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SUMMARY
MiR-34a was demonstrated to be upregulated during the osteogenic differentiation of human adipose-derived stem cells (hASCs). Over-

expression of miR-34a significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of osteogenesis-

associated genes in hASCs in vitro. Enhanced heterotopic bone formation in vivo was also observed upon overexpression of miR-34a in

hASCs. Mechanistic investigations revealed that miR-34a inhibited the expression of retinoblastoma binding protein 2 (RBP2) and

reduced the luciferase activity of reporter gene construct comprising putative miR-34a binding sites in the 30 UTR of RBP2. Moreover,

miR-34a downregulated the expression of NOTCH1 and CYCLIN D1 and upregulated the expression of RUNX2 by targeting RBP2,

NOTCH1, and CYCLIN D1. Taken together, our results suggested that miR-34a promotes the osteogenic differentiation of hASCs via

the RBP2/NOTCH1/CYCLIND1 coregulatory network, indicating thatmiR-34a-targeted therapy could be a valuable approach to promote

bone regeneration.
INTRODUCTION

Tissue engineering technology has become one of themost

promising therapeutic approaches for bone regeneration in

bone defects (Zou et al., 2011; Ye et al., 2011; Xiao et al.,

2011). As a source of mesenchymal stem cells (MSCs),

human adipose-derived stem cells (hASCs) are receiving

more attention in bone tissue engineering (Bosnakovski

et al., 2005; Zuk et al., 2002; Wang et al., 2011). However,

the paucity of available information about the molecular

pathways that govern the osteogenic differentiation of

hASCs has hampered further development of hASC-based

cell therapies.

MicroRNAs (miRNAs) are a class of endogenously ex-

pressed, small non-coding RNA molecules that negatively

regulate gene expression at the post-transcriptional level

by base pairing with the 30 UTR of their target mRNAs

(Thomas et al., 2010). They play vital roles in various bio-

logical processes, including the cell fate of embryonic

stem cells, cell proliferation, apoptosis, differentiation,

morphogenesis, carcinogenesis, and angiogenesis (Am-

bros, 2004; Hua et al., 2006; Xu et al., 2004). A single

miRNA is often involved in several gene regulatory net-

works (Bartel, 2004; Krek et al., 2005), and overexpression

or inhibition of miRNAs can regulate the endogenous

expression of multiple growth factors simultaneously

(Yau et al., 2012). Therefore, we hypothesized that the

delivery of a desired miRNA may result in optimization
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of bone regeneration. Recent studies have reported that

several miRNAs, such as miR-22, -100, -106a, -146a, and

-148b, are involved in the osteogenic differentiation of

stem cells (Cho et al., 2010; Huang et al., 2012; Li

et al., 2013a; Liao et al., 2014; Qureshi et al., 2013;

Zeng et al., 2012). However, further regulatory mecha-

nisms of miRNAs in the osteogenesis of MSCs still await

investigation.

Our previous study showed that the inhibition of

retinoblastoma binding protein 2 (RBP2) significantly

improved the in vitro and in vivo osteogenic capacity of

hASCs (Ge et al., 2011). Based on these data, we aimed

to screen and select miRNAs that positively regulate the

osteogenic differentiation of hASCs by targeting RBP2.

Microarray analyses revealed that after osteogenic induc-

tion, 21 miRNAs were upregulated in hASCs (Zhang

et al., 2012) and 51 miRNAs were upregulated in bone

marrow-derived MSCs (BMSCs) (Gao et al., 2011), suggest-

ing that 72 upregulated miRNAs had potential effects

on the osteogenic differentiation of MSCs. Moreover,

RNA22 prediction software indicated that 122 miRNAs

might bind to the 30 UTR of RBP2 mRNA. These two cat-

egories of miRNAs were combined and an intersection of

five miRNAs was produced: miR-663, -34a, -26a, -17, and

-155. The RNA22 prediction software predicted their cor-

responding folding energy (DG) was �14.00 kcal/mol,

�16.8 kcal/mol, �12.50 kcal/mol, �13.20 kcal/mol,

and �13.30 kcal/mol. According to the results predicted
or(s).
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Figure 1. Expression of Endogenous miR-34a during hASCs’
Osteogenic Induction, and Determination of Lentiviral Trans-
duction Efficiency and Effect
(A) Quantitative real-time PCR analysis of miR-34a expression in
hASCs cultured in PM and OM.
(B) Microscopic images of GFP-positive hASCs under ordinary and
fluorescent light. Scale bar, 100 mm.
by RNA22 prediction software, miR-34a possessed the

maximum likelihood for binding to the 30 UTR of RBP2

mRNA (DG = �16.8 kcal/mol); therefore, we selected

miR-34a for further investigation (Figure S1).

