1 Supplementary Information

- 2
- 3 Lcp1 is a phosphotransferase responsible for ligating arabinogalactan to

4 **peptidoglycan in** *Mycobacterium tuberculosis*

- 5
- 6 James Harrison, Georgina Lloyd, Maju Joe, Todd L. Lowary, Edward Reynolds, Hannah
- 7 Walters-Morgan, Andrew Lovering, Gurdyal S. Besra, Luke J. Alderwick
- 8
- 9

1 **Chemical Synthesis**

2 It was decided to substitute the pyrophosphate linked polyprenyl of the endogenous 3 acceptor with an *O*-alkyl group, because pyrophophate-linked polyprenols are difficult to 4 use as acceptors as they are unstable. An octvl glycoside was chosen as a replacement 5 because these have previously been used successfully as synthetic ligands and acceptors 6 (1). Disaccharides containing L-Rha- $\alpha(1\rightarrow 3)$ -D-GlcNAc have been synthesised previously (2, 3) using a thioglycoside donor, which activated *in situ* from *N*-iodosuccinimide (NIS) 7 8 and triflic (TfOH) acid (4). The scheme used this coupling method and is shown in Scheme 9 S2. To synthesize 1, thioglycoside 6 (5) and alcohol 5 (6) were coupled using N-10 iodosuccinimide (NIS) and trifluoromethanesulphonic (triflic) acid leading to octyl 2,3,4-11 tri-*O*-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-4,6-*O*-benzylidene-2-deoxy- α -D-12 glucopyranoside **(7)** (Scheme S2) in 51% yield. The heteronuclear one-bond coupling 13 constant $({}^{1}J_{C,H})$ for the anomeric C atom (172 Hz) unambiguously established that the 14 compound had the required α -*rhamno* configuration (7). Deprotection of 7 using hydrogenolysis of the benzylidene acetyl followed by cleavage of the acetate esters with 15 methanolic ammonia afforded the final product, α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-16 17 acetamido-2-deoxy- α -D-glucopyranoside (1) in 80% yield over the two steps. 18 The preparation of **2** and **3** followed a common synthetic route as illustrated in 19 Scheme S3 starting from the previously reported disaccharide 8 and two thioglycosides 9 20 and **10**, which were prepared following established protocols (8). Glycosylation of 21 disaccharide 8 with thioglycoside 9 using NIS and silver triflate provided trisaccharide 11, 22 which was the then treated with hydrazine acetate affording alcohol **12** in 87% overall 23 vield from **8**. Subsequent glycosylation of **12** with thioglycoside **10**, again promoted by NIS 24 and silver triflate, gave an 89% yield of tetrasaccharide **13**. A portion of this intermediate

1	was deprotected by hydrolysis of the acetal protecting groups and then hydrolysis of the
2	esters under Zemplen conditions to afford ${f 2}$ in 93% yield. Alternatively, another portion of
3	${f 13}$ was treated with hydrazine acetate affording tetrasaccharide alcohol ${f 14}$ in 97% yield.
4	Glycosylation with ${f 9}$ afforded ${f 15}$ (81% yield), which was then deprotected under the same
5	conditions used for ${f 2}$, leading to the formation of ${f 3}$ in 91% overall yield. In all glycosylation
6	reactions, the stereochemistry of the newly introduced galactofuranosyl residue could be
7	determined by ¹ H NMR and ¹³ C NMR spectroscopy. In particular, the ${}^{3}J_{\rm H1,H2}$ of the
8	galactofuranosyl residue was <2 Hz and the C-1 chemical shift was between 105 and 110 $$
9	ppm (9).
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 Supplementary Figure Legends

