Supporting Information for the article:

Network-informed gene ranking tackles genetic heterogeneity in exome-sequencing studies of monogenic disease

Nick Dand, Reiner Schulz, Michael E. Weale, Laura Southgate, Rebecca J. Oakey, Michael A. Simpson and Thomas Schlitt

Supplementary Methods

Degree constrained network-permutation approach

We hypothesised that the number of OMIM disease subnetworks identified in the PINA and PINAmin2 networks was not a simple consequence of the number of disease genes in each network. To test this we checked for disease subnetworks in 10,000 random permutations of each network.

However, if disease genes are more highly connected than average in the network (for example, due to being relatively well-studied) this could bias the test, with disease genes more likely to be connected in the real network than the permuted network if node degree is not accounted for. Therefore we generated permuted networks using a degree-constrained node-shuffling approach, which has been previously described [Lehne, 2012] and applied [Prescott, et al., 2015].

Briefly, node labels are preferentially swapped with nodes of similar degree. For node (i.e. gene) g this is achieved by listing all other network nodes in increasing order of degree difference relative to g (with nodes of equal degree ordered uniformly randomly); a one-tailed normal distribution centred at the top of this list is then used to select a node and labels are swapped. This is repeated for all network nodes. The default standard deviation of 5.0 nodes was used.

Identification of optimal parameters for intersection filtering

By seeking the filtering thresholds which give the best possible performance for the intersection filtering method, we will obtain a fair assessment of the extent to which HetRank can improve on this method. We therefore tested a range of intersection filtering criteria to identify the optimal combination of parameters.

Testing was performed using 1,000 simulated exome sequencing studies, as described in the main text. Genetic heterogeneity was modelled by disease networks of three genes, with each gene equally likely to be disease-causing ($p_1 = p_2 = p_3$). Heterogeneity not captured by the disease subnetwork was set at 50% (u = 0.5). Disease networks generated using both PINA and PINAmin2 networks were tested. Each study comprised 20 simulated case exomes, including spiked disease mutations, and 180 exomes acting as healthy controls.

Filtering criteria tested were:

- variant effect
 - o include truncating variants only, or
 - o include truncating and protein-altering variants
- 1000 Genomes and EVS alternative allele frequency
 - include novel variants only (both frequencies = 0), or
 - \circ include novel and rare variants (both frequencies ≤ 0.001)
- presence of similar variants in control exomes
 - $\circ \quad$ do not filter genes relative to controls, or
 - exclude genes in which 5+ of control exomes carry variant(s) with consistent mode of inheritance after filtering on frequency and variant effect, or
 - exclude genes in which 10+ of control exomes carry such variants.

Results of these tests are presented in Supp. Table S2. For each mode (autosomal dominant, autosomal recessive and neutral), the best results are in the cells highlighted in green.

Based on their ability to rank the highest number of spiked disease genes in the top ten, the two best-performing combinations of filters are for novel altering variants when genes observed in ten or more controls are excluded and for rare altering variants when genes observed in five or more controls are excluded. However, the latter combination was preferred because it consistently ranked more spiked disease genes in the top three and because it was never substantially outperformed by the former when assessing the genes ranked in the top ten. Therefore all intersection filtering results presented in the main text are based on **rare altering variants with genes observed in five or more controls being excluded**.

Identification of optimal parameters for BioGranat-IG

As with the intersection filtering method, we aim to identify the BioGranat-IG parameters which give the best possible performance in order to make a fair comparison against HetRank.

Testing was performed on the same set of simulated data as described in the previous section (that is, based on disease subnetworks of three genes with balanced captured heterogeneity and 50% uncaptured heterogeneity). Since BioGranat-IG requires filtered gene lists, we used the optimal filtering procedure determined in the previous section (we filter out synonymous variants, variants with frequency > 0.001 and genes with post-filtering variants in five or more control exomes).

The input network for BioGranat-IG was PINAmin2 or was derived from PINAmin2 (see below), and we tested both high-coverage disease subnetworks (drawn from PINAmin2) and low-coverage disease subnetworks (drawn from PINA; interactions used to model genetic heterogeneity may not be present in PINAmin2).

Parameters tested were:

- BioGranat-IG search algorithm [see Dand, et al., 2013]
 - o using triplet search (with default settings: results flexibility parameters = 0), or
 - using minimum and multi-minimum distance heuristic search (with default settings: results flexibility parameters = 0, searches limited to ten genes, 1,000 iterations per gene and 2,000,000 iterations total)
- treatment of input network hub genes (hub genes tend to be over-represented in BioGranat-IG results and it is advisable to use an input network with highly-connected hub genes removed)
 - o use full PINAmin2 network, or
 - use PINAmin2_d50, a network constructed by removing nodes of degree 50 or more from PINAmin2.

Results of these tests are presented in Supp. Table S3. For each mode (autosomal dominant, autosomal recessive and neutral), the best results are in the cells highlighted in green. Note that BioGranat-IG's exact triplet search was unable to produce results for comparison in the full PINAmin2 network due to the network's complexity.

The results show that when considering the average number of spiked disease genes that are ranked in the top ten (that is, by being returned in a list of ten genes or fewer), BioGranat-IG is most effective across all scenarios when its **triplet search algorithm is employed in the hub-free version of the network**, **PINAmin2_d50**. Therefore all BioGranat-IG results presented in the main text are based on this combination of parameters.

Supplementary Results

HetRank would better prioritise Adams-Oliver syndrome genes with variants in additional exomes

HetRank was able to rank *NOTCH1* (novel truncating variants in 2 exomes) in 12th position and *DLL4* (novel protein-altering variant in 1 exome) in (joint) 187th position when applied to 13 AOS exomes using the PINA network.

We tested whether additional variants in these genes would improve their rankings. To do this we added additional copies of the known causal variants to 1 or more of the 10 AOS exomes not harbouring *NOTCH1* or *DLL4* mutations (for which the genetic cause remains unknown). Results are summarised in Supp. Table S7.

When the causal (protein-altering) *DLL4* variant is added to 2 additional exomes, *DLL4* is ranked seventh by HetRank. Due to its relatively high degree of 65 in the PINA network, *NOTCH1* does not benefit from the increased evidence in its direct neighbour DLL4, and it is ranked 13th (dropping one place to accommodate *DLL4* ahead of it).

When instead one of the causal (truncating) *NOTCH1* variants is added to 1 additional exome, *NOTCH1* is ranked first by HetRank. *DLL4* has a relatively low degree of 3 in the network and does benefit from evidence in its direct neighbour *NOTCH1*, so that its rank is improved to 47. As causal *NOTCH1* variants are added to further exomes, *NOTCH1* remains the top-ranked gene and *DLL4*'s rank continues to improve. By the time 4 additional exomes have *NOTCH1* variants, the rank of *DLL4* has peaked at 20. This is because all of the genes ranked 2-19 are also direct neighbours of *NOTCH1* in the PINA network so that they will all benefit from each subsequent exome that receives a *NOTCH1* variant.