NOTCH1 and CYCLIN D1 are direct target genes of miR-

34a in tumor cells (Hermeking, 2010; Pang et al., 2010),

and have effects on the proliferation and osteogenic differ-

entiation of MSCs by regulating runt-related transcrip-

tion factor 2 (RUNX2) (Engin et al., 2008), a key osteogen-

esis-associated transcription factor. Thus, NOTCH1 and

CYCLIN D1 pathways were integrated into our hypotheti-

cal regulatory network of miR-34a.

In this study, we investigated the functional roles

of miR-34a in the osteogenic differentiation of hASCs

both in vitro and in vivo, and explored whether

miR-34a regulated this biological process through the

RBP2/NOTCH1/CYCLIN D1 coregulatory network. Our

study provided a better understanding of the role and

mechanism of miR-34a in hASCs’ osteogenic differen-

tiation and suggested that miR-34a could be a thera-

peutic target in future bone regeneration therapy,

which will lead to advances in clinical bone tissue

engineering.
RESULTS

Expression Levels of miR-34a during the Osteogenic

Differentiation of hASCs

After culturing hASCs in osteogenic medium (OM) for

12 hr, miR-34a expression increased significantly, and

further increased with prolonged osteogenic induction.

However, no significant change was detected in hASCs

cultured in proliferation medium (PM) when compared

with the 0-hr time point (Figure 1A). These data sug-

gested that miR-34a might play a role in the regulation

of hASCs’ osteogenic differentiation.

Promotion Effects of miR-34a on the Osteogenic

Differentiation of hASCs In Vitro

The transduction efficiency of lentivirus was estimated

to be 80%–90%, as evaluated by the percentage of GFP-

positive cells under an inverted fluorescence microscope

72 hr after transduction (Figure 1B). Quantitative real-

time PCR analysis of miR-34a expression in transduced

hASCs cultured in PM at 0, 3, 7, and 14 days showed
(C) Quantitative real-time PCR analysis of miR-34a in transduced
hASCs cultured in PM.
PM, proliferation medium; OM, osteogenic medium; NC, lentivirus
negative control; anti-miR-34a, lentivirus anti-sense miR-34a;
miR-34a, lentivirus miR-34a mimics. Data represent the means ±
SD of three independent experiments. *p < 0.05 versus the NC
group.
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a >10-fold increase in the miR-34a overexpression

group and >75% reduction in the miR-34a knock-

down group when compared with the negative control

(NC) group (Figure 1C). Alkaline phosphatase stain-

ing and quantification showed that overexpression of

miR-34a enhanced the osteogenic differentiation of

hASCs cultured in PM or OM at 7 days, while miR-34a

knockdown inhibited alkaline phosphatase activity of

hASCs (Figures 2A and 2B). The extracellular mineraliza-

tion of hASCs, as tested by Alizarin red S (ARS) and

von Kossa staining in PM or OM at 14 days, displayed

similar results to the alkaline phosphatase tests (Figures

2C–2E). Moreover, overexpression of miR-34a signifi-

cantly increased the expression of osteogenesis-associ-

ated genes, including RUNX2, osterix (OSX), alkaline

phosphatase (ALP), and osteocalcin (OC), while miR-

34a knockdown led to the opposite tendency (Figures

2F and S2).

Promotion Effects of miR-34a on the Osteogenic

Differentiation of hASCs In Vivo

Given the existence of other biological factors and the un-

controllability of the microenvironment, sometimes the

in vivo results may be different and even opposite to

those in vitro. Therefore, the investigation of miR-34a’s

in vivo effect was necessary. The microstructure of the

newly formed bone was evaluated by micro-computed to-

mography (CT) imaging. The representative images in the

blank and miR-34a knockdown groups showed less newly

formed bone and more scaffold remnants. In contrast, the

miR-34a overexpression group exhibited the most newly

formed bone with the fewest scaffold remnants when

compared with other groups (Figure 3A). By quantifying

the amount of new bone, the percentages of new bone

volume to tissue volume (BV/TV) in the miR-34a overex-

pression group showed a greater than 2-fold increase,

whereas the blank and miR-34a knockdown groups

showed a decrease when compared with the NC group

(Figure 3B). Similarly, the bone mineral density (BMD)

of the miR-34a overexpression group was the highest

among these four groups, while the blank and miR-

34a knockdown groups were lower than the NC group

(Figure 3C).

Collagen deposition, as assessed by Masson trichrome

staining, demonstrated that the most bone matrix was

found in the miR-34a overexpression group (Figure 3Da).

H&E staining of each group showed that no new bone

was found in the blank, NC, ormiR-34a knockdown group,

but osteoid was formed in the miR-34a overexpression

group (Figures 3Db and S3). Immunohistochemical (IHC)

staining for OC indicated that both the range and intensity

of the stained granules in osteoblasts were generally

increased in the miR-34a overexpression group (Fig-
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ure 3Dc), suggesting that miR-34a induced the expression

of OC.

