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Full Methods 
 
Experimental Studies 
RNA preparation 
The WXY and WXYZ molecules, which are portions of the self-splicing group I intron from the isoleucine 
pre-tRNA in the purple bactierium Azoarcus (1), were prepared by in-vitro transcription from DNA 
plasmid templates. The Z fragment was purchased from TriLink Biotechnologies (San Diego, CA) and was 
gel purified prior to use. All RNAs were resuspended in 1–10 µM solutions in 0.1 mM EDTA. For 
quantification, < 0.1 µM of the WXY-fragment was 5´-labeled with γ[32P]•ATP using OptiKinase (USB, 
Cleveland, OH). 
 
Self-assembly kinetics (Quadrants a and d of the payoff matrix) 
See Fig. 2 for a schematic of this process. Reaction mixtures containing WXY (1 µM), Z (1 µM), WXYZ 
(0 – 2 µM), and 32P-labeled WXY (≤ 0.003 µM), all of the same IGS and tag genotype, were heated to 80 
˚C for 2 minutes then cooled to 48 ˚C. Time “zero” aliquots were drawn and quenched with equivolume 
quench solution (125 mM EDTA and 2X loading dye containing formamide and bromophenol blue). 
Reactions were initiated with the addition of reaction buffer (100 mM MgCl2 and 30 mM EPPS, pH 7.5). 
Time point samples were drawn and immediately quenched with quench solution at 0.5, 1.0, 2.0, 5.0, 10, 
and 30 minutes. Samples were loaded on an 8% polyacrylamide/ 8M urea gel and WXY and WXYZ bands 
were separated. Visualization and quantification was possible via phosphorimaging on a Typhoon Trio+ 
variable mode phosphorimager (GE Healthcare) and accompanying ImageQuant software (GE Healthcare). 
A product ratio was calculated by comparing the RNA in the product WXYZ band to the unreacted WXY 
band (% reacted = [reacted / (reacted + unreacted)]*100%). Kinetic values were calculated as previously 
described (2). Briefly, initial rates were calculated from the slope of the linear portion of the reaction curve 
from a plot of the product ratio versus time (total of n = 3 trials for each concentration). For fast reactions 
this was ≤ 5 minutes and for slower reactions ≤ 10 minutes. The rate constant (ka) was calculated from the 
slope of the initial WXYZ concentration versus the initial rate of the reaction (Fig. S1).  
 
Kinetic parameter justification 
The kinetic parameters of a ribozyme form of the Azoarcus group I intron have been studied by Kuo et al., 
who demonstrated that the chemical step of trans-esterification was the rate-limiting process in this 
ribozyme (3). Previously we demonstrated that the full-length ribozyme WXYZ, can be broken into two (or 
three or four) fragments that could spontaneously self-assemble (2, 4) Self-assembly occurs when  
fragments hybridize through base-pairing (2˚) and tertiary (3˚) interactions to form non-covalent “trans” 
complexes of the ribozyme. Once formed, trans complexes can catalyze recombination reactions on other 
hybridized fragments (i.e., WXY + Z) to synthesize covalent versions of the ribozyme. Recognition 
between a catalytic complex, either a trans complex or a fully covalently-contiguous ribozyme, is driven by 
the strength of the IGS-tag base pairing, as shown in Table 1 in Fig. S1 below. For example, the wildtype 
IGS in the Azoarcus ribozyme is 5´–GUG–3´, which in vivo matches with the pseudocomplement 5´–
CAU–3´ as a consequence of a requisite G-U wobble preceding the splice site. A catalytic event creates a 
covalent closure of the stem-loop, often with the release of one or two G nucleotides from the 5´ end of the 
Z molecule GGCAU (ref. 24); thus this is a recombination reaction (5). In a population of molecules, this 
reaction is autocatalytic because the product (WXYZ) is a ribozyme that has an approximately 2-fold 
higher kcat than the trans complex (2, 6). 
 