Supplementary References

- Dand N, Sprengel F, Ahlers V, Schlitt T. 2013. BioGranat-IG: a network analysis tool to suggest mechanisms of genetic heterogeneity from exome-sequencing data. Bioinformatics 29:733-741.
- Lehne B. 2012. Computational Analyses of Complex Diseases at the Gene and Network Levels [Doctoral Thesis]: King's College London, UK.
- Prescott NJ, Lehne B, Stone K, Lee JC, Taylor K, Knight J, Papouli E, Mirza MM, Simpson MA, Spain SL, Lu G, Fraternali F et al. 2015. Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes. PLoS Genet 11:e1004955.

Figure S1 – Examples of variant score profiles

Plots show example gene scores in a single exome based on different variant annotations (with gene scores derived from variant scores in neutral mode). Gene scores are plotted in decreasing order. (a) Gene scores based on variant effect only, ranked according to "truncating > altering > synonymous" and with a filter-equivalent threshold value set at "altering". This results in truncating variants all receiving a score of 1, while altering variants are forced to receive a score of 0.5 (red dotted line). Scaling of variant scores with respect to filter-equivalent threshold values works as follows. Let *y* be the reciprocal of the rank assigned to variant *v* with respect to the annotation (where average rank is used to resolve ties). Then the scaled variant score y^* is set equal to $0.5 + 0.5 \times (y - y_{thresh})/(y_{max} - y_{thresh})$ if $y \ge y_{thresh}$ or $0.5 \times y/y_{thresh}$ if $y < y_{thresh}$ (where y_{thresh} is the reciprocal rank of the variant whose annotation value is at or is closest inside the filter-equivalent threshold value, and y_{max} is the largest reciprocal rank among all variants – which is equal to 1 if there is a unique highest-ranking variant but < 1 if there are multiple joint-top-ranked variants). (b) Gene scores based on EVS alternative allele frequency only, ranked in increasing order and with a filter-equivalent threshold value set at 0.001. This results in novel variants all receiving a score of 1; gene scores cross the red dotted line (score of 0.5) at a gene whose rarest variant has frequency closest to 0.001. Genes scores based on 1000 Genomes alternative allele frequency and 1000 Genomes alternative allele frequency) together with order and filter-equivalent threshold values as previously.

(a) Unspiked exomes are generated in blocks of 200 through random selection (without replacement) of variants by chromosome from 388 sequenced exomes. Each block of 200 unspiked exomes can be split into ten "studies" of 20 exomes each. For each study the other 180 exomes in the block share no genetic material and can therefore be used as unaffected control exomes in their unspiked state. (b) To simulate rare disease exome sequencing studies, each of the 20 annotated exomes in a study are "spiked" with an additional disease-causing variant (red asterisk), or two variants in the event that a compound heterozygous mutation is modelled. Annotation for the spiked variant(s) are determined as follows: zygosity is chosen to model specific modes of disease inheritance; gene name is randomly selected to model genetic heterogeneity ("captured" heterogeneity from a disease subnetwork with probability 1-u or "uncaptured" with probability u); all other annotation is randomly selected from a set of pathogenic variants from dbSNP. When captured heterogeneity is generated from a disease subnetwork of three genes (genes *A*, *B* and *C* here) the probabilities that each gene is picked are denoted p_1 , p_2 and p_3 (such that $p_1 + p_2 + p_3 + u = 1$)

.

Figure S3 – Distributions of variant annotations

Plots show distributions for the three variant annotations used (EVS alternative allele frequency, 1000 Genomes alternative allele frequency and variant effect) across all 20,000 (unspiked) exomes, generated as described in the main text.

Figure S4 – Interactions between genes involved in the same disease occur frequently

Frequency plots showing the number of disease subnetworks (connected sets of two or more genes causing the same disease) identified in 10,000 random degree-constrained permutations of the PINA and PINAmin2 networks. Arrows indicate number of disease networks found in the original networks.

Figure S5 – Performance of HetRank in neutral mode at varying levels of genetic heterogeneity

Results for HetRank's neutral mode; corresponding plots for Autosomal Dominant and Autosomal Recessive modes are given in main text (Figure 2). Plots show the average number of spiked disease genes that could be prioritised (assigned a rank of ten or less) across 1,000 simulated exome sequencing studies by the four methods tested (HetRank, HetRank excluding the network-based step, BioGranat-IG and simple intersection filtering). Different genetic heterogeneity scenarios are represented by the columns (number of genes in disease subnetworks modelling genetic heterogeneity), rows (whether this captured heterogeneity is balanced or unbalanced across disease subnetwork genes), and plot x-axes (degree of genetic heterogeneity not captured by disease subnetwork genes). Results are also tabulated in Supp. Table S4.

Notwork	Concretized disease term	Causal genes connected in				
Network	Generalised disease term	network				
PINA	3-M syndrome	CUL7, OBSL1				
PINAmin2	3-M syndrome	CUL7, OBSL1				
PINA	46XY sex reversal	MAP3K1, SRY				
PINA	Acne inversa familial	PSEN1, NCSTN, PSENEN				
PINAmin2	Acne inversa familial	PSEN1, NCSTN, PSENEN				
PINA	Afibrinogenemia congenital	FGB, FGA				
PINAmin2	Afibrinogenemia congenital	FGA, FGB				
PINA	Agammaglobulinemia	CD79A, CD79B, BLNK, IGHM				
PINAmin2	Agammaglobulinemia	CD79A, BLNK, CD79B				
PINA	Albinism oculocutaneous type	TYR, TYRP1				
PINAmin2	Albinism oculocutaneous type	TYR, TYRP1				
PINA	Arrhythmogenic right ventricular dysplasia	JUP, DSP, DSC2, DSC3, DSG2, PKP2				
PINAmin2	Arrhythmogenic right ventricular dysplasia	JUP. DSP				
PINA	Arthrogryposis renal dysfunction and cholestasis	VPS33B, VIPAS39				
PINAmin2	Arthrogryposis renal dysfunction and cholestasis	VPS33B, VIPAS39				
PINA	Atrial fibrillation familial	KCNQ1, KCNE2				
PINA	Axenfeld-Rieger syndrome type	FOXC1, PITX2				
PINA	Baraitser-Winter syndrome	ACTB, ACTG1				
PINAmin2	Baraitser-Winter syndrome	ACTB, ACTG1				
PINA	Bardet-Biedl syndrome	ARL6, BBS1, BBS4, BBS12, BBS7, BBS9, BBS10, BBS2, MKKS, BBS5, TTC8				
PINAmin2	Bardet-Biedl syndrome	BBS1, BBS4, BBS7, BBS9, BBS12, BBS2, ARL6, MKKS, BBS5, TTC8				
PINA	Bare lymphocyte syndrome type	ТАР1, ТАРВР				
PINAmin2	Bare lymphocyte syndrome type	TAPBP, TAP1				
DINIA	Bare lymphocyte syndrome type					
PINA	complementation group	KFX5, KFXAP				
PINA	Basal cell carcinoma somatic	PTCH1, SMO, PTCH2				
PINA	Bernard-Soulier syndrome type	GP9, GP1BB				
PINAmin2	Bernard-Soulier syndrome type	GP1BB, GP9				
PINA	Brachydactyly type	BMPR1B, BMP2, GDF5, NOG				
PINAmin2	Brachydactyly type	BMP2, BMPR1B, GDF5, NOG				
PINA	Bradyopsia	RGS9, RGS9BP				
PINA	Breast cancer	TP53, ESR1, PPM1D				
PINA	Bronchiectasis with or without elevated sweat chloride	SCNN1B, SCNN1A, SCNN1G				
PINA	Brugada syndrome	CACNA1C, CACNB2				
PINA	C1q deficiency	C1QA, C1QB, C1QC				
PINAmin2	C1q deficiency	C1QA, C1QB, C1QC				
PINA	C8 deficiency type	C8A, C8B				
PINA	Cardiofaciocutaneous syndrome	BRAF, MAP2K1, MAP2K2				
PINAmin2	Cardiofaciocutaneous syndrome	BRAF, MAP2K2, MAP2K1				
PINA	Cardiomyopathy familial hypertrophic	TNNI3. TPM1. TNNT2. TNNC1				