Direct Targeting of RBP2 by miR-34a

RNA22 prediction software identified RBP2 as a

potential target gene of miR-34a, and RBP2 inhibition

improves the osteogenic capacity of hASCs (Ge

et al., 2011); therefore, we investigated its effect on

RBP2 expression to clarify the molecular mechanism

underlying the osteogenic regulation of hASCs by

miR-34a. As predicted, overexpression of miR-34a re-

sulted in downregulation of RBP2, whereas miR-34a

knockdown increased the expression of RBP2 at both

the mRNA and protein levels (Figures 4A–4C). The puta-

tive binding sites of miR-34a in the 30 UTR of RBP2 was

predicted by RNA22 prediction software (Figure 4D).

Thus, we constructed a luciferase reporter vector (Fig-

ure 4E) to determine whether miR-34a could directly

target these sites. Luciferase activity analysis showed

that miR-34a repressed the luciferase expression of vec-

tors containing the 30 UTR of wild-type RBP2 (RBP2-

WT), but had no effect on the mutant-type RBP2

(RBP2-MT) group compared with the NC group (Fig-

ure 4F). These results indicated that miR-34a negatively

regulated RBP2 by directly binding to the 30 UTR of

its mRNA.

Direct Repression of NOTCH1 and CYCLIN D1 by

miR-34a

NOTCH1 and CYCLIN D1 were previously identified

as direct target genes of miR-34a in tumor cells (Her-

meking, 2010; Pang et al., 2010). Moreover, the

miR-34a potential target sites in NOTCH1 and CYCLIN

D1 transcripts were predicted by RNA22 software (Fig-

ure S4). Our results confirmed that in hASCs, miR-34a

overexpression suppressed the expression of NOTCH1

and CYCLIN D1 at both the mRNA and protein levels,

while miR-34a knockdown resulted in the upregulation

of these two genes (Figures 5A and 5B).

Upregulated Expression of RUNX2 by miR-34a

Previous studies reported that RBP2 could directly down-

regulate P27, leading to the upregulation of CYCLIN

D1 expression (Liang et al., 2013; Teng et al., 2013;

Zeng et al., 2010). Thus, we explored the effect of

miR-34a on P27 expression and demonstrated that

miR-34a increased the expression of P27 at both the

mRNA and protein levels (Figures 5C and 5D). Impor-

tantly, miR-34a overexpression significantly upregulated

the expression of RUNX2, a major osteogenesis-associated

transcription factor, and RUNX2 expression was downre-

gulated in response to miR-34a knockdown (Figures 5C

and 5D).



Figure 2. Promotion of hASCs’ Osteogenic Differentiation by miR-34a In Vitro
(A and B) ALP staining (A) and quantification (B) of transduced hASCs. Scale bar of the left panel in PM or OM group, 500 mm; scale bar of
the right panel in PM or OM group, 100 mm.

(legend continued on next page)
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Coregulation of the RBP2/NOTCH1/CYCLIN D1

Network bymiR-34a in the Osteogenic Differentiation

of hASCs

To further confirm the interactions among RBP2,NOTCH1,

CYCLIN D1, and RUNX2, we transfected hASCs with

anti-RBP2 and anti-NOTCH1 lentivirus and then evalu-

ated the expression of possible downstream target genes

through quantitative real-time PCR and western blotting.

The transduction effects of anti-RBP2 and anti-NOTCH1

lentivirus showed �50% reductions in the expression

of respective genes (Figures 6A–6D). We found that

RBP2 knockdown upregulated the expression of P27 and

RUNX2, and downregulated CYCLIN D1 expression (Fig-

ures 6A and 6B). Similarly, NOTCH1 knockdown resulted

in the downregulation of CYCLIN D1 and upregulation

of RUNX2 (Figures 6C and 6D). Taken together, these

results indicated that miR-34a indirectly increased the

expression of P27 and RUNX2 by directly suppressing

RBP2, NOTCH1, and CYCLIN D1, suggesting that miR-

34a modulated the osteogenic differentiation of hASCs

through the RBP2/NOTCH1/CYCLIN D1 coregulatory

network.
DISCUSSION

The development of miRNA-based therapy approaches

has become one of the most attractive areas of tissue

engineering (Lian et al., 2012). Recently, many studies

reported that miRNAs are important regulators for

the therapy or differentiation of stem cells (Cho et al.,

2010; Huang et al., 2012; Li et al., 2013a; 2013b; Liao

et al., 2014; Qureshi et al., 2013; Zeng et al., 2012;

Deng et al., 2013). In this study, we observed a significant

increase in miR-34a expression during the osteogenic

differentiation of hASCs, which was consistent with

previous studies (Ambros, 2004; Hua et al., 2006). This

upregulation during osteogenic induction indicated that

miR-34a might have an effect on the osteogenic differen-

tiation of hASCs.