In our system, RNA genotypes assemble one another from background material via kinetics that are driven 
by first order (or pseudo-first order) reactions; the units of the autocatalytic rate constants are per minute. In 
cases where molecules are being covalently formed from their own fragments, the initial rate has both 
autocatalytic (ka) and non-autocatalytic (kb) contributions: (d[WXYZ]/dt)i = ka[WXYZ]p + kb, where p 
represents a variable reaction order that must be experimentally determined (7)). We have previously 
shown that these self-assembly reactions display a high degree of autocatalytic rate enhancements, with 
autocatalytic efficiencies (the ratio of the slope to the y-intercept in the plots in Fig. S1 below) near the high 
end of such reported values (2). Although the exact value of the order (p) of the autocatalytic reaction is not 
straightforward, our modeling in ref. 2 suggests that a first-order (p ~ 1) fits the kinetic data very well, 
leading to units of min–1 in Table 1 below (Fig S1).  
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2-strategy kinetics (Quadrants b and c of the payoff matrix) 
See Figs. 2A, 2B, and 2C for a schematic of this process. Reactions, visualization and quantitation were 
performed same as the self-assembly kinetics with the exception of the fragment genotypes. For the b 
quadrant, the initial mixture contained 1 µM of the player 2 genotype and a trace amount of 32P-labeled 
WXY (≤ 0.003 µM) of the player 1 genotype. For the c quadrant, the initial mixture contained 1 µM of the 
player 1 genotype and a trace amount of 32P-labeled WXY (≤ 0.003 µM) of the player 2 genotype. 
 
Serial dilutions 
A master mix reaction mixture was formed containing equimolar WXY genotype 1 (0.5 µM) and WXY 
genotype 2 (0.5 µM) and Z (1.0 µM). The mixture was then divided in two equal volumes. One part was 
doped with 32P-labeled WXY genotype 1 and the other part with 32P-labeled WXY genotype 2. The two 
reaction mixtures were then aliquoted into eight tubes each (one for each burst). (In the case of AU vs. UC, 
the original master mix made for the eight bursts was made at a 20:80, 50:50, or 05:95 ratio, and then 
divided into eight portions, and then this was used as above. See Fig. S2.) All tubes were heated up to 80 ˚C 
for 2 minutes and then cooled to 48 ˚C. The reaction in the first tube was initiated with the addition of 
reaction buffer (100 mM MgCl2 and 30 mM EPPS, pH 7.5). At 5 minutes, 10% of the solution volume 
from tube #1 was transferred to tube #2, and tube #1 was placed on ice. Reaction buffer was immediately 
added to tube #2 while tube #1 was subsequently quenched with equal volume of quench solution. The 
transfer protocol was repeated through eight bursts. The two-part master mix containing 32P-labeled WXY 
was used as a negative control for the assay. Gel separation, visualization and quantitation was performed 
same as kinetic assays. Three-strategy serial dilutions (Fig. 4A) were performed using the same protocol as 
above with the addition of a third genotype.  
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Mathematical modeling 
 
Derivation of the kinetic equation 
To describe the dynamics of the serial dilution experiment, we derive a simple ODE model. We consider a 
contest with two strategies, A and B. The payoffs are given by the matrix: 
 

 A B 
A a b 
B c d 

 
In our context all entries are positive: 𝑎, 𝑏, 𝑐,𝑑 > 0.  
 
We use the following variables: x0 is the concentration of the A precursor (WXY), y0 is the concentration of 
the B precursor (WXY), z denotes the concentration of the Z molecule, x1 is the complex formed between 
the A precursor and Z, y1 is the complex formed between the B precursor and Z. The variables x and y 
denote the concentration of the A and B molecule (WXYZ), respectively.  
 
In the dilution experiment, the two precursor molecules and the Z molecule are provided at constant level, 
and the complex is formed in a reversible chemical reaction  
𝑥! + 𝑧 ⇌ 𝑥!
𝑦! + 𝑧 ⇌ 𝑦!

 

Thus, x1 and y1 are also provided at constant level, and they give rise to the respective WXYZ molecule 
according to the catalyzed reactions 
𝑥!

