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Supplementary tables 

Table S 1: Summary of HIV-1 PDB codes used for our structural visualization 

Gene gag pol vif vpr tat rev Vpu env nef 

Protein Matrix Capsid SP1 Nucleocapsid SP2 p6 Protease RT Integrase Vif Vpr Tat Rev Vpu GP120 GP41 Nef 

Number of units 3 5,6 1 1 1 1 2 2 4 2,3,4 1 2 2,6 1 3 3 2 

Multimeric protein 1HIW # 3H4E 

4XFZ 

- - - - 1A30 

4LL3 

3V4I 

3V81 

1K6Y 

 

- - - 3LPH  4NCO 

4TVP 

2XRA 

4TVP 

- 

Monomeric protein 
- -  1U57 1A1T - 2C55 - - - 4N9F 1M8L 1K5K - 1VPU 

1PJE 

- - 4EMZ 

1AVV 

#: HIV PDB codes were extracted from the RCSB Protein Data Bank 

(http://www.rcsb.org/) using the protein sequence search. 

-: a PDB code does not exist or is not available.  

For GP41, we used 4TVP to visualize the pre-fusion state, and 2XRA to visualize the 

post-fusion state. Most protein structures are crystalized from HIV-1 strains, except for 

SIV Vpx (PDB: 4CC9) and prototype foamy virus integrase (PDB: 3L2V). 

 

In Figure 5A, the following HIV-1 PDB codes are used to show the structure of Env in 

complex with CD4 and CXCR4. 

(A) GP120 positions: 31–505 (PDB codes: 4JM2, 4TVP, 4NCO);  

(B) GP41 positions: 518–664 (PDB codes: 4JM2, 4TVP, 4NCO);  

(C) CXCR4 positions: 27–328 (PDB code: 3ODU);  

(D) CD4 positions: 26–388, 397–458 (PDB codes: 1WIO, 2KLU). 

 

In Figure 10B, the following HIV-1 PDB codes are used to visualize protease structures 

crystalized with 6 substrate peptides derived from Gag and GagPol cleavage sites.   

(A) The MA–CA cleavage site (PDB: 1KJ4); 

(B) The SP1–NC cleavage site (PDB: 1KJ7);  

(C) The NC–SP2 cleavage site (PDB: 1TSQ);  

(D) The SP2–p6 cleavage site (PDB: 1KJF);  

(E) The p51–p15 cleavage site (PDB: 1KJG);  

(F) The p15–IN cleavage site (PDB: 1KJH). 

http://www.rcsb.org/
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Table S2: Summary of publication citations implying the citation level of HIV 

pairwise protein interactions. 

Protein interaction References Citation numbers extracted from Google Scholar Level 

GP120 – GP41 (1-11) 228+130+19+3+71+93+24+274+235+6+63=1146 High 

GP41Env – Matrix (12-19) 190+45+290+18+15+2+13+323=896 High 

GP120 – Tat (20-23) 41+4+28+4=77 Median 

RT – Integrase (24-31) 72+54+20+222+6+174+2+115=665 High 

RT – Nucleocapsid (32-35) 86+99+190+97=472 High 

RT – Vif (36) 20 Low 

RT – Tat (37) 28 Low 

RT – Nef (38, 39) 16+5=21 Median 

Integrase – Rev (40-42) 34+56+21=111 High 

Integrase – Matrix (43) 421 High 

Matrix – Vpr (44) 32 Low 

Integrase – Nef (39) 5 Low 

Tat – Vpr (45) 111 Median 

Tat – Rev (46) 1 Low 

Tat – Nef (47) 34 Low 

Tat – Nucleocapsid (48) 1 Low 

Vif – Vpr (49) 18 Low 

NCGag – Vif (50-53) 155+68+6+109=338 High 

NCGag – Vpr (54-56) 33+83+119=235 High 

p6Gag – Vpr (56-67) 178+87+77+104+409+112+18+119+62+14+29+136=1345 High 

p6Gag – Vpx (56, 57, 68, 69) 87+119+15+26=247 High 

GP41Env – Nef (70) 53 Low 

Gag – RT (71, 72) 12+20=32 Median 

Protease – Gag/GagPol (73-75) 225+8+1=234 High 

Protease – Vif (76-78) 17+28+13=58 Median 
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Protease – RT (79) 36 Low 

Protease – Tat (80) 42 Low 

Protease – Nef (81-85) 28+45+55+94+20=242 High 

Protease – GP41CT (86, 87) 33+14=47 Median 

(i) Protein interaction, HIV pairwise protein interactions listed in our main text; (ii) 

References, publications that have characterized HIV protein interactions; (iii) Citation 

numbers extracted from Google Scholar, the total number of citations of references 

based on Google Scholar search on March 1, 2016. (iv) Level, the citation level 

measured by the number of publications and their citation numbers. (a) High: well-

known interactions that have been cited more than 300 times, or have been recorded by 

at least 3 publications with more than 100 citations in total. (b) Low, little-known 

interactions that have been reported by a single paper with less than 100 citations. (c) 

Median, lesser-known interactions include the remaining interactions. 
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Supplementary text S1 

In this supplementary, we will summarize the basic functions of 16 HIV proteins. 