A combination of in vitro and in vivo experiments

indicated that miR-34a overexpression promoted the

osteogenic differentiation and ectopic osteogenesis of

hASCs, while miR-34a knockdown inhibited osteogenic

capacity when compared with the NC group. We found

that miR-34a promoted the alkaline phosphatase activ-

ity and mineralization capacity and also increased the
(C and D) ARS staining (C) and quantification (D) of transduced hASC
(E) von Kossa staining of transduced hASCs.
(F) Quantitative real-time PCR analysis of RUNX2, OSX, ALP, and OC e
ALP, alkaline phosphatase; ARS, Alizarin red S; RUNX2, runt-related tra
means ± SD of three independent experiments. *p < 0.05 versus the
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expression of osteogenesis-associated genes including

RUNX2, OSX, ALP, and OC in both PM and OM. This

indicated that miR-34a overexpression promoted osteo-

genic differentiation in vitro. Moreover, heterotopic

bone formation after in vivo implantation of hASCs

and scaffold hybrids was evaluated by micro-CT and his-

tological staining. As stated above, the osteogenic effect

of miR-34a shown in scanning images and quantitative

analysis by BV/TV and BMD were in accordance with

those in vitro, and histological assessment including

Masson, H&E, and IHC staining verified this conclusion

as well.

Although miR-34a was once reported to inhibit pro-

liferation and osteogenic differentiation in BMSCs by

targeting a number of known cell-cycle proteins and

JAGGED1 (Chen et al., 2014), two other studies report

that it enhances osteogenesis by inhibiting osteoclasto-

genesis of osteoclasts from bone marrow (Krzeszinski

et al., 2014) or promoting osteogenic differentiation of

apical papilla stem cells (Sun et al., 2014). In our study,

both the mRNA and protein expression of JAGGED1 did

not show significant difference by overexpressing or

knocking down miR-34a in hASCs (Figure S5). The con-

tradictory results might partly be attributed to the varied

characteristics of the different cell lines and distinct post-

transcriptional regulation of the osteogenic differentia-

tion in tissue-specific MSCs. In addition, Park et al.

(2015) found that overexpression of miR-34a decreased

the cell proliferation and downregulated the expression

of various cell-cycle regulators such as CDKs (-2, -4, -6)

and CYCLINs (-E, -D). These results were consistent

with ours, but found too that the potential of adipogen-

esis and osteogenesis of hASCs was also diminished by

miR-34a overexpression. As we know, a mutually exclu-

sive relationship usually exists between osteoblasto-

genesis and adipogenesis, with factors stimulating one

of these processes while at the same time inhibiting

the other (Huang et al., 2012; Wang et al., 2013).

Thus we need to further investigate the effects of miR-

34a on the osteogenesis and adipogenesis of hASCs.

Moreover, there are some reports concerning the contra-

dictory effects of other miRNAs on osteogenic differenti-

ation. For example, miR-26a can either promote (Wang

et al., 2015a; 2015b) or suppress (Luzi et al., 2008,

2012) the osteogenic differentiation of hASCs. There-

fore, further research is needed to elucidate the osteo-

genic regulation of miRNAs. Taken together, our study
s.

xpression in transduced hASCs.
nscription factor 2; OSX, osterix; OC, osteocalcin. Data represent the
NC group.



Figure 3. Promotion of hASCs’ Osteo-
genic Differentiation by miR-34a In Vivo
(A) Newly formed bone in Bio-Oss collagen
scaffolds are indicated in different colors;
scaffold remnants appear as white irregular
lumps.
(B and C) Quantitative analysis of BV/TV and
BMD. Data represent the means ± SD of
three independent experiments. *p < 0.05
versus the NC group.
(D) Histological assessment of ectopic bone
formation. (a) Masson trichrome staining.
The collagen in the bone matrix was stained
blue-green. (b) H&E staining. New bone
structures are indicated by black arrows. (c)
IHC staining for OC. Dark-brown granules
indicating positive staining are marked by
black arrows. Scale bar, 50 mm in (a) and
20 mm in (b) and (c).
BV/TV, percentage of new bone volume to
tissue volume; BMD, bone mineral density;
IHC, immunohistochemistry; blank, scaffolds
without hASCs; NC/anti-miR-34a/miR-34a,
scaffolds seeded with hASCs transfected by
lentivirus negative control/anti-sense miR-
34a/miR-34a mimics.
indicated that other signal molecules and pathways

might be involved in the regulation of osteogenic differ-

entiation by miR-34a.