!"
𝑥 

𝑥!
!"
𝑥 

𝑦!
!"
𝑦 

𝑦!
!"
𝑦 

Therefore, the kinetic equation (that would occur in a flow reactor) is 

[3] 𝑥 = 𝑎𝑥 + 𝑏𝑦 𝑥! − 𝜙𝑥
𝑦 = 𝑐𝑥 + 𝑑𝑦 𝑦! − 𝜙𝑦,

 

Here 𝜙 is a parameter chosen such that the concentration of A and B is constant, 𝑥 + 𝑦 = 𝐶 and 𝑥 + 𝑦 = 0.  
Without loss of generality, we can set C=1 (we only need to replace the variables x and y by the 
transformed variables x/C and y/C). In that case, 𝜙 can be calculated as 

𝜙 = 𝑎𝑥 + 𝑏𝑦 𝑥! + 𝑐𝑥 + 𝑑𝑦 𝑦!. 

Moreover, since x1 and y1 are provided at equal concentrations, we may set 𝑥! = 𝑦! = 1 . This may lead to 
a change of the time scale, but it leaves the trajectories of Eq. [3] unchanged. Thus, the dynamical equation 
simplifies to 

[1] 𝑥 = 𝑎𝑥 + 𝑏𝑦 − 𝜙𝑥
𝑦 = 𝑐𝑥 + 𝑑𝑦 − 𝜙𝑦, 

with 𝜙 = (𝑎 + 𝑐)𝑥 + (𝑏 + 𝑑)𝑦. 
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Properties of the dynamical equation 

In the following, we list a few interesting properties of the dynamical equation. 

Property 1.  
The dynamical equation [1] has a unique and globally stable equilibrium (𝑥, 𝑦) with 0 < 𝑥, 𝑦 < 1 and  
𝑥 + 𝑦 = 1.  In the generic case that 𝑎 + 𝑐 ≠ 𝑏 + 𝑑, the equilibrium frequency of 𝑥  is given by 

[2] 𝑥 = !!!!!!! (!!!)!!!!"
!(!!!!!!!)

. 

Otherwise, if 𝑎 + 𝑐 = 𝑏 + 𝑑, the equilibrium frequency is 𝑥 = 𝑏/(𝑏 + 𝑐). 

Proof.  Since 𝑥 + 𝑦 = 1, the first equation in [1] can be written as  

𝑥 = 𝑎𝑥 + 𝑏 1 − 𝑥 − 𝜙𝑥 = 𝑏 + 𝑎 − 2𝑏 − 𝑑 𝑥 − 𝑎 + 𝑐 − 𝑏 − 𝑑 𝑥! =: 𝑓 𝑥 . 

The function  𝑓 𝑥  has the unique zero 𝑥 in the unit interval (0,1). Since 𝑓 0 = 𝑏 > 0, it follows that 
𝑓 𝑥 > 0 when 0 ≤ 𝑥 < 𝑥, whereas 𝑓 𝑥 < 0 when 𝑥 < 𝑥 ≤ 1. Therefore, for any given initial frequency 
x, orbits converge towards 𝑥. � 

Let us next explore how the position of the equilibrium is affected by the entries of the payoff matrix. The 
following results follow directly from Eq. [2].  

Property 2. 
1. The equilibrium frequency 𝑥 is strictly increasing in a and b, and strictly decreasing in c and d. 
2. All other parameters unchanged, 𝑎 → ∞ or 𝑏 → ∞ implies 𝑥 → 1, whereas 𝑐 → ∞ or 𝑑 → ∞ implies 

𝑥 → 0. 
3. The equilibrium frequency satisfies 𝑥 = 1/2 if and only if 𝑎 + 𝑏 = 𝑐 + 𝑑.  Similarly, it satisfies 

𝑥 > 1/2 if and only if 𝑎 + 𝑏 > 𝑐 + 𝑑. 

As a consequence of the previous result, we can also draw the following connection between the 
equilibrium frequency and the type of game considered.  

Property 3. 
1. In a Dominance or Counter-Dominance scenario, 𝑥 > 1/2 if and only if it is A that dominates B. 
2. In a Selfish scenario, 𝑥 > 1/2 if and only if A risk-dominates B. 
3. In a Cooperation scenario, 𝑥 > 1/2 if and only if A is also played with higher frequency in the 

symmetric Nash equilibrium.  