Additional information about their reference sequences, natural polymorphisms, 

protein structures and genomic localization is provided in our online platform 

(http://www.virusface.com/). 

Matrix: HIV matrix, encoded by the gag gene, is a structural protein that builds the 

basic infrastructure of HIV particles. After the protease–mediate cleavage of Gag and 

Gagpol precursors, HIV matrix trimmers organize into ordered hexamers to create a 

structural layer beneath the viral membrane, which protects the integrity of HIV 

particles (88). The myristoylated N–terminal domain of HIV matrix is critical for 

targeting plasma membrane and for promoting viral assembly (89). To prevent 

nonspecific binding, matrixGag in the Gag polyprotein binds to nucleic acids in a PIP2-

dependent manner (PIP2: phosphatidylinositol 4,5-bisphosphate) (88). 

Capsid: HIV capsid, encoded by the gag gene, is a structural protein that builds the 

basic infrastructure of viral particles (88). The hexamer and pentamer forms of HIV 

capsid constitute the conical fullerene core of mature viral particles (90). The 

interactions between HIV capsid and host proteins allow for the packaging of host 

proteins (e.g. cyclophilin A) (91). HIV capsid also interacts with the host restriction 

factor TRIM5α to prevent the viral uncoating at the early stage (92). Multifaceted 

functions of HIV capsid have been summarized in a recent review (93).  

Nucleocapsid: Nucleocapsid is a structural protein encoded by the gag gene (88, 94-

96). To prevent viral RNA from nucleases, HIV nucleocapsid coats the genomic RNA 

within the viral core (97). Nucleocapsid also interacts with many host proteins (e.g. the 

ESCRT–associated protein ALIX) to promote viral budding (98). As a RNA chaperone, 

nucleocapsid enhances nucleic acid–dependent steps in the HIV life cycle. For instance, 

it not only promotes the DNA strand–transfer reaction during reverse transcription, but 

also stimulates viral integration (99). 

http://www.virusface.com/
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p6: p6 is a structural protein located at the C terminus of the gag gene (88). During 

viral budding, HIV p6Gag recruits the host machinery to release the virus outwards from 

the cell surface (100). Moreover, HIV-1 p6Gag binds to Vpr and host proteins (e.g. 

AIP1/ALIX) for their viral packaging (88). 

Protease: HIV protease is the first viral enzyme encoded by the pol gene. During viral 

maturation, protease cleaves Gag polyproteins at the cleavage sites to produce structural 

proteins (matrix, capsid, nucleocapsid, p6). In a similar fashion, protease cleaves the 

GagPol precursors to produce viral enzymes (protease, reverse transcriptase, integrase). 

Moreover, the protease activity depends on the concentration of GagPol precursors, 

whilst the rate of protease–mediated autoprocessing is modulated by the adjacent p6* 

sequence (101). 

Reverse transcriptase (RT): RT is the second enzyme encoded by the pol gene. To 

produce dsDNA from viral single-stranded RNA genome, RT in the reverse 

transcriptase complex (RTC) undertakes both the RNA-dependent and the DNA-

dependent polymerization reactions. During reverse transcription, RT jumps from one 

template to another on two copies of single–stranded genomic RNAs. The frequent 

template switch promotes the generation of new recombinant genomes derived from 

two parental RNA sequences (99). Numerous mutations occur because of the error-

prone reverse transcription. 

Integrase: Integrase is the third enzyme encoded by the pol gene. After the nuclear 

import of the pre-integration complex (PIC), viral integrase performs two major 

reactions (3’-processing and strand–transfer reactions) to insert the double-stranded 

viral DNA into human chromosomes. Inside mature viral particles, HIV integrase is 

cleaved from GagPol polyproteins by viral protease. Moreover, reverse transcriptase 

interacts with integrase to prevent the catalytic activity of integrase before viral 

integration (29). As part of the reverse transcriptase complex (RTC), integrase also 

plays a crucial role during reverse transcription (99). 
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Vif: Viral infectivity factor is an accessory protein encoded by all lentiviruses except 

the equine infectious anemia virus (102). Vif is notorious for hijacking the human 

ubiquitin ligase complex CBF-β to counteract the antiviral activity of host proteins such 

as APOBEC-3G and APOBEC-3F (103, 104). APOBEC3 proteins from the human 

APOBEC3 family of DNA cytosine deaminases are known as anti–HIV proteins that 

potently inhibit HIV-1 by introducing G–to–A hypermutaiton of the viral genome to 

impair DNA synthesis and integration (102, 105-107). Vif also interacts with Gag 

polyproteins to modulate the protease–mediated proteolytic processing (102). Notably, 

Vif is incorporated into HIV particles during viral budding (102). 

Vpr: Viral protein R is an accessory protein which enhances HIV-1 replications in the 

non-dividing cells (e.g. macrophages). During the HIV-1 life cycle, Vpr plays multiple 

functions such as the modulation of viral reverse transcription, the nuclear import of 

the HIV-1 pre-integration complex, the transactivation of HIV-1 long terminal repeat 

(LTR) promoter, and the induction of apoptosis and G2/M cell cycle arrest (see review 

(108)). Notably, Vpr is incorporated into HIV-1 particles during viral budding (109). 