Furthermore, we demonstrated that RBP2 was a target

gene of miR-34a in hASCs. MiR-34a repressed the lucif-

erase activity of reporter vectors containing putative

binding sites in the 30 UTR of RBP2, indicating that

miR-34a directly binds to the 30 UTR of RBP2 mRNA. In

addition, RBP2 directly binds to the promoter of P27

(Liang et al., 2013; Teng et al., 2013; Zeng et al., 2010),

which is a member of cyclin-dependent kinase inhibitors

(CDKIs) and plays a critical role in inhibiting the transi-

tion of the cell cycle from the G1 to the S phase by bind-

ing and inhibiting CYCLIN/CDKs, including CYCLIN D1

(Perisanidis et al., 2012; Pestell, 2013; Wang et al.,
2012; Zhang et al., 2014b; Chen et al., 2013). In the

present study, both miR-34a overexpression and RBP2

knockdown caused upregulation of P27 and downregula-

tion of CYCLIN D1, suggesting the suppressed prolifera-

tion of hASCs. Moreover, we previously demonstrated

that RBP2 physically and genetically repressed the tran-

scriptional activity of RUNX2 (Ge et al., 2011). The upre-

gulation of RUNX2 after knockdown of RBP2 confirmed

this conclusion. These results suggested that miR-34a

could upregulate the expression of RUNX2 by directly

binding to the RBP2 mRNA.

Our study also confirmed that miR-34a overexpression

induced the downregulation of NOTCH1 and CYCLIN

D1, which have been identified as target genes of miR-

34a in tumor cells (Wei et al., 2012; Bae et al., 2012; Li
Stem Cell Reports j Vol. 7 j 236–248 j August 9, 2016 241



Figure 4. Validation of RBP2 as a Direct Target Gene of miR-34a
(A–C) Quantitative real-time PCR (A) and western blotting (B and C) analysis of the effects of miR-34a on RBP2 expression.
(D) Predicted binding sites of miR-34a in the 30 UTR of RBP2-WT mRNA (underlined part indicates mutated base sequences in the 30 UTR
of RBP2-MT).
(E) Schematic showing the constructed luciferase reporter system containing the binding sites of miR-34a.
(F) Luciferase activity of cells with miR-34a overexpression in the RBP2-WT or RBP2-MT group.
RBP2, retinoblastoma binding protein 2; RBP2-WT, wild-type RBP2 mRNA; RBP2-MT, mutant-type RBP2 mRNA. Data represent the
means ± SD of three independent experiments. *p < 0.05 versus the NC group.
et al., 2012; Sun et al., 2008; Zhang et al., 2014a). In addi-

tion, CYCLIN D1 is a direct target gene of NOTCH1 (Peri-

sanidis et al., 2012; Cohen et al., 2010). We found that

CYCLIN D1 expression was reduced significantly after

knockdown of NOTCH1. Moreover, gain of NOTCH

inhibits osteoblast maturation by directly repressing

RUNX2, as well as by repressing the anti-proliferative ef-

fects of RUNX2 via CYCLIN D1 upregulation (Engin

et al., 2008). This study showed upregulated expression

of RUNX2 in hASCs with NOTCH1 knockdown. Our cur-

rent findings and those from previous studies suggested

that miR-34a could also upregulate the expression of

RUNX2 by directly depressing NOTCH1 and CYCLIN D1

expression.

RUNX2 is an important osteoblast lineage-determining

transcription factor that induces the expression of bone sia-

loprotein (BSP), OC, OSX, and osteopontin (OPN), which
242 Stem Cell Reports j Vol. 7 j 236–248 j August 9, 2016
are required to finalize terminal osteogenic differentiation

(Komori, 2002, 2003, 2008). The key effect of RUNX2 in

osteogenesis is suppressing osteoblast proliferation and

promoting osteoblast maturation by supporting exit from

the cell cycle (Galindo et al., 2005; Pratap et al., 2003).

Our study proved that overexpression of miR-34a and

knockdown of RBP2 or NOTCH1 eventually induced the

upregulation of RUNX2, which probably accounted for

the positive regulation of hASCs’ osteogenic differentiation

by miR-34a.

Our sorting data displayed the interrelationship between

miR-34a, RBP2, NOTCH1, CYCLIN D1, and RUNX2. The

positive effect of miR-34a on hASCs’ osteogenic differenti-

ation could be attributed to the ultimate downregulation of

CYCLIN D1 and upregulation of RUNX2 via the RBP2/

NOTCH1/CYCLIN D1 coregulatory network, which might

result in the inhibition of proliferation and promotion



Figure 5. miR-34a Repressed NOTCH1 and
CYCLIN D1 Expression and Upregulated
P27 and RUNX2 Expression
(A and B) Quantitative real-time PCR (A)
and western blotting (B) analysis of NOTCH1
and CYCLIN D1 with miR-34a knockdown or
overexpression.
(C and D) Quantitative real-time PCR (C) and
western blotting (D) analysis of P27 and
RUNX2 with miR-34a knockdown or over-
expression.
Data represent the means ± SD of three in-
dependent experiments. *p < 0.05 versus
the NC group.
of osteogenic differentiation in hASCs (Figure 7). These

findings supported miR-34a as a potential target for bone

tissue engineering and provided valuable information on

the management of bone-related diseases via epigenetic

intervention.
EXPERIMENTAL PROCEDURES

Cell Culture and Osteogenic Differentiation
The hASCs and 293T cells were obtained separately from