Table S1 – OMIM Disease Subnetworks

Network	Generalised disease term	Causal genes connected in network				
PINA	Cardiomyopathy familial hypertrophic	MYBPC3, TTN				
PINAmin2	Cardiomyopathy familial hypertrophic	TNNI3, TNNT2, TNNC1				
PINA	Cataract Coppock-like	CRYBB2, CRYGC				
PINA	Cerebrooculofacioskeletal syndrome	ERCC2, ERCC6, ERCC5				
PINAmin2	Cerebrooculofacioskeletal syndrome	ERCC5, ERCC6				
PINA	Charcot-Marie-Tooth disease axonal type	HSPB1, HSPB8				
PINAmin2	Charcot-Marie-Tooth disease axonal type	HSPB1. HSPB8				
PINA	Charcot-Marie-Tooth disease type	NEFL. MTMR2				
PINA	Charcot-Marie-Tooth disease type	PMP22. MPZ				
PINA	Choriodal dystrophy central areolar	PRPH2. PRPH				
PINA	Cirrhosis cryptogenic	KRT18. KRT8				
PINAmin2	Cirrhosis cryptogenic	KRT8 KRT18				
PINA	Cockavne syndrome type	FRCC6_FRCC8				
PINAmin2	Cockayne syndrome type	ERCC8 ERCC6				
PINA	Colorectal cancer bereditary poppolyposis type	MIH1 MSH2 PMS2 MSH6				
PINAmin2	Colorectal cancer hereditary nonpolyposis type	MLH1 MSH2 MSH6 PMS2				
110/0112		EP300 APC CTNNB1 AKT1				
PINA	Colorectal cancer somatic	BRAE BIIB1B DIC1 AXIN2				
ΡΙΝΔ	Colorectal cancer somatic	NRAS PIKSCA				
		AKT1 APC CTNNR1 EP300				
PINAmin2	Colorectal cancer somatic	AXIN2				
PINA	Combined cellular and humoral immune	RAG1 RAG2				
	defects with granulomas					
PINA	Cone-rod dystrophy	GUCA1A, GUCY2D				
PINAmin2	Cone-rod dystrophy	GUCA1A, GUCY2D				
PINA	Congenital disorder of glycosylation type	DPM1, DPM2, DPM3				
PINA	Congenital disorder of glycosylation type	COG1, COG4, COG7, COG5, COG6				
PINAmin2	Congenital disorder of glycosylation type	COG1, COG4, COG7, COG6, COG5				
PINAmin2	Congenital disorder of glycosylation type	DPM1, DPM3				
PINA	Cornelia de Lange syndrome	RAD21, SMC3, NIPBL				
PINAmin2	Cornelia de Lange syndrome	RAD21, SMC3				
PINA	Cowden syndrome	AKT1, PTEN				
PINA	Cutis laxa autosomal recessive type	EFEMP2, FBLN5				
PINA	Deafness autosomal dominant	SIX1, EYA4				
PINA	Deafness autosomal recessive	MYO7A, CDH23, DFNB31,				
DINIA	Dejerine Settes disease					
	Depende-Sottas disease	PINIP22, MP2				
	Dementia Lewy body	SNCA, SNCB				
PINA	Diabetes mellitus permanent neonatal	INS, GCR				
	Diabetes mellitus transient neonatal					
	Diamond-Blacktan anemia	KPL5, KPL11				
PINA	Dystiprinogenemia type					
PINAmin2	Dystibrinogenemia type	FGB, FGG				
PINA	Eniers-Danlos syndrome type	CULIAI, CULIAZ				
PINA	Ehlers-Danlos syndrome type	COL5A2, COL5A1				
PINAmin2	Ehlers-Danlos syndrome type	COL1A1, COL1A2				