-	
3	Figure S1. Sequence alignment of Lcp1 orthologues from <i>M. tuberculosis, M.</i>
4	smegmatis, C. glutamicum and LCP homologues from B. subtilis and S. pneumoniae.
5	Amino acid sequences were aligned using ClustalW and rendered with EsPRIPT. Secondary
6	structure information was obtained from PDB coordinates 2xxp.
7	
8	Figure S2. Reaction scheme for the synthesis of octyl α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-
9	acetamido-2-deoxy- α -D-glucopyranoside (1).
10	
11	Figure S3. Reaction scheme for the synthesis of octyl β -D-galactofuranosyl-(1 \rightarrow 5)- β -D-
12	galactofuranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2-acetamido-2-deoxy- α -D-
13	glucopyranoside (2) and octyl β-D-galactofuranosyl-(1→6)-β-D-galactofuranosyl-(1→5)-β-
14	D-galactofuranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -2-acetamido-2-deoxy- α -D-
15	glucopyranoside (3).
16	
17	Figure S4. Flow chart tracking radioactivity incorporated from UDP-[¹⁴ C[Gal <i>p</i>
18	through each of the analytical steps leading to TLC analysis (Figure 5).
19	
20 21 22 23 24 25 26 27	

1 Supplementary Methods

2 Synthesis of 1–3.

3 General Methods. Reactions were carried out in oven-dried glassware. All reagents used 4 were purchased from commercial sources and were used without further purification 5 unless noted. Reaction solvents were purified by successive passage through columns of 6 alumina and copper under nitrogen. Unless stated otherwise, all reactions were carried out 7 at room temperature under a positive pressure of argon and were monitored by TLC on 8 Silica Gel 60 F₂₅₄ (0.25 mm, E. Merck). Spots were detected under UV light or by charring 9 with acidified *p*-anisaldehyde solution in EtOH. Unless otherwise indicated, all column 10 chromatography was performed on Silica Gel (40–60 μ M). The ratio between silica gel and 11 crude product ranged from 100 to 50:1 (w/w). Optical rotations were measured at 22 ± 2 12 °C and are in units of deg•mL(dm•g)⁻¹. ¹H NMR spectra were recorded at 300 or 500 MHz. and chemical shifts were referenced to TMS (0.0, CDCl₃) or CD₃OD (3.30, CD₃OD). ¹³C NMR 13 14 spectra were recorded at 75 or 125 MHz, and ¹³C chemical shifts were referenced to 15 internal CDCl₃ (77.06 ppm, CDCl₃), or CD₃OD (48.9, CD₃OD). Organic solutions were concentrated under vacuum at < 40 °C. Electrospray mass spectra were recorded on 16 17 samples suspended in mixtures of THF with MeOH and added NaCl. MALDI mass 18 spectrometry was performed on a Voyager Elite time-of-flight spectrometer on samples 19 suspended in 2,5-dihydroxy-benzoic acid or *trans*-3-indoleacrylic acid using the delayed-20 extraction mode and positive-ion detection.

21

22Octyl α-L-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-glucopyranoside (1).23Disaccharide 7 (110 mg, 0.159 mmol) was dissolved in acetic acid-H2O (5 mL, 80:20) and24subjected to hydrogenolysis using palladium on carbon (10%, 15 mg). The reaction mixture