ScienCell Research Laboratories and the American Type Culture
Stem Cell Reports j Vol. 7 j 236–248 j August 9, 2016 243



Figure 6. Confirmation of the Relationships among RBP2, NOTCH1, P27, CYCLIN D1, and RUNX2
(A and B) Quantitative real-time PCR (A) and western blotting (B) analysis of RBP2, P27, CYCLIN D1, and RUNX2 expression after RBP2
knockdown.
(C and D) Quantitative real-time PCR (C) and western blotting (D) analysis of NOTCH1, CYCLIN D1, and RUNX2 expression after NOTCH1
knockdown.
Data represent the means ± SD of three independent experiments. *p < 0.05 versus the NC group.
Collection. Stem cells from three donors of the third passage

were used for the in vitro and in vivo experiments. All cell-

based experiments were repeated three times using hASCs

from the three donors, respectively. Cells were cultured in

PM containing DMEM supplemented with 10% fetal bovine
244 Stem Cell Reports j Vol. 7 j 236–248 j August 9, 2016
serum and 1% penicillin/streptomycin. Osteogenic differen-

tiation of hASCs was induced after the cells reached 70%–

80% confluence using OM (standard PM supplemented with

100 nM dexamethasone, 0.2 mM ascorbic acid, and 10 mM

b-glycerophosphate).



Figure 7. Schematic Representation of the RBP2/NOTCH1/
CYCLIN D1 Coregulatory Network Involved in the Osteogenic
Differentiation of hASCs by miR-34a
MiR-34a directly targeted the RBP2, NOTCH1, and CYCLIN D1 tran-
scripts, leading to the downregulation of these target genes and
subsequent upregulation of P27 and RUNX2. The final repression of
CYCLIN D1 and upregulation of RUNX2 mediated a switch from
proliferation to osteogenic differentiation in hASCs.
Lentivirus Transduction and Establishment of Stably

Expressing Transductants
Lentivirus containing GFP-labeled plasmid vectors of the negative

control (NC), anti-sense miR-34a (anti-miR-34a), miR-34a mimics

(miR-34a), RBP2 short hairpin RNA (shRNA) (anti-RBP2), and

NOTCH1 shRNA (anti-NOTCH1) were synthesized and packaged

byGenePharma. The hASCswere stably transfectedwith these len-

tiviruses at an MOI of 50 in the presence of 8 mg/ml polybrene

(Sigma). After 24 hr, the lentivirus-containing medium was

removed and replacedwith freshmedium. Transduction efficiency

was evaluated by the percentage of GFP-positive cells observed un-

der an inverted fluorescencemicroscope (Nikon, TE2000-U). Puro-

mycin at 1 mg/ml was used to select infected cells.

Alkaline Phosphatase Staining and Quantification
The hASCs were seeded at a density of 2 3 105 cells per well in 24-

well plates and transfected with the lentiviruses mentioned above.

Cells were cultured in PM or OM for 7 days and then evaluated

for alkaline phosphatase activity. Alkaline phosphatase staining

was performed using an NBT/BCIP staining kit (CoWin Biotech)

with nitroblue tetrazolium (NBT) and 5-bromo-4-chloro-3-indolyl

phosphate (BCIP). For quantification of alkaline phosphatase ac-

tivity, cells were rinsed three times with PBS followed by 1% Triton

X-100, scraped in distilled water, and subjected to three freeze-

thaw cycles. The alkaline phosphatase activity was determined at

405 nm using p-nitrophenyl phosphate as the substrate. The total

protein content was determined using the BCA method with the

Pierce BCA protein assay kit (Thermo Scientific). Aliquots of the
same samples were read at 562 nm and calculated against a series

of BSA standards. Relative alkaline phosphatase activity was

compared with that in the controls and calculated after normaliza-

tion to the total protein content.
Mineralization Assays and Von Kossa Staining
The infected hASCs were cultured in 24-well plates with PM or OM