Network	Generalised disease term	Causal genes connected in network
PINA	Epidermolysis bullosa simplex type	KRT5, KRT14
PINAmin2	Epidermolysis bullosa simplex type	KRT14, KRT5
PINA	Epidermolysis bullosa junctional type	ITGB4, COL17A1
PINA	Epidermolysis bullosa junctional type	LAMB3, LAMA3, LAMC2
PINAmin2	Epidermolysis bullosa junctional type	LAMB3, LAMA3, LAMC2
PINA	Epilepsy nocturnal frontal lobe	CHRNB2. CHRNA4
PINAmin2	Epilepsy nocturnal frontal lobe	CHRNB2, CHRNA4
PINA	Epilepsy progressive myoclonic 2B (Lafora)	FPM2A, NHLRC1
PINAmin2	Epilepsy progressive myoclonic 2B (Lafora)	FPM2A_NHIRC1
PINA	Epinhyseal dysplasia multiple	COL9A1 COMP MATN3
PINA	Enisodic ataxia type	CACNA1A CACNB4
PINA	Erythrocytosis familial	VHI EPASI EGINI
PINAmin?	Erythrocytosis familial	VHL EPAST EGINT
	Evostoses multiple type	EXT1 EXT2
FINA		EANCA FANCE FANCH
		RRCA2 PAIR2 FANCE FANCE
PINA	Fanconi anemia complementation group	EANCLEANCD2 EANCE EANCE
		RRID1
		EANCE BRCA2 EANCA
		FANCO, BRCAZ, FANCA,
PINAmin2	Fanconi anemia complementation group	FANCE PAIRS FANCE FANCE
		FANCI
	Foveomacular dystrophy adult-opset with	
PINA	choroidal neovascularization	PRPH2, PRPH
PINA	Frontonasal dysplasia	ALX1. ALX4
PINA	Glanzmann thrombasthenia	ITGB3, ITGA2B
PINAmin2	Glanzmann thrombasthenia	ITGA2B, ITGB3
PINA	Griscelli syndrome type	RAB27A, MLPH, MYO5A
PINAmin2	Griscelli syndrome type	MLPH, RAB27A, MYO5A
PINA	Hemangioma capillary infantile somatic	KDR, FLT4
PINAmin2	Hemangioma capillary infantile somatic	KDR, FLT4
PINA	Hemochromatosis type	HAMP, SLC40A1
PINA	Hemophagocytic lymphohistiocytosis familial	STX11, FHL5
PINA	Hepatocellular carcinoma somatic	CTNNB1, AXIN1, CASP8
PINAmin2	Hepatocellular carcinoma somatic	AXIN1, CTNNB1
PINA	Hermansky-Pudlak syndrome	DTNBP1, BLOC1S3
PINA	Hermansky-Pudlak syndrome	HPS1, HPS4
PINA	Hermansky-Pudlak syndrome	HPS6, HPS5
PINAmin2	Hermansky-Pudlak syndrome	BLOC1S3, DTNBP1
PINAmin2	Hermansky-Pudlak syndrome	HPS6, HPS5
PINA	Hyperinsulinemic hypoglycemia familial	ABCC8, KCNJ11
	Hypogonadotropic hypogonadism with or	
PINA	without anosmia	FGFR1, FGF8
DINA	Hypogonadotropic hypogonadism with or	
PINA	without anosmia	
DINA	Hypogonadotropic hypogonadism with or	TACP2 TAC2
PINA	without anosmia	IACAS, IACS
DINA	Hypogonadotropic hypogonadism with or	KISS1 KISS1P
FINA	without anosmia	NIJJI, NIJJIN

Network	Generalised disease term Causal genes connect network						
PINA	Immune dysfunction with T-cell inactivation due to calcium entry defect	ORAI1, STIM1					
PINAmin2	Immune dysfunction with T-cell inactivation due to calcium entry defect	ORAI1, STIM1					
PINA	Immunodeficiency common variable	CD19, CR2, CD81					
PINAmin2	Immunodeficiency common variable	CD19, CR2, CD81					
PINA	Iridogoniodysgenesis type	FOXC1, PITX2					
PINA	Kabuki syndrome	KDM6A, MLL2					
PINAmin2	Kabuki syndrome	KDM6A, MLL2					
PINA	LADD syndrome	FGFR2, FGF10					
PINAmin2	LADD syndrome	FGF10, FGFR2					
PINA	LEOPARD syndrome	RAF1, BRAF					
PINAmin2	LEOPARD syndrome	RAF1, BRAF					
PINA	Leigh syndrome due to mitochondrial complex I deficiency	NDUFS3, NDUFA9					
PINAmin2	Leigh syndrome due to mitochondrial complex I deficiency	NDUFS3, NDUFA9					
PINA	Leukemia acute myeloid	CEBPA, RUNX1					
PINA	Leukemia acute promyelocytic type	ZBTB16, PML					
PINA	Leukoencephalopathy with vanishing white matter	EIF2B1, EIF2B2, EIF2B5, EIF2B3					
PINAmin2	Leukoencephalopathy with vanishing white matter	EIF2B5, EIF2B1					
PINA	Li-Fraumeni syndrome	CHEK2, TP53					
PINAmin2	Li-Fraumeni syndrome	ТР53, СНЕК2					
PINA	Liddle syndrome	SCNN1B, SCNN1G					
PINA	Lissencephaly	TUBA1A, PAFAH1B1					
PINA	Loeys-Dietz syndrome type	SMAD3, TGFBR1, TGFBR2, TGFB2					
PINAmin2	Loeys-Dietz syndrome type	TGFBR1, SMAD3, TGFBR2, TGFB2					
PINA	MODY type	HNF4A, HNF1A					
PINA	Macular dystrophy	PRPH2, PRPH					
PINA	Macular dystrophy patterned	PRPH2, PRPH					
PINA	Macular dystrophy vitelliform	PRPH2, PRPH					
PINA	Maple syrup urine disease type	BCKDHA, BCKDHB					
PINAmin2	Maple syrup urine disease type	BCKDHA, BCKDHB					
PINA	Meckel syndrome	TMEM67, MKS1					
PINA	Meier-Gorlin syndrome	CDC6, CDT1, ORC4, ORC1, ORC6					
PINAmin2	Meier-Gorlin syndrome	CDC6, ORC1, ORC4, CDT1, ORC6					
PINA	Mental retardation X-linked	GDI1, FTSJ1					
PINA	Mental retardation autosomal dominant	SMARCA4, ARID1A, CTNNB1, GRIN1, GRIN2B, ARID1B, SMARCB1, CDH15, SYNGAP1, CDH3, CACNG2					
PINAmin2	Mental retardation autosomal dominant	SMARCA4, ARID1A, SMARCB1, ARID1B					
PINAmin2	Mental retardation autosomal dominant	CTNNB1, CDH3					
PINAmin2	Mental retardation autosomal dominant	GRIN2B, GRIN1					