Dynamical equation for 𝒏×𝒏 constests 

To describe the dynamics of the rock-paper-scissors contest, we generalize the previous dynamical 
equation to arbitrary 𝑛×𝑛 contests. Let 𝑀 = (𝑚!") be the payoff matrix of such a contest, and let 
𝑥 = (𝑥!,⋯ , 𝑥!)! be the vector that gives the frequency of each WXYZ molecule, such that 𝑥! +⋯+ 𝑥! =
1. Then the n-strategy analogue of Eq. [1] is 

[4] 𝑥 = 𝑀𝑥 − 𝜙𝑥, 

with 𝜙 = 𝑚!"𝑥!!,! . Equation [4] can be considered as a slightly generalized version of the quasi-species 
equation. It has a unique fixed point in the interior of the state space, which is globally stable. The fixed 
point can be found by solving the eigenvector problem 𝑀𝑥 = 𝜆𝑥, where 𝜆 is the largest eigenvalue of M. 
The theorem of Perron and Frobenius for positive matrices guarantees that the corresponding normalized 
eigenvector 𝑥 is unique, and that all entries of 𝑥 are positive.  

 
In the following, let us summarize a few simple properties of the dynamical equation [4].  
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Property 4. 

1. The unit simplex Δ = 𝑥 ∈ ℝ!  |  𝑥 ≥ 0, 𝑥! +⋯+ 𝑥! = 1  is invariant under the dynamical 
equation [4]; that is, if the initial state 𝑥(0) ∈ Δ then 𝑥(𝑡) ∈ Δ for all times t.  

2. The edges of the unit simplex are not invariant under the dynamics in [4]; if 𝑥! = 0 then 𝑥! > 0. 
 
Proof. The sum of all entries of x does not change over time, due to our choice of 𝜙. Moreover, if 𝑥! = 0, 
then it follows from Eq. [4] that 𝑥! = (𝑀𝑥)! − 0 > 0. 

 
The previous result points to an important difference between the dynamical equation [4] and replicator 
dynamics (see also Fig. S7). Replicator dynamics is non-innovative – if a strategy is initially absent, then 
the evolutionary dynamics does not introduce this strategy at some later time point. In contrast, the kinetic 
dynamics described in [4] predicts that absent WXYZ strategies are introduced immediately, due to the 
catalytic effect of the other WXYZ molecules (provided that the required precursor WXY for the absent 
strategy is available).  
 
Next, let us describe the relationship between the Nash equilibria of a contest with payoff matrix M, and the 
unique equilibrium of the kinetic equation [4].  
 
Property 5. 
Let 𝑀 = (𝑚!") be the payoff matrix of an n-strategy contest, and let 𝑥 = (𝑥!,⋯ , 𝑥!)! be the unique 
equilibrium of Eq. [4]. Then the following are equivalent: 

1. 𝑥 is a Nash equilibrium. 
2. The equilibrium is in the center of the simplex, 𝑥 = (1/𝑛,⋯ ,1/𝑛)!. 
3. The row sums of M coincide, 𝑚!! +⋯+𝑚!" = 𝑚!! +⋯+𝑚!" for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Proof.  

1 ⇒ 2. As 𝑥 is a Nash equilibrium in the interior of the state space, all strategies yield the same expected 
payoff,  

(𝑀𝑥)! = (𝑀𝑥)! for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Moreover, since 𝑥 is the fixed point of Eq. [4], and hence the eigenvector of 𝑀 corresponding to some 
real eigenvalue 𝜆 > 0 , it follows that  

𝜆 ∙ 𝑥! = (𝑀𝑥)! = (𝑀𝑥)! = 𝜆 ∙ 𝑥!. 

In particular, 𝑥! = 𝑥! for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and thus 𝑥 = (1/𝑛,⋯ ,1/𝑛)! . 

2 ⇒ 3. As 𝑀𝑥 = 𝜆𝑥 for some 𝜆 > 0 and for 𝑥 = (1/𝑛,⋯ ,1/𝑛)!, it follows that 
!
!
𝑚!! +⋯+𝑚!" = 𝜆/𝑛 for all 1 ≤ 𝑖 ≤ 𝑛. 