1	was stirred overnight and filtered through Celite and evaporated. The residue was co-
2	evaporated thrice with toluene and dissolved in ammonia–MeOH (15 mL, 2.0M) and stirred
3	for 20 h. The solution was evaporated to dryness. Flash column chromatography (0–15 $\%$
4	MeOH in CHCl ₃) of the residue gave ${f 1}$ as a white powder (76 mg, 80%). M.P. 120–121°C,
5	$[\alpha]_D$ –13.4 (<i>c</i> 1, CHCl ₃). δ_H (300 MHz; CD ₃ OD) 4.91 (s, 1 H), 4.74 (d, 1 H, <i>J</i> = 2.8 Hz, H-1),
6	3.51–4.15 (10 H), 2.05 (s, 3 H, NHCOCH ₃), 1.51–1.60 (2 H, m), 1.25–1.46 (m, 13 H), 0.86 (m,
7	3 H); δ _C (75 MHz; CD ₃ OD) 173.4, 101.2, 97.5, 79.7, 72.3, 72.0, 71.0, 70.4, 69.0, 68.1, 68.1,
8	60.5, 53.4, 31.9, 29.4, 29.2, 29.1, 26.0, 22.7, 22.3, 16.8, 13.9 (C-a). <i>m/z</i> (EI) 480.2831 (M ⁺ +
9	H. C ₂₂ H ₄₂ NO ₁₀ requires 480.2809).
10	
11	Octyl β-D-galactofuranosyl-(1→5)-β-D-galactofuranosyl-(1→4)-α-L-
12	rhamnopyranosyl-(1 \rightarrow 3)-2-acetamido-2-deoxy- α -D-glucopyranoside (2).
13	Tetrasaccharide 13 (0.2 g, 0.12 mmol) was dissolved in 4:1 acetic acid–H $_2$ O (8 mL) and
14	heated at 75–77 °C for 5 h. The solvent was then evaporated under vacuum and the residue
15	was dissolved in CH_2Cl_2 –MeOH (7:3, 5 mL) followed by the dropwise addition of NaOMe ₃ in
16	MeOH (0.1M, enough to maintain pH of the solution around 8). More MeOH was added
17	periodically as the reaction progressed to keep the solution homogenous. The reaction
18	mixture was then stirred at room temperature for 16 h and was neutralized by the addition
19	of Amberlyst-15 (H+) cation exchange resin. The solution was filtered and the filtrate was
20	concentrated to give a syrupy residue. This crude product was then dissolved in ${ m H_2O}$ (0.5
21	mL) and was purified by C-18 column chromatography, (H $_2$ O–MeOH, 0–75% MeOH). The
22	fractions containing the product were combined, concentrated under vacuum, re-dissolved
• •	
23	in deionized H_2O and lyophilized to obtain 2 (0.09 g, 93%) as an amorphous solid. The data

1

2	Octyl β-D-galactofuranosyl-(1→6)-β-D-galactofuranosyl-(1→5)-β-D-
3	galactofuranosyl- $(1 \rightarrow 4)$ - α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-2-deoxy- α -D-
4	glucopyranoside (3).
5	Pentasaccharide 15 (0.2 g, 0.093 mmol) was dissolved in 4:1 acetic acid–H $_2$ O (8 mL) and
6	heated at 75–77 °C for 5 h. The solvent was then evaporated and the residue was dissolved
7	in CH_2Cl_2 –MeOH (7:3, 6 mL) followed by the dropwise addition of NaOMe in MeOH (0.1M,
8	enough to maintain pH of the solution around 8). More MeOH was added periodically as the
9	reaction progressed to keep the solution homogenous. The reaction mixture was then
10	stirred at room temperature for 16 h and was neutralized by the addition of Amberlyst-15
11	(H+) cation exchange resin. The solution was filtered and the filtrate was concentrated to
12	give a syrupy residue. This crude product was then dissolved in H_2O (0.5 mL) and was
13	purified by C-18 column chromatography, ($H_2O-MeOH$, $0-75\%$ MeOH). The fractions
14	containing the product were combined, concentrated under vacuum, re-dissolved in
15	deionized H_2O and lyophilized to obtain 3 (0.083 g, 91%) as an amorphous solid. The data
16	for this compound matched with the data previously reported (8).
17	

18 Octyl 2,3,4-tri-0-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-4,6-0-

19 **benzylidene-2-deoxy-\alpha-D-glucopyranoside (7)**.