Network	Generalised disease term	Causal genes connected in network				
PINA	Methemoglobinemia type	CYB5A, CYB5R3				
PINA	Microcephaly primary autosomal recessive	CEP135, CENPJ				
PINA	Mismatch repair cancer syndrome	MLH1, MSH2, PMS2, MSH6				
PINAmin2	Mismatch repair cancer syndrome	MLH1, MSH2, MSH6, PMS2				
PINA	Mitochondrial complex I deficiency	NDUFS3, NDUFS2				
PINAmin2	Mitochondrial complex I deficiency	NDUFS3, NDUFS2				
PINA	Muir-Torre syndrome	MLH1, MSH2				
PINAmin2	Muir-Torre syndrome	MLH1, MSH2				
PINA	Multiple pterygium syndrome type	CHRND, CHRNA1, CHRNG				
PINAmin2	Multiple pterygium syndrome type	CHRNA1, CHRND				
		DYSF, TCAP, DNAJB6, CAPN3,				
PINA	Muscular dystrophy limb-girdle type	TTN, CAV3, SGCG, SGCA, SGCB, SGCD				
PINAmin2	Muscular dystrophy limb-girdle type	TCAP, CAPN3, TTN				
PINAmin2	Muscular dystrophy limb-girdle type	SGCG, SGCB, SGCA, SGCD				
PINA	Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies) type	POMT2, POMT1				
PINA	Muscular dystrophy-dystroglycanopathy (congenital with mental retardation) type	POMT2, POMT1				
PINA	Muscular dystrophy-dystroglycanopathy (limb- girdle) type	POMT2, POMT1				
PINA	Myasthenic syndrome congenital associated with acetylcholine receptor deficiency	CHRNB1, MUSK, RAPSN				
PINA	Myasthenic syndrome fast-channel congenital	CHRND, CHRNA1, CHRNE				
PINAmin2	Myasthenic syndrome fast-channel congenital	CHRNA1, CHRND				
PINA	Myasthenic syndrome slow-channel congenital	CHRND, CHRNA1, CHRNE				
PINAmin2	Myasthenic syndrome slow-channel congenital	CHRNA1, CHRND				
PINA	Mycobacterial infection atypical familial disseminated	STAT1, IFNGR1				
PINAmin2	Mycobacterial infection atypical familial disseminated	STAT1, IFNGR1				
PINA	Myopathy congenital with fiber-type	АСТА1, ТРМЗ				
PINA	Nasu-Hakola disease	TYROBP, TREM2				
PINA	Nephrolithiasis/osteoporosis hypophosphatemic	SLC9A3R1, SLC34A1				
PINA	Nephrotic syndrome type	NPHS1, NPHS2				
PINA	Neuropathy distal hereditary motor type	HSPB1, HSPB8				
PINAmin2	Neuropathy distal hereditary motor type	HSPB1, HSPB8				
PINA	Neuropathy hereditary sensory and autonomic type	SPTLC1, SPTLC2				
PINA	Noonan syndrome	SOS1, PTPN11				
PINA	Noonan syndrome	NRAS, KRAS, RAF1, BRAF				
PINAmin2	Noonan syndrome	SOS1, PTPN11				
PINAmin2	Noonan syndrome	RAF1, BRAF, KRAS, NRAS				
PINA	Omenn syndrome	RAG1, RAG2				
PINA	Orofacial cleft	SUMO1, MSX1, TP63				
PINA	Osteogenesis imperfecta type	COL1A1, BMP1, COL1A2				
PINAmin2	Osteogenesis imperfecta type	COL1A1, COL1A2				
PINA	Osteopetrosis autosomal recessive	TNFSF11, TNFRSF11A				

Network	Generalised disease term	Causal genes connected in
DINA	Ostophatrosis autosomal recessivo	
	Osteoperiosis autosofilar recessive	
PINA	Ovarian cancer somatic	ERBBZ, CINNBI
PINA	Ovarioleukodystropny	EIF2B2, EIF2B5, EIF2B4
PINA	Pachyonychia congenita type	KR117, KR16A
PINA	Pancreatic cancer	TP53, BRCA2
PINAmin2	Pancreatic cancer	TP53, BRCA2
PINA	Paragangliomas	SDHA, SDHB
PINAmin2	Paragangliomas	SDHB, SDHA
PINA	Parkinson disease	HTRA2, EIF4G1
PINA	Parkinson disease	SNCA, LRRK2
PINA	Persistent Mullerian duct syndrome type	AMH, AMHR2
PINA	Pick disease	MAPT, PSEN1
PINA	Pituitary hormone deficiency combined	PROP1, HESX1
PINA	Pontocerebellar hypoplasia type	TSEN2, TSEN54, TSEN34
PINA	Porencephaly	COL4A1, COL4A2
PINAmin2	Porencephaly	COL4A1, COL4A2
PINA	Propionicacidemia	PCCB, PCCA
PINA	Pseudohypoaldosteronism type	SCNN1B, SCNN1A, SCNN1G
PINA	Renal tubular dysgenesis	AGT, AGTR1
PINA	Retinitis pigmentosa	ABCA4, CNGB1, PRPH2, PRPH
PINA	Retinitis pigmentosa digenic	PRPH2, PRPH, ROM1
PINA	Retinitis punctata albescens	PRPH2, PRPH
PINA	Roussy-Levy syndrome	PMP22. MPZ
	Severe combined immunodeficiency B cell-	
PINA	negative	RAG1, RAG2
DINIA	Severe combined immunodeficiency T cell-	
	negative B-cell/natural killer-cell positive	
DINIAmin?	Severe combined immunodeficiency T cell-	
FINAIIIIIZ	negative B-cell/natural killer-cell positive	
PINA	Sitosterolemia	ABCG8, ABCG5
PINAmin2	Sitosterolemia	ABCG8, ABCG5
PINA	Spastic paraplegia autosomal recessive	AP4E1, AP4M1, AP4S1, AP4B1
PINAmin2	Spastic paraplegia autosomal recessive	AP4E1, AP4B1
PINA	Spherocytosis type	SPTA1, SPTB
PINA	Spherocytosis type	SLC4A1, ANK1
PINAmin2	Spherocytosis type	SPTA1, SPTB
PINA	Spinocerebellar ataxia	ATXN1, ATXN2
PINA	Stickler syndrome type	COL2A1, COL9A2
PINA	Surfactant metabolism dysfunction pulmonary	CSF2RB, CSF2RA
PINAmin2	Surfactant metabolism dysfunction pulmonary	CSF2RA, CSF2RB
PINA	Telangiectasia hereditary hemorrhagic type	ENG, ACVRL1
PINA	Thrombocythemia	JAK2, MPL, THPO
PINAmin2	Thrombocythemia	THPO. MPL
PINA	Thrombophilia dysfibrinogenemic	FGB. FGG
PINAmin2	Thrombophilia dysfibringenemic	FGB. FGG
PINA	Thyroid carcinoma papillary	TRIM24. TRIM33
PINA		
	Treacher Collins syndrome	POLR1C, POLR1D

Network	Generalised disease term	Causal genes connected in network
PINA	Trichothiodystrophy	ERCC2, ERCC3
PINAmin2	Trichothiodystrophy	ERCC3, ERCC2
PINA	UV-sensitive syndrome	ERCC6, ERCC8
PINAmin2	UV-sensitive syndrome	ERCC8, ERCC6
	Lisher syndrome type	MYO7A, CDH23, DFNB31,
FINA	Usher syndrome type	USH1C, USH1G
PINAmin2	Usher syndrome type	CDH23, USH1C
PINA	Ventricular septal defect	GATA4, NKX2-5
PINAmin2	Ventricular septal defect	GATA4, NKX2-5
PINA	Waardenburg syndrome type	EDNRB, EDN3
PINA	Waardenburg syndrome type	SOX10, PAX3, MITF
PINAmin2	Waardenburg syndrome type	PAX3, SOX10
PINA	Warburg micro syndrome	RAB3GAP2, RAB3GAP1
	Verederme nigmentesum group	ERCC2, ERCC3, XPA, XPC,
PINA	Xerodernia pigmentosum group	ERCC5, ERCC4
PINAmin2	Xeroderma pigmentosum group	ERCC3, ERCC2, ERCC5

List of all disease subnetworks identified in the PINA and PINAmin2 networks. Note that generalised disease terms have had disease "type" or "group" designations removed.