for 14 days, and matrix mineralization was determined by ARS

(Sigma) and von Kossa staining. ARS staining and quantification

were performed as follows. Plates were washed three times with

PBS and then stained with 0.1% ARS in distilled water (pH 4.2) for

1 hr at room temperature. After staining, the cultures were washed

three times with distilled water. For quantification of matrix

mineralization, ARS-stained cultures were incubated in 100 mM

cetylpyridiniumchloride (Sigma) for1hr tosolubilize andreleasecal-

cium-bound ARS into solution. The absorbance of the released ARS

was measured at 562 nm. Relative ARS intensity was compared

with that in thecontrol treatmentandcalculatedafternormalization

to the total protein content. For von Kossa staining, culture plates

were fixed in 4% paraformaldehyde for 30 min and washed three

timeswithPBS, then1mlof 5% silvernitratewas addedand the cells

were exposed to a 100 W UV lamp for 60 min. After being washed

with distilled water three times, 1ml of 5% sodium thiosulfate solu-

tionwas added for 2min and rinsedwith distilled water. Finally, the

mineralizedextracellularmatrixwasobservedunder themicroscope.
RNA Extraction, Reverse Transcription, and

Quantitative Real-Time PCR
Total cellular RNA from infected hASCs cultured in PM or OM

(both for 3, 7, and 14 days) were isolated using TRIzol reagent (In-

vitrogen) and used for first-strand cDNA synthesis with a Reverse

Transcription System (Takara). Quantification of all gene tran-

scripts was performed by quantitative real-time PCR using a Power

SYBR Green PCR Master Mix (Roche) and a 7500 Real-Time PCR

Detection System (Applied Biosystems). The following thermal set-

tings were used: 95�C for 10min, followed by 40 cycles of 95�C for

15 s and 60�C for 1 min. The internal control for mRNAs andmiR-

34a were GAPDH and U6, respectively (Ge et al., 2014). The prod-

ucts of quantitative real-time PCR were sequenced as previously

described (Jia et al., 2014). The primers used are listed in Table

S1. The data were analyzed using the 2�DDCt method.
Western Blotting
Western blotting was performed as described previously (Jia et al.,

2014). Primary antibodies against RBP2, NOTCH1, P27, CYCLIN

D1, RUNX2, and b-ACTIN (all fromCell Signaling Technology; cat-

alog numbers 3876, 3608, 3686, 2978, 8486, and 4970, respec-

tively) were diluted 1:1,000 and incubated with the blots at 4�C
overnight. Horseradish peroxidase-conjugated anti-rabbit second-

ary antibodies (Cell Signaling Technology) were diluted 1:10,000

and incubated at room temperature for 1 hr.
Reporter Vectors Construction and Dual-Luciferase

Reporter Assay
The functional alignment of the target region of RBP2 was

predicted by RNA22 prediction software. The 30 UTR of RBP2,
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containing the predicted miR-34a binding sites, were synthesized

and cloned into amodified version of pcDNA3.1(+) that contained

a firefly luciferase reporter gene (a gift from Brigid L.M. Hogan,

Duke University), at a position downstream of the luciferase re-

porter gene, thus forming a wild-type (WT)-RBP2 luciferase re-

porter plasmid. Site-directed mutagenesis of the miR-34a binding

site in the RBP2 30 UTR was performed using a Site-Directed Muta-

genesis Kit (SBS Genetech) and named as mutant-type (MT)-RBP2

luciferase reporter plasmid. All constructs were confirmed by DNA

sequencing. Luciferase assays were performed as described previ-

ously (Jia et al., 2014). In brief, 293T cells at a density of 5 3 104

per well were grown in a 48-well plate and expanded to 105 per

well before being transfected with 400 ng of either pcDNA3.0 or

pcDNA3.0-miR-34a, 40 ng of the firefly luciferase reporter plasmid

(RBP2-WT or -MT), and 4 ng of pRL-TK, a plasmid expressing Re-

nilla luciferase (Promega). Luciferase activity was measured 24 hr

after transfection using the Dual-Luciferase Reporter Assay System

(Promega). Firefly luciferase activity was normalized to Renilla

luciferase activity for each transfected well. Each experiment was

repeated in triplicate.

In Vivo Implantation of hASCs and Bio-Oss Collagen

Scaffold Hybrids
The hASCs of the third passage transfected with lentivirus (NC,

anti-miR-34a, andmiR-34a) were cultured in PM before the in vivo

study. After being trypsinized and resuspended directly in DMEM,

the cells were incubated with 63 43 2mm3 Bio-Oss collagen scaf-

folds (Geistlich; GEWO) for 1 hr at 37�C, followed by centrifuga-

tion at 150 g for 5 min, and implanted into four symmetrical sites,

together with blank scaffolds (without cells), on the dorsal subcu-

taneous space of 5-week-old, BALB/c homozygous nude (nu/nu)

mice (n = 6 per group). This study was approved by the Institu-

tional Animal Care and Use Committee of the Peking University

Health Science Center (LA2014233), and all animal experiments

were performed in accordance with the Institutional Animal

Guidelines.