20 Methyl 2,3,4-tri-O-acetyl-1-thio α -L-rhamnopyranoside **(6)** (5) (500 mg, 1.56 mmol) and

- 21 octyl 2-acetamido-2-deoxy-4,6-*O*-benzylidene-α-D-glucopyranoside **(5)** (6) (571 mg, 1.35
- 22 mmol) were dissolved in CH₂Cl₂ (80 mL); powdered 4Å molecular sieves (2.28 g) were
- added and the reaction mixture stirred for 1 h. *N*-iodosuccinimide (381 mg, 1.69 mmol)

was then added. A satd solution of trifluoromethanesulfonic (trflic) acid in CH₂Cl₂ (1.05 1 2 mL, 0.15 mol equivalent) was added dropwise and the reaction mixture stirred in the dark. 3 After 2 h, another 0.15 mol equivalent of the triflic acid in CH₂Cl₂ solution was added 4 dropwise. A colour change of the reaction from pink to purple to brown was evident. After 5 7 h, the reaction was guenched by the addition of triethylamine (215 μ L), filtered and 6 diluted with CH_2Cl_2 and the solution was washed with sodium thiosulfate in NaOH (5 w/v, 7 0.5M), followed by aqueous sulphuric acid (1.0M), satd aqueous NaHCO₃, and brine before 8 being dried over anhydrous MgSO₄ and evaporated to an oil. Flash column chromatography 9 (0-50% EtOAc-toluene) afforded an off white solid that was recrystallised from ethanol-10 H_2O (50:50) to yield **7** as a white powder (480 mg, 51%). M.P. 151–152°C, $[\alpha]_D$ +4.2 (*c* 1, 11 CHCl₃). $\delta_{\rm H}$ (300 MHz) 7.30–7.45 (m, 5 H), 5.83 (d, 1 H, I = 8.8 Hz), 5.43 (s, 1 H), 4.95 (dd, 1 H, 12 I = 4.0, 9.7 Hz), 4.90 (d, 1 H, I = 2.5 Hz), 4.88 (app t, 1 H, I = 9.7 Hz), 4.79 (d, 1 H, I = 3.5 Hz), 13 4.50 (br app t, 1 H, I = 2.5, 4.0 Hz), 4.20 (dd, 1 H, I = 4.2, 10.0 Hz), 4.07–4.15 (m, 1 H), 3.98 14 (br app t, 1 H, *J* = 9.1, 10.0 Hz), 3.73 (app dt, 1 H, *J* = 3.5, 9.6, 8.8 Hz), 3.66 (app t, 1 H, *J* = 9.6 Hz), 3.63 (dt, 1 H, I = 6.8, 9.9 Hz, octyl OCH₂), 3.53 (br app t, 1 H, I = 9.5, 8.5 Hz), 3.35 (dt, 1 15 16 H, J = 9.9, 6.7 Hz), 3.20 (dq, 1 H, J = 2.0, 8.7 Hz), 1.86, 1.94, 1.96, 1.98 (4 x 3H, 4 x s, 3 x 17 COCH₃, 1 x NHCOCH₃), 1.51–1.60 (m, 2H octyl CH₂), 1.24–1.45 (m, 10 H, octyl CH₂), 1.09 (t, 18 3 H, octyl CH₃), 0.85 (d, 3 H, I = 2.0 Hz, H-6'), δ_{C} (75 MHz) 170.5, 170.3, 170.2, 170.0, 137.0– 19 126.5, 102.2, 98.4 (¹/_{C-H} 172 Hz), 98.0, 80.4, 76.2, 71.6, 71.0, 69.2, 68.6, 68.5, 66.5, 63.3, 20 53.2, 32.0, 29.6, 29.5, 29.5, 26.4, 23.6, 22.8, 21.1, 20.9, 16.8, 14.3; Anal. Calcd. For 21 C₃₅H₅₁NO₁₃: C: 60.6, H 7.4, N 2.1; found C 60.2, H 7.6, N 2.0. *m/z* (EI) 593.3193 (M⁺-22 (OCOCH₃)₂+2H. C₃₁H₄₇NO₁₀ requires 593.3200).

1 Octyl 2,3,6-tri-*O*-benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 4)$ -2,3-isopropylidene- α -L-

2 rhamnopyranosyl- $(1\rightarrow 3)$ -2-acetamido-4,6-0-benzylidene-2-deoxy- α -D-

3 glucopyranoside (12).