Table S2 – Performance of intersection filtering method using various parameters

(a) Performance based on disease subnetworks from PINAmin2

				Autos	somal Dom	inant Mod	е					
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per												
exome with variant(s)	759.9	114.0	161.8	328.9	40.1	52.6	844.3	137.4	212.7	340.9	49.6	63.3
after filtering												
Disease gene ranked #1	0	309	177	0	20	4	0	293	188	0	21	4
Disease gene ranked	0	12	16	0	0	0	0	12	10	0	0	0
#1-2	0	42	10	0	0	0	U	42	10	0	0	0
Disease gene ranked	0	1	1	0	0	0	0	3	1	0	0	0
#1-3	0	4	1	0	0	0	U	5	1	0	0	0
Average # disease genes	0 002	0 757	0.776	0 040	0 174	0.055	0.002	0 762	0.657	0 040	0 207	0.061
ranked in top ten	0.002	0.757	0.770	0.040	0.174	0.055	0.002	0.702	0.057	0.040	0.207	0.001
				Autos	somal Rece	ssive Mod	e					
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per												
exome with variant(s)	485.0	19.7	31.3	218.2	8.4	15.1	493.3	23.8	35.9	218.9	8.8	15.6
after filtering												
Disease gene ranked #1	0	387	181	0	8	2	0	500	255	0	8	2
Disease gene ranked	0	68	12	0	0	0	0	124	26	0	0	0
#1-2	•	00	12	0	Ŭ	Ŭ	Ŭ	12-1	20	0	Ŭ	Ŭ
Disease gene ranked	0	9	3	0	0	0	0	10	3	0	0	0
#1-3					Ű	Ŭ	Ŭ	10			Ű	
Average # disease genes	0 000	1 198	0 733	0 000	0 136	0.034	0 000	1.491	0 969	0 000	0 136	0.041
ranked in top ten	0.000	1.150	01/00	0.000	0.150	0.051	0.000		0.505	0.000	0.150	0.011
					Neutral	lode						
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per												
exome with variant(s)	1107.1	113.7	161.0	522.3	40.5	53.0	1190.8	136.6	211.5	534.5	50.1	63.6
after filtering												
Disease gene ranked #1	0	339	211	0	25	5	0	342	221	0	29	6

Dand et al., Human Mutation

Disease gene ranked #1-2	0	49	21	0	0	0	0	54	29	0	0	0
Disease gene ranked #1-3	0	2	2	0	0	0	0	5	1	0	0	0
Average # disease genes ranked in top ten	0.000	0.830	0.860	0.000	0.191	0.069	0.000	0.806	0.744	0.000	0.231	0.071

(b) Performance based on disease subnetworks from PINA

				Autos	somal Dom	inant Mod	е					
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per exome with variant(s) after filtering	759.9	114.0	161.8	328.9	40.1	52.6	844.3	137.4	212.7	340.9	49.6	63.3
Disease gene ranked #1	0	284	163	0	20	5	0	299	199	0	25	5
Disease gene ranked #1-2	0	36	13	0	0	0	0	31	13	0	0	0
Disease gene ranked #1-3	0	3	0	0	0	0	0	1	0	0	0	0
Average # disease genes ranked in top ten	0.002	0.727	0.744	0.021	0.193	0.053	0.002	0.756	0.647	0.021	0.234	0.058
				Autos	somal Rece	ssive Mod	e					
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per exome with variant(s) after filtering	485.0	19.7	31.3	218.2	8.4	15.1	493.3	23.8	35.9	218.9	8.8	15.6
Disease gene ranked #1	0	367	161	0	7	2	0	496	246	0	8	3
Disease gene ranked #1-2	0	82	16	0	0	0	0	138	27	0	0	0
Disease gene ranked #1-3	0	4	0	0	0	0	0	11	0	0	0	0
Average # disease genes ranked in top ten	0.000	1.227	0.739	0.000	0.153	0.047	0.000	1.466	0.960	0.000	0.181	0.053
					Neutral	1ode						
Variant effect filter	Novel	Novel	Novel	Novel	Novel	Novel	Rare	Rare	Rare	Rare	Rare	Rare
Frequency filter	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.	Altering	Altering	Altering	Trunc.	Trunc.	Trunc.

Dand et al., Human Mutation 19												
Control exomes filter	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls	None	5 ctrls	10 ctrls
Average # genes per exome with variant(s) after filtering	1107.1	113.7	161.0	522.3	40.5	53.0	1190.8	136.6	211.6	534.5	50.1	63.7
Disease gene ranked #1	0	308	192	0	24	7	0	329	239	0	29	7
Disease gene ranked #1-2	0	51	18	0	0	0	0	37	22	0	0	0
Disease gene ranked #1-3	0	5	0	0	0	0	0	1	0	0	0	0
Average # disease genes ranked in top ten	0.000	0.803	0.847	0.000	0.216	0.074	0.000	0.816	0.747	0.000	0.260	0.075

Results are based on 1,000 tests. "Disease gene ranked x" = number of 1,000 simulations in which a spiked disease gene ranked in all of the top x positions.

Table S3 – Performance of BioGranat-IG method using various parameters

(a) Performance base	d on disease subnetwork	s from PINAmin2 (high	-coverage disease	subnetworks)
----------------------	-------------------------	-----------------------	-------------------	--------------

Autosomal Dominant Mode										
Search algorithm	Triplet search	Triplet search	Min/multi distance	Min/multi distance						
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50						
Average # disease genes returned	N/A	1.445	0.970	0.816						
Average # disease genes returned in top ten	N/A	1.385	0.387	0.444						
# scenarios in which all three disease genes returned in top ten	N/A	260	25	70						
	Autosomal Re	ecessive Mode								
Search algorithm	Triplet search	Triplet search	Min/multi distance	Min/multi distance						
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50						
Average # disease genes returned	N/A	2.413	1.976	2.134						
Average # disease genes returned in top ten	N/A	2.406	0.006	1.721						
# scenarios in which all three disease genes returned in top ten	N/A	597	2	438						
	Neutra	l Mode								
Search algorithm	Triplet search	Triplet search	Min/multi distance	Min/multi distance						
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50						
Average # disease genes returned	N/A	1.471	1.020	0.874						
Average # disease genes returned in top ten	N/A	1.409	0.400	0.475						
# scenarios in which all three disease genes returned in top ten	N/A	263	32	74						

