/mol), and entropy change (ΔS , in cal/mol) are shown for each modeled binding site.

Parameter	NT + Ca ²⁺ /CaM	IQ + Ca ²⁺ /CaM	CT + Ca ²⁺ /CaM	IQ + apoCaM
Ν	0.9485 ±0.002059	$_{1}^{1} 0.4767 \pm 0.03102$ $_{2}^{2} 0.4879 \pm 0.0342$	0.9487 ±0.001604	0.9861 ±0.003099
К	3.105E7 ±2.542E6	1 5.637E7±2.224E7 2 1.186E7 ±1.372E6	2.548E8 ±4.642E7	1.048E6 ±3.054E4
ΔH	-1.118E4 ±45.72	1 -2328 ±409.4 2 -6688 ±613.8	-9742 ±39.15	-8955 ±39.70
ΔS	-2.609	1 27.78 2 10.31	6.328	-1.995

Supplemental Data. DeFalco et al. Plant Cell (2016) 10.1105/tpc.15.00870

Supplemental Table 3. Primers used for experiments.

Purpose	Gene	Name	Sequence (5'→3')
RT-PCR	CNGC12 F11C1	10-14-F5 F11C10-14-R3	CGGGTGATACCAGAGTA GGAAGGCGAGAACCATT
	NbACTIN	NbACT_RT_F1 NbACT_RT_R1	CATATGTAGGAGATGAAGCT ATCAGTAAGGTCACGACCAG
	NbPR1a	NbPR1a_RT_F1 NbPR1a_RT_R1	AATATCCCACTCTTGTCG CCTGGAGGATCATAGTTG
	NbHSR203J	NbHSR203J_RT_F1 NbHSR203J_RT_R1	TGCGTCAGCCAAGCTGATTG CCGATAGGACCGCACGAAAC
Cloning	AtCNGC12	CNGC12_F_Xbal CNGC12_R_nostop_Xbal	TATCTAGAATGAATCTTCAGAGGAGAAAATTTG TATCTAGAGCTTCAGCCTTTGCAAACTC
		CNGC12_Sall_F CNGC12Nt_Notl_R	TAGTCGACATGAATCTTCAGAGGAG TAGCGGCCGCTTAAGTCTTCCTCCAG
		CNGC12-pET28m-F CNFGC12_R_BaMHI CNGC12_626_R CNGC12_603_R CNGC12_593_R CNGC12_567_R CNGC12_561_F_Nhel CNGC12_581_F CNGC12_595_F	AAGCTAGCTCTACTACTAGAGTAGAT TTGGATCCTGCTTCAGCCTTTGC TTGGATCCGGAACAACCTGCTGTATC TTGGATCCTGATGCAAGATTGAGTTGC TTGGATCCCAATATTCTCGTTGTCTCTTG TTGGATCCCATGAGCGCCATTGCTG AAGCTAGCTCACAGCAATGGCGCTCATG AAGCTAGCCAAAGGAAGCTGTCTAAGAC AAGCTAGCCAAGGCACGCAACTCAATC
Mutagenesis	AtCNGC12	F-N-term.LK::EE R-N-term.LK::EE	AAAATTGAAAAGTGTTAGAGGACGCGAGGAGAAGGTTTACGGGAAGATGAAAAC GTTTTCATCTTCCCGTAAACCTTCTCCTCGCGTCCTCTAACACTTTTCAATTTT
		CNGC12_IQ572DA_F CNGC12_IQ572DA_R	CATGGGCAGCATTCTTCGATGCAGCGGCATGGAGGAAAC GTTTCCTCCATGCCGCTGCATCGAAGAATGCTGCCCATG
		CNGC12_L605E_F CNGC12_L605E_R	CTCAATCTTGCATCAACGGAATACGTGTCCAGATTTGTG CACAAATCTGGACACGTATTCCGTTGATGCAAGATTGAG
		CNGC12_V607E_F CNGC12_V607E_R	CTTGCATCAACGCTCTACGAGTCCAGATTTGTGTCCAAAG CTTTGGACACAAATCTGGACTCGTAGAGCGTTGATGCAAG
		CNGC12_R609E_F CNGC12_R609E_R	TCAACGCTCTACGTGTCCGAATTTGTGTCCCAAAGCTTTG CAAAGCTTTGGACACAAATTCGGACACGTAGAGCGTTGA
		CNGC12_K613E_F CNGC12_K613E_R	CGTGTCCAGATTTGTGTCCGAAGCTTTGCAAAATCGACG CGTCGATTTTGCAAAGCTTCGGACACAAATCTGGACACG