To a solution of alcohol 8 (1.62 g, 2.67 mmol) and thioglycoside 9 (2.23 g, 3.2 mmol) in 4 5 CH₂Cl₂ (80 mL) was added 4 Å molecular sieves (0.5 g) and the mixture was stirred for 30 6 min before cooling to 0 °C. NIS (0.86 g, 3.8 mmol) and silver trifluoromethane sulfonate 7 (0.16 g, 0.6 mmol) were added and the mixture was continued to stir at 0 °C until the reaction was complete as determined by TLC. The reaction was then guenched by adding 8 9 triethylamine until the pH of the solution was slightly basic (pH < 8). The reaction mixture 10 was then quickly filtered into a solution of satd ag sodium thiosulfate (100 mL) and 11 extracted with H_2Cl_2 . The organic layer was then washed with $H_2O(2 \times 70 \text{ mL})$, separated 12 and dried over anhydrous Na₂SO₄. The organic layer was concentrated to give a syrupy 13 residue that was filtered through a short silica column using 1:1 hexane-EtOAc as the 14 eluent. The fractions containing **11** were combined and evaporated to give an oil that was 15 dried under vacuum for 2 h before being carried forward. Crude **11** was then dissolved in CH₂Cl₂–MeOH (9:1, 60 mL) and then hydrazine acetate (0.36 g, 3.8 mmol), was added. The 16 17 reaction was stirred for 1 h and then poured into H₂O and extracted with CH₂Cl₂. The 18 organic layer was separated, dried with anhydrous Na₂SO₄ and concentrated to a syrupy 19 residue that was purified by column chromatography to give **12** (2.5 g, 87% over two 20 steps) as an amorphous solid. R_f 0.29 (55:45 hexane–EtOAc); $[\alpha]_D$ +4.7 (c 0.5, CHCl₃); ¹H 21 NMR (500 MHz, CDCl₃, δ_H) 8.1–7.95 (m, 6 H), 7.62–7.50 (m, 3 H), 7.48–7.35 (m, 8 H), 7.20– 22 7.03 (m, 3 H), 5.74 (s, 1H), 5.68 (d, 1 H, I = 10.0 Hz), 5.60 (d, 1 H, I = 4.9 Hz), 5.57 (s, 1 H), 23 5.53 (s, 1 H), 5.09 (s, 1H), 4.71 (d, 1 H, J = 3.7 Hz), 4.56 (dd, 1 H, J = 6.5, 10.8 Hz), 4.45–4.37 24 (m, 2 H), 4.37–4.23 (m, 3 H), 4.10 (d, 1H, *J* = 6.0 Hz), 3.98 (dd, 1 H, *J* = 9.6, 9.6 Hz), 3.95–3.80