(b) Performance based on disease subnetworks from PINA (low-coverage disease subnetworks)

Autosomal Dominant Mode											
Search algorithm	Triplet search Triplet search dista		Min/multi distance	Min/multi distance							
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50							
Average # disease genes returned	N/A	1.049	0.711	0.557							
Average # disease genes returned in top ten	N/A	0.994	0.300	0.309							
# scenarios in which all three	N/A	131	10	37							

disease genes returned in top ten										
Autosomal Recessive Mode										
Search algorithm	Triplet search Triplet search		Min/multi distance	Min/multi distance						
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50						
Average # disease genes returned	N/A	1.701	1.517	1.448						
Average # disease genes returned in top ten	N/A	1.691	0.013	1.178						
# scenarios in which all three disease genes returned in top ten	N/A	260	4	267						
	Neutra	l Mode								
Search algorithm	Triplet search	Triplet search	Min/multi distance	Min/multi distance						
Network	PINAmin2	PINAmin2_d50	PINAmin2	PINAmin2_d50						
Average # disease genes returned	N/A	1.083	0.767	0.594						
Average # disease genes returned in top ten	N/A	1.045	0.336	0.334						
# scenarios in which all three disease genes returned in top ten	N/A	131	16	43						

Results are based on 1,000 tests. N/A indicates results could not be obtained for triplet search algorithm in the full PINAmin2 network.

	Average # disease genes ranked in top ten				Average # disease genes ranked in top ten				Average # disease genes ranked in top ten			
	Auto	osomal Do	ominant N	/lode	Auto	osomal Re	ecessive N	1ode	Neutral Mode			
	Und	captured h	neterogen	eity	Und	captured h	neterogen	eity	Und	Uncaptured heterogeneity		
	20%	40%	60%	80%	20%	40%	60%	80%	20%	40%	60%	80%
Balanced captured Heterogen	eity				1				1			
2-gene disease subnetworks:												
HetRank	1.362	1.118	0.772	0.276	1.873	1.756	1.514	0.790	1.398	1.159	0.801	0.277
HetRank (pre-network)	1.299	0.986	0.652	0.208	1.817	1.685	1.355	0.620	1.323	1.029	0.677	0.226
Intersection filtering	1.236	1.074	0.707	0.176	1.810	1.657	1.236	0.443	1.235	1.096	0.750	0.193
BioGranat-IG	0.887	0.815	0.622	0.190	1.270	1.232	1.072	0.534	0.884	0.825	0.633	0.212
3-gene disease subnetworks:												
HetRank	1.707	1.288	0.740	0.220	2.659	2.416	1.922	0.874	1.777	1.353	0.785	0.238
HetRank (pre-network)	1.203	0.825	0.453	0.141	2.389	2.004	1.399	0.527	1.260	0.873	0.493	0.146
Intersection filtering	1.400	1.011	0.500	0.110	2.311	1.814	1.096	0.313	1.468	1.068	0.552	0.128
BioGranat-IG	1.368	1.158	0.798	0.187	1.925	1.800	1.475	0.613	1.376	1.211	0.840	0.232
4-gene disease subnetworks:												
HetRank	1.907	1.322	0.708	0.198	3.351	3.000	2.277	0.895	1.971	1.395	0.750	0.209
HetRank (pre-network)	1.067	0.701	0.375	0.102	2.667	2.034	1.256	0.418	1.130	0.749	0.411	0.114
Intersection filtering	1.326	0.826	0.352	0.066	2.420	1.692	0.896	0.206	1.424	0.902	0.391	0.068
BioGranat-IG	1.678	1.386	0.831	0.187	2.336	2.159	1.696	0.592	1.688	1.436	0.898	0.213
Unbalanced captured heterog	eneity											
2-gene disease subnetworks:												
HetRank	1.282	1.070	0.727	0.285	1.720	1.619	1.421	0.789	1.301	1.111	0.758	0.296
HetRank (pre-network)	1.108	0.890	0.629	0.238	1.631	1.459	1.181	0.639	1.137	0.925	0.652	0.258
Intersection filtering	0.988	0.849	0.633	0.249	1.538	1.354	1.072	0.520	1.002	0.861	0.663	0.280
BioGranat-IG	0.810	0.754	0.611	0.211	1.213	1.170	1.038	0.534	0.810	0.754	0.623	0.235
3-gene disease subnetworks:												
HetRank	1.643	1.252	0.747	0.229	2.574	2.357	1.883	0.867	1.694	1.310	0.786	0.243
HetRank (pre-network)	1.120	0.814	0.472	0.162	2.235	1.886	1.342	0.553	1.164	0.858	0.512	0.174
Intersection filtering	1.230	0.906	0.494	0.123	2.117	1.693	1.091	0.349	1.267	0.961	0.533	0.139

Table S4 – Ability of all methods to recover disease subnetworks under varying levels of genetic heterogeneity

	Average # disease genes			Av	Average # disease genes ranked in ton ten				Average # disease genes ranked in top ten			
	Autosomal Dominant Mode			Auto	Autosomal Recessive Mode			Neutral Mode				
	Uncaptured heterogeneity			Und	Uncaptured heterogeneity			Uncaptured heterogeneity				
	20%	40%	60%	80%	20%	40%	60%	80%	20%	40%	60%	80%
BioGranat-IG	1.277	1.117	0.741	0.187	1.866	1.761	1.467	0.644	1.302	1.130	0.794	0.217
4-gene disease subnetworks:												
HetRank	1.754	1.264	0.698	0.203	3.152	2.835	2.172	0.873	1.833	1.341	0.763	0.221
HetRank (pre-network)	0.983	0.690	0.395	0.122	2.278	1.803	1.202	0.462	1.037	0.742	0.419	0.134
Intersection filtering	1.015	0.708	0.390	0.088	1.982	1.487	0.923	0.293	1.073	0.743	0.424	0.101
BioGranat-IG	1.430	1.153	0.717	0.162	2.199	2.035	1.556	0.602	1.462	1.207	0.737	0.180

All results are based on 1,000 tests.