Analyses of Bone Formation In Vivo
Specimens were harvested 6 weeks after implantation, and the ani-

mals were euthanized by CO2 asphyxiation. After fixation in 4%

paraformaldehyde, the specimens were analyzed using a high-reso-

lution Inveon micro-CT (Siemens). In brief, an X-ray voltage of

80 kV, a node current of 500 mA, and an exposure time of 500 ms

for each of the 360 rotational stepswere used. For quantitative anal-

ysis of the images, percentages of BV/TV and BMD were calculated

(Inveon ResearchWorkplace). The specimens were then decalcified

in 10% EDTA (pH 7.4) for 14 days, followed by embedding in

paraffin. Sections (5 mm thickness) were cut and stained with

Masson trichrome and H&E. Meanwhile, IHC staining was also

performedwithprimary antibodies againstOC (SantaCruzBiotech-

nology, catalog no. sc-240750) to evaluate osteogenesis. Finally, the

tissue slices were observed under a light microscope (Olympus).

Statistical Analysis
Statistical analysis was performed using SPSS Statistics 20.0 soft-

ware (IBM). Differences between two groups were analyzed by

Student’s t test. In cases of multiple-group testing, one-way
246 Stem Cell Reports j Vol. 7 j 236–248 j August 9, 2016
ANOVA in conjugation with Tukey’s test was conducted. A two-

tailed value of p < 0.05 was considered statistically significant.

All data are presented as the means ± SD of three independent

experiments.
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Supplemental Figures and Legends 

 

 

 

Figure S1 (related to introduction). The procedure for screening and selecting 

miR-34a for research. 21 and 51 miRNAs were upregulated in hASCs (miRNA 

expression profile during osteogenic differentiation of hASCs done by Zhang et al, J 

Cell Biochem, 2012, 113: 888–898) and bone marrow derived MSCs (miRNA 

expression profile during osteogenic differentiation of hBMSCs done by Gao et al, J 

Cell Biochem, 2011, 112: 1844–1856), respectively. RNA22 prediction software 

indicated 122 miRNAs might bind to the 3' UTR of RBP2 mRNA. By combining and 

comparing the miRNAs from these two screening methods, an intersection of five 



miRNAs were obtained: miR-663, 34a, 26a, 17, and 155. The RNA22 prediction 

software indicted that miR-34a possessed the maximum likelihood for binding to the 

3' UTR of RBP2 mRNA; therefore, we selected miR-34a for research.



 

 

Figure S2 (related to main figure 2F). The effect of miR-34a on RUNX2, OSX, ALP 

and OC mRNA expression in hASCs cultured in PM.  

(RUNX2, runt-related transcription factor 2; OSX, osterix; ALP, alkaline phosphatase; 

OC, osteocalcin; PM, proliferation medium).



 

 

Figure S3 (related to main figure 3D-b). Quantification of HE staining. Data was 

represented as the mean ± SD of three independent areas in each group.  

(HE, hematoxylin and eosin; Blank, scaffolds without hASCs; 

NC/anti-miR-34a/miR-34a, scaffolds seeded with hASCs transfected by lentivirus 

negative control/antisense miR-34a/miR-34a mimics).    



 

 

Figure S4 (related to main figure 5A, 5B). The potential miR-34a target sites in 

NOTCH1 and CYCLIN D1 transcripts were predicted by RNA22 software.



 

 

Figure S5 (related to discussion). qRT-PCR (A), Western blotting and quantitative 

analysis (B, C) of JAGGED1 expression in hASCs with overexpression or 

knock-down of miR-34a.



Supplemental Table 

 

Table S1. Sequences of the primers used for qRT-PCR. 

 Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

RBP2 GTCCAGCGCCTGAATGAACTT GCAACAATCTTGCTCAAAGCATA 

NOTCH1 CGCTGACGGAGTACAAGTG GTAGGAGCCGACCTCGTTG 

P27 ATGTCAAACGTGCGAGTGTCTAA TTACGTTTGACGTCTTCTGAGG 

CYCLIN D1 GTGCTGCGAAGTGGAAACC ATCCAGGTGGCGACGATCT 

RUNX2 CCGCCTCAGTGATTTAGGGC GGGTCTGTAATCTGACTCTGTCC 

OSX CCTCTGCGGGACTCAACAAC TAAAGGGGGCTGGATAAGCAT 

ALP ATGGGATGGGTGTCTCCACA CCACGAAGGGGAACTTGTC 

OC CACTCCTCGCCCTATTGGC CCCTCCTGCTTGGACACAAAG 

GAPDH GAAGGTGAAGGTCGGAGTC GAAGATGGTGATGGGATTTC 

U6  CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT 

Abbreviations: RBP2, retinoblastoma binding protein 2; Runx2, runt-related 

transcription factor 2; OSX, osterix; ALP, alkaline phosphatase; OC, osteocalcin.
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