(m, 2 H), 3.75 (dd, 1 H, *J* = 10.2 Hz), 3.74–3.3.67 (m, 1 H), 3.60 (dd, 1 H, *J* = 9.3 Hz), 3.52 (dd, 1 2 1 H, J = 7.6, 10.0 Hz), 3.40 (ddd, 1 H, J = 6.6, 9.7, 13.3 Hz), 2.66 (d, 1 H, J = 8.9 Hz), 2.03 (s, 3 3 H), 1.64–1.58 (m, 3 H), 1.52 (s, 3 H), 1.40–1.20 (m, 13 H), 0.9 (t, 3 H, J = 7.0 Hz), 0.83 (d, 3 H, 4 I = 6.0 Hz; ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 169.8, 166.4, 166.1, 165.2, 137.1, 133.6, 133.5, 5 133.1, 129.9, 129.8, 129.7, 129.6, 129.1, 129.1, 128.9, 128.5, 128.4, 128.3, 128.0, 126.1, 6 109.4, 104.3, 101.7, 98.2, 98.1, 83.4, 81.6, 80.0, 78.6, 77.8, 76.7, 76.2, 75.0, 69.0, 68.9, 68.3, 7 65.9, 64.4, 63.2, 53.6, 31.8, 29.4, 29.3, 29.2, 27.9, 26.3, 26.2, 23.4, 22.6, 17.1, 14.1. HRMS 8 (ESI) calcd. for (M+Na)⁺ C₅₉H₇₁NO₁₈Na 1104.4563, found 1104.4565. 9 10 Octyl 2,3,5-tri-0-benzoyl-6-0-levulinoyl- β -D-galactofuranosyl- $(1 \rightarrow 5)$ -2,3,6-tri-0benzoyl- β -D-galactofuranosyl- $(1 \rightarrow 4)$ -2,3-isopropylidene- α -L-rhamnopyranosyl-11 12 $(1 \rightarrow 3)$ -2-acetamido-4,6-0-benzylidene-2-deoxy- α -D-glucopyranoside (13). The compound was prepared from alcohol **12** (2.3 g, 2.1 mmol), thioglycoside **10** (1.8 g, 2.5 13 mmol), powdered 4 Å molecular sieves (0.5 g), NIS (0.9 g, 4.0 mmol), silver 14 15 trifluoromethane sulfonate (0.13 g, 0.5 mmol) in CH₂Cl₂ (80 mL) as described for 16 compound **11**. TMSOTf (10 µL) was added 10 min after AgOTf addition as the glycosylation 17 was very sluggish. Tetrasaccharide **13** (3.1 g, 89%) was obtained as an amorphous solid. R_f 18 0.31, (1:1, hexane–EtOAc); $[\alpha]_D$ –6.7 (*c* 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.01–7.91 19 (m, 9 H, Ar), 7.83–7.74 (m, 4 H, Ar), 7.60–7.03 (m, 22 H), 5.83 (ddd, 1 H, J = 3.9, 7.7, 11.4 20 Hz), 5.80–5.76 (m, 3 H), 5.74 (s, 1 H), 4.64 (d, 1 H, *J* = 3.5 Hz), 5.57–5.53 (m, 3 H), 5.10 (s, 1 21 H), 4.88 (dd, 1 H, J = 3.7, 4.9 Hz), 4.74–4.66 (m, 3 H), 4.54 (dd, 1 H, J = 4.0, 11.9 Hz), 4.46– 22 4.34 (m, 3 H), 4.30–4.26 (m, 2 H), 4.09 (d, 1 H, J = 5.9 Hz), 4.02–3.82 (m, 3 H), 3.79–3.66 (m, 23 2 H), 3.64–3.53 (m, 2 H), 3.41 (ddd, 1 H, *J* = 6.6, 9.6, 13.2 Hz), 2.61–2.40 (m, 4 H), 2.03 (s, 6 24 H), 1.64–1.58 (m, 3 H), 1.52 (s, 3 H), 1.40–1.20 (m, 13 H), 0.9 (t, 3 H, J = 7.0 Hz), 0.83 (d, 3 H,