Vpu: HIV-1 viral protein U (Vpu) is a membrane-associated accessory protein with 

two major functions: CD4 downregulation and tetherin antagonism (110). First, Vpu 

hijacks the human ubiquitin machinery to target CD4, and induces the downregulation 

of CD4 receptors in the endoplasmic reticulum (ER). Second, Vpu antagonizes tetherin, 

an interferon–regulated human restriction factor, to enhance the release of viral 

particles. Notably, Vpu is not incorporated into HIV particles during viral budding 

(111). 

Vpx: Vpx is an accessory protein in HIV-2 and SIV, which marks a distinct difference 

compared to HIV-1. Major functions of Vpx include: (i) Vpx induces the ubiquitin-

proteasome-dependent degradation of SAMHD1, which is a host protein that restricts 

HIV-2 replication in myeloid cells (112-114). (ii) Vpx is required for HIV-2 reverse 

transcription (115). (iii) Vpx assists nuclear import of the viral pre-integration complex 

(PIC) (112-114). Notably, Vpx is incorporated into viral particles during viral budding. 
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Rev: Rev is an accessory protein that controls the nuclear export of unspliced and 

partially spliced viral RNAs from the nucleus to the cytoplasm (116). Rev multimers 

bind to the stem-loop structure of Rev response element (RRE) in the env coding region 

of viral RNA, forming a large oligomeric ribonucleoprotein (RNP) (99). The RNP 

complex interacts with human export factor CRM1 (exportin 1 or Xpo1) to shuttle from 

the nucleus to the cytoplasm through the nuclear pore complex (NPC). Overall, Rev 

activity exerts a strong influence on viral RNA transport, translation and packaging 

(117). Notably, Rev is not incorporated into viral particles (111). 

Tat: HIV trans-activator of transcription (Tat) is a regulatory protein that plays 

essential roles in viral replication. Tat exists in all lentiviruses and is the first eukaryotic 

transcription factor known to interact with TAR (transactivating response element) in 

RNA instead of DNA (99). Tat interacts with various human proteins to execute 

multiple functions (99, 118, 119). (i) Tat activates the transcription initiation and 

elongation of HIV-1 LTR promoter, preventing the premature termination of 

transcription and polyadenylation. (ii) Tat acts as a nucleic acid chaperone to regulate 

the capping of HIV-1 mRNA. (iii) Tat induces the T cell apoptosis, neurodegeneration 

and oxidative stress. (iv) Tat regulates the expression of major histocompatibility 

complex (MHC) and downregulates many cell surface receptors. (v) Tat suppresses the 

activity of reverse transcriptase to prevent the premature synthesis of viral DNA. (vi) 

Extracellular Tat upregulates the CXCR4 expression on CD4+ T cells, stimulates the 

expression of cytokines and interacts with cell-surface receptors to activate cellular 

signal transduction pathways. Notably, Tat is not incorporated into viral particles. 

GP120: Encoded by the env gene, the surface glycoprotein GP120 is exposed on the 

surface of HIV particles (120). On the virion surface, there are approximately 14 

envelope spikes consisting of three molecules of GP120 and GP41 each, connected by 

non-covalent interactions (121). During viral entry, GP120 interacts with specific 

receptors (e.g. CD4) on the cell surface (122). Specifically, the binding of CD4 to 

GP120 induces the conformational changes of GP120, therefore exposing the V3 loop 
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of GP120 to interact with cellular coreceptors (e.g. CCR5). Many human neutralizing 

antibodies have been found to target GP120, whereas a few antibodies (e.g. PG9, PG16) 

have a broad neutralization activity against different HIV-1 strains (123-125). 

GP41: The transmembrane glycoprotein GP41 is the second envelope protein encoded 

by the env gene. GP41 contains a glycine-rich region that is essential for membrane 

fusion activity (126). HIV GP41 plays multiple activities during the viral life cycle 

(126). (i) Env intracellular trafficking is regulated by the cytoplasmic tail of GP41 

(GP41CT) which interacts with various cellular proteins. (ii) GP41CT interacts with 

viral Matrix to regulate Env incorporation. (iii) GP41CT regulates internalization 

exerted by the clathrin-mediated endocytosis. (iv) GP41CT regulates the cellular 

activation of host transcription factors (e.g. NF-kB). (v) GP41 interacts with host 

proteins to regulate the activity of the actin cytoskeleton. (vi) HIV-1 GP41 membrane-

proximal external region is targeted by human antibodies (e.g. 10E8) (127). 

Nef: HIV negative regulatory factor (Nef) is an accessory protein which enhances viral 

pathogenesis (128). During the viral life cycle, Nef can play multiple roles (128). (i) 

Nef downregulates CD4 receptors and MHC molecules. (ii) Nef promotes the viral 

release and the cell-to-cell transmission. (iii) Nef activates the apoptosis and takes part 

in the clathrin-dependent endocytic pathways. Notably, Nef is incorporated into HIV 

particles (128). 
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