Table S5 – Improved ability to recover disease subnetworks under varying levels of genetic heterogeneity using network-informed HetRank approach relative to simple intersection filtering

	Avg. increase: # disease genes ranked in top ten				Increa diseas	ase: # tes e genes	sts in wh rank in t	ich all op ten
	Unca	aptured h	neteroge	neity	Unca	ptured h	neteroge	neity
	20%	40%	20%	40%	20%	40%	20%	40%
Autosomal Dominant Mode								
Balanced captured heterogeneity	<u>':</u>							
2-gene disease subnetworks	0.126	0.044	0.065	0.100	108	77	104	55
3-gene disease subnetworks	0.307	0.277	0.240	0.110	187	161	74	10
4-gene disease subnetworks	0.581	0.496	0.356	0.132	100	52	18	2
Unbalanced captured heterogene	eity:							
2-gene disease subnetworks	0.294	0.221	0.094	0.036	186	186	117	41
3-gene disease subnetworks	0.413	0.346	0.253	0.106	187	141	67	10
4-gene disease subnetworks	0.739	0.556	0.308	0.115	83	37	16	2
Autosomal Recessive Mode								
Balanced captured heterogeneity	<u>':</u>							
2-gene disease subnetworks	0.063	0.099	0.278	0.347	61	95	238	187
3-gene disease subnetworks	0.348	0.602	0.826	0.561	286	405	324	88
4-gene disease subnetworks	0.931	1.308	1.381	0.689	443	353	185	32
Unbalanced captured heterogene	eity:							
2-gene disease subnetworks	0.182	0.265	0.349	0.269	172	261	321	162
3-gene disease subnetworks	0.457	0.664	0.792	0.518	341	403	300	86
4-gene disease subnetworks	1.170	1.348	1.249	0.580	381	294	150	24
Neutral Mode								
Balanced captured heterogeneity	:							
2-gene disease subnetworks	0.163	0.063	0.051	0.084	131	81	97	50
3-gene disease subnetworks	0.309	0.285	0.233	0.110	202	169	82	12
4-gene disease subnetworks	0.547	0.493	0.359	0.141	108	59	22	2
Unbalanced captured heterogene	eity:							
2-gene disease subnetworks	0.299	0.250	0.095	0.016	187	194	110	42
3-gene disease subnetworks	0.427	0.349	0.253	0.104	198	157	73	11
4-gene disease subnetworks	0.760	0.598	0.339	0.120	95	43	16	1

All results are based on 1,000 tests.

Table S6 – Summary of top prioritised genes in 13 Adams-Oliver syndrome exomes

Position	Gene	Evidence for disease involvement
1	XRCC6	Novel truncating or splicing variants in direct neighbours <i>NOTCH1</i> (2 exomes), <i>XRCC5</i> , <i>ILVBL</i> and <i>HERPUD1</i> (1 exome each)
2	GSK3B	Novel truncating or splicing variants in direct neighbours FAM83D, GNB2, KIF5B, NOTCH1 and UBXN6 (1 exome each)
3	МАРК6	Novel truncating or splicing variant in 1 exome (and no control exomes); novel altering variant in 1 exome (and 1 control exome); novel truncating or splicing variants in direct neighbours <i>NDUFS6</i> and <i>NEURL4</i> (1 exome each)
4	PLK1	Novel truncating or splicing variants in direct neighbours <i>CTBP1</i> , <i>MAPK6</i> and <i>NINL</i> (1 exome each); novel altering variants in direct neighbours <i>ACTL6B</i> and <i>CHEK2</i> (1 exome each)
5	РНҮН	Novel truncating or splicing variants in direct neighbours <i>NOTCH1</i> (2 exomes), <i>CRIM1</i> and <i>GNB2</i> (1 exome each); novel synonymous variant in direct neighbour <i>MOAP1</i> (1 exome)
6	NINL	Novel truncating or splicing variants in 2 exomes (and no control exomes); novel truncating or splicing variant in direct neighbour <i>EZH2</i> (1 exome)
7	VPS54	Novel truncating or splicing variant in 1 exome (and no control exomes); rare truncating or splicing variant in 1 exome (and no control exomes); novel truncating or splicing variant in indirect neighbour <i>UBE22</i> (1 exome)
8	TFAP4	Novel truncating or splicing variants in direct neighbours <i>CTBP1</i> , <i>UBP1</i> and <i>USF2</i> (1 exome each); novel altering variant in direct neighbours <i>HMGB3</i> and <i>THYN1</i> (1 exome each)
9	TPSB2	Novel truncating or splicing variants in 2 exomes (and no control exomes)
10	МСМ10	Novel truncating or splicing variants in direct neighbours NINL (2 exomes) and CUL4A (1 exome); rare truncating or splicing variant in direct neighbour CDKN1A (1 exome)
12	NOTCH1	Novel truncating or splicing variants in 2 exomes (and no control exomes)
=187	DLL4	Novel missense variant in 1 exome (and 1 control exome); novel truncating or splicing variants in direct neighbour <i>NOTCH1</i> (2 exomes)

(a) Top prioritised genes using PINA network

(b) Top prioritised genes using PINAmin2 network

Position	Gene	Evidence for disease involvement
1	TPSB2	Novel truncating or splicing variants in 2 exomes (and no control exomes)
2	NINL	Novel truncating or splicing variants in 2 exomes (and no control exomes)
3	NOTCH1	Novel truncating or splicing variants in 2 exomes (and no control exomes)
4	DCUN1D5	Novel truncating or splicing variants in 2 exomes (and no control exomes)
5	GNB2	Novel truncating or splicing variant in 1 exome (and no control exomes); rare truncating or splicing variants in 2 exomes (one of which has its score bettered in 1 control exome)
6	PPEF2	Novel truncating or splicing variant in 1 exome (and no control exomes); rare truncating or splicing variant in 1 exome (and no control exomes)
7	EP300	Novel truncating or splicing variants in direct neighbours CTBP1, ETS2 and NOTCH1 (1 exome each); novel synonymous variant in direct neighbour STAT1 (1 exome)
8	LRIT1	Novel truncating or splicing variant in 1 exome (and no control exomes); rare truncating or splicing variant in 1 exome (and no control exomes)

Position	Gene	Evidence for disease involvement
0	V/DS5/	Novel truncating or splicing variant in 1 exome (and no control exomes); rare
5	VF334	truncating or splicing variant in 1 exome (and no control exomes)
10 005		Novel truncating or splicing variant in 1 exome (and no control exomes); novel
10	RPE	synonymous variant in 1 exome (and no control exomes)
1047	DLL4	Novel missense variant in 1 exome (and 1 control exome)

Table 3	S7 –	Ability	to	prioritise	Adams-Oliver	syndrome	genes	with	additional	disease-causi	ng
variant	s										

Variants added	NOTCH1 rank	DLL4 rank
No added variants	12	=187
DLL4 variant in 1 additional exome	12	35
DLL4 variant in 2 additional exomes	13	7
NOTCH1 variant in 1 additional exome	1	47
NOTCH1 variant in 2 additional exomes	1	24
NOTCH1 variant in 3 additional exomes	1	20
NOTCH1 variant in 4 additional exomes	1	20