22	benzovl-β-D-galactofuranosvl-(1→5)-2.3.6-tri- <i>0</i> -benzovl-β-D-galactofuranosvl-
21	Octyl 2,3,6-tri-0-benzoyl-5-0-levulinoyl-β-D-galactofuranosyl-(1→6)-2,3,5-tri-0-
20	
19	before being carried onto the next step.
18	$C_{86}H_{93}NO_{26}Na$ 1578.5878, found 1578.5856. The compound was not further characterized
17	amorphous solid. R_f 0.40 (1:1 hexane–EtOAc); HRMS (ESI) calcd. for (M+Na) ⁺
16	purified by column chromatography (2:1 hexane–EtOAc) to afford 14 (2.6 g, 97%) as an
15	separated again, dried with anhydrous Na_2SO_4 and concentrated to a syrup that was
14	into chilled H_2O (30 mL) and the CH_2Cl_2 layer was separated, washed with H_2O (30 mL),
13	g, 4.3 mmol) was added and the mixture was stirred for 100 min. The solution was poured
12	To a solution of 13 (2.86 g, 1.7 mmol) in CH_2Cl_2 –MeOH (9:1, 90 mL), hydrazine acetate (0.4
11	acetamido-4,6- <i>O</i> -benzylidene-2-deoxy- α -D-glucopyranoside (14).
10	galactofuranosyl- $(1 \rightarrow 4)$ -2,3-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-
9	Octyl 2,3,5-tri- <i>O</i> -benzoyl-β-D-galactofuranosyl-(1→5)-2,3,6-tri- <i>O</i> -benzoyl-β-D-
8	
7	found 1676.6241.
6	26.3, 26.2, 23.4, 22.6, 17.2, 14.1. HRMS (ESI) calcd. for (M+Na) ⁺ C ₉₁ H ₉₉ NO ₂₈ Na 1676.6245,
5	70.4, 68.9, 68.3, 64.8, 64.4, 63.2, 63.1, 53.6, 37.8, 31.8, 29.6, 29.5, 29.3, 29.3, 29.2, 27.9, 27.8,
4	104.0, 101.6, 98.2, 98.1, 82.7, 82.0, 81.9, 81.9, 80.1, 77.8, 77.7, 77.6, 76.4, 76.2, 74.8, 72.9,
3	129.5, 129.0, 129.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, 128.0, 126.2, 109.4, 105.5,
2	137.1 133.4, 133.3, 133.2, 133.2, 133.1, 133.0, 129.9, 129.9, 129.8, 129.8, 129.7, 129.6,
1	$J = 6.0$ Hz); ¹³ C NMR (125 MHz, CDCl ₃ , $\delta_{\rm C}$) 206.2, 172.1, 169.9, 166.1, 165.7, 165.3, 165.2,

1 $(1 \rightarrow 4)$ -2,3-isopropylidene- α -L-rhamnopyranosyl- $(1 \rightarrow 3)$ -2-acetamido-4,6-0-

2 **benzylidene-2-deoxy-a-D-glucopyranoside (15).**

3 The compound was prepared from alcohol **14** (2.6 g, 1.67 mmol), thioglycoside **9** (1.4 g, 2.0 mmol), powdered 4 Å molecular sieves (0.65 g), NIS (0.54 g, 2.4 mmol), silver 4 5 trifluoromethane sulfonate (0.13 g, 0.5 mmol) in CH₂Cl₂ (80 mL) as described for 6 compound **11**. TMSOTf (10 µL) was added 10 min after AgOTf addition as the glycosylation 7 was very sluggish. Pentasaccharide **15** (2.86 g, 81%) was obtained as an amorphous solid. 8 $R_f 0.15$ (1:1, hexane-EtOAc), $[\alpha]_D$ +2.1 (c 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.01-9 7.91 (m, 15 H), 7.88–7.76 (m, 5 H), 7.60–7.04 (m, 30 H), 5.90 (ddd, 1 H, J = 3.8, 7.7, 11.6 Hz), 10 5.82 (d, 1 H, / = 5.3 Hz), 5.78 (s, 1 H), 5.76–5.70 (m, 3 H), 5.66–5.62 (m, 2 H), 5.55 (d, 1 H, / = 11 1.5 Hz), 5.54 (s, 1 H), 5.43 (d, 1 H, I = 4.9 Hz), 5.33 (d, 1 H, I = 1.5 Hz), 5.19 (s, 1 H), 5.10 (s, 1 12 H), 4.84 (dd, 1 H, J = 4.2, 4.2 Hz), 4.74–4.64 (m, 4 H), 4.63-4.50 (m, 2 H), 4.55–4.50 (m, 1 H), 13 4.44-4.38 (m, 2 H), 4.31-4.26 (m, 2 H), 4.12-4.07 (m, 2 H), 4.02-3.82 (m, 3 H), 3.78-3.67 14 (m, 2 H), 3.62 (dd, 1 H, *J* = 9.6, 9.6 Hz), 3.55 (dd, 1 H, *J* = 7.2, 10.2 Hz), 3.41 (ddd, 1 H, *J* = 6.6, 15 9.6, 13.2 Hz), 2.63–2.40 (m, 4 H), 2.02 (s, 3 H), 2.01 (s, 3 H), 1.64–1.58 (m, 3 H), 1.53 (s, 3 16 H), 1.40–1.20 (m, 13 H), 0.9 (t, 3 H, I = 7.0 Hz), 0.83 (d, 3 H, I = 6.0 Hz); ¹³C NMR (125 MHz, 17 CDCl₃, δ_{C}) 205.9, 171.9, 169.8, 166.1, 165.9, 165.8, 165.7, 165.5, 165.4, 165.3, 165.2, 164.9, 18 137.1, 133.4, 133.3, 133.3, 133.2, 133.1, 133.1, 132.9, 132.8, 130.0, 129.9, 129.8, 129.7, 19 129.6, 129.6, 129.6, 129.1, 129.0, 129.0, 128.9, 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 20 128.2, 128.2, 128.0, 126.2, 109.4, 106.7, 105.8, 104.0, 101.7, 98.2, 98.1, 82.7, 82.6, 82.0, 21 81.8, 81.6, 81.5, 80.1, 77.8, 77.8, 77.6, 76.3, 76.2, 74.9, 73.0, 71.8, 70.2, 68.9, 68.3, 67.7, 65.0, 22 64.4, 63.5, 63.2, 53.6, 37.9, 31.8, 29.6, 29.5, 29.4, 29.3, 29.2, 28.0, 27.9, 26.4, 26.2, 23.4, 22.6, 17.2, 14.1. HRMS (ESI) calcd. for (M+2Na)²⁺ C₁₁₈H₁₂₁NO₃₆Na₂ 1087.3743, found 1087.3740. 23 24

1 Supplementary References

- Lee RE, Brennan PJ, Besra GS. 1997. Mycobacterial arabinan biosynthesis: the use of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay.
 Glycobiology 7:1121-1128.
- Auzanneau FI, Hanna HR, Bundle DR. 1993. The synthesis of chemically modified
 disaccharide derivatives of the Shigella flexneri Y polysaccharide antigen. Carbohydr
 Res 240:161-181.
- Auzanneau FI, Bundle DR. 1993. Synthesis of chlorodeoxy trisaccharides related to the
 Shigella flexneri Y polysaccharide. Carbohydr Res 247:195-209.
- Konradsson P, Udodong UE, Fraser-Reid B. 1990. Iodonium promoted reactions of disarmed thioglycosides. Tetrahedron Letters 31:4313-4316.
- Pozsgay V, Jennings HJ. 1988. Synthetic oligosaccharides related to group B
 streptococcal polysaccharides. 3. Synthesis of oligosaccharides corresponding to the
 common polysaccharide antigen of group B streptococci. The Journal of Organic
 Chemistry 53:4042-4052.
- Aguilera B, Romero-Ramirez L, Abad-Rodriguez J, Corrales G, Nieto-Sampedro
 M, Fernandez-Mayoralas A. 1998. Novel disaccharide inhibitors of human glioma cell
 division. J Med Chem 41:4599-4606.
- Hamer GK, Perlin AS. 1976. A 13C-n.m.r. spectral study of chondroitin sulfates A, B,
 and C: evidence of heterogeneity. Carbohydrate Research 49:37-48.
- 8. Completo GC, Lowary TL. 2008. Synthesis of Galactofuranose-Containing Acceptor
 Substrates for Mycobacterial Galactofuranosyltransferases. The Journal of Organic
 Chemistry 73:4513-4525.
- 24 9. Cyr N, Perlin AS. 1979. The conformations of furanosides. A 13C nuclear magnetic
 25 resonance study. Canadian Journal of Chemistry 57:2504-2511.
- 26 27