Since the right hand side does not depend on i, neither does the left hand side. Therefore,  

𝑚!! +⋯+𝑚!" = 𝑚!! +⋯+𝑚!" for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

3 ⇒ 1. If the row sums of M coincide, it is easy to check that 𝑥 = (1/𝑛,⋯ ,1/𝑛)! is the unique fixed point 
of Eq. [4]. In this fixed point, (𝑀𝑥)! = (𝑀𝑥)! for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and hence 𝑥 is a Nash equilibrium. � 

 
The previous result shows that in general, the kinetic equilibrium of Eq. [4] is not a Nash equilibrium – the 
only exception occurs when all rows of the payoff matrix sum up to the same value.  
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Discussion of the utility of game theory at the chemical level 
 
Given the concordance between our experimental results and the ODE models that we constructed, the 
game-theoretic analysis appears to be a natural consequence of chemical kinetics, but kinetics viewed in an 
entirely new way. Our formalism allows us to summarize the dynamics between two genotypes in a single 
matrix, whose values can easily be interpreted. One only needs to know this matrix to calculate genotype 
equilibria. The dynamics can be interpreted using frequency-dependent selection. Each step along this 
analytical process is performed exactly as in evolutionary game theory, although the applied equilibrium 
concepts differ. 
 
Put another way, game theory adds to the ability to assess rapidly the evolutionary outcomes of contests 
among pre-biotic genotypes such as RNA. Specifically it can allow one to understand how two general 
outcomes arise (dominance vs. co-existence), but more importantly, which specific mechanism is 
operational in any given situation: auto- and/or cross-catalysis. The Counter-dominance situation is a good 
example of this. An ODE analysis on its own would tell you that one genotype would rise to a high 
frequency at the expense of the other, but the specific mechanism for this – the receipt of greater cross-
assembly benefits than self-assembly benefits – may be obscured. The 2x2 payoff matrix reveals this 
dynamic quickly and allows insight into the precise molecular events that underlie the evolutionary 
dynamics. The Prisoner’s Dilemma has been biologically demonstrated in viruses (8) and yeast (9, 10), and 
we now demonstrate it at the raw (bio)chemical level. 
 
In many environments envisaged for plausible conditions for the origin of life, there is a steady-state flux of 
resources or energy. Examples include, but are not limited to, thermal gradients leading to thermophoresis 
(11, 12), streams flowing downhill absorbing leaching chemical precursors (13, 14), and sporadically-fed 
aqueous pools (15). In these situations, nascent reproducing molecules would have had to compete for 
common resources, and our molecular experiments and model were designed to capture these 
characteristics, targeting a “pre-Darwinian” description of molecular evolution (e.g., 16, 17). The chemical 
game theoretic treatment allows an extention of the benefits of traditional evolutionary game theory down 
to a simpler, pre-life level. 
 
With these parallels, we propose that game theory is applicable to the events leading to the chemical origins 
of life. Intermolecular interactions, driven mainly by non-covalent bonding strengths, can be hypothesized 
as giving rise to a build-up of network complexity among prebiotic polymers as has been discussed for 
other RNAs (18), proteins (19), and lipids (20). Here we have provided an empirical example of how game-
theoretic patterns can be manifest in a chemical system, and one that has prebiotic relevance. While the 
dynamics of chemical reproducers can be described in terms of classical ODE equations, the game-
theoretic construct gives insight as to what happens when one goes from a small number of nodes in a 
network to a larger number of nodes.  
 
Although one needs to be wary of over-interpretation, game theory at the chemical level allows for a clear 
evolutionary perspective of prebiotic dynamics. From a practical standpoint, what we have shown is that 
from knowing the influence on catalysis of a single nucleotide-pair interaction – here the middle nucleotide 
of the IGS-tag triplet, akin to the middle position in a codon-anticodon pairing – on catalysis, one could 
predict general outcomes from contests among a small number of competitors vying for a shared resource. 
Note that in the predicted Cooperation competitions – those leading to significant steady-state frequencies 
of both genotypes – none of the participating genotypes has a Watson-Crick pair between their M and N 
nucleotides. The presence of a non-canonical nucleotide pair in the IGS-tag recognition process leads to the 
situation where the off-diagonal terms in the payoff matrix (b and c) are greater than the diagonal terms (a 
and d), thereby promoting a type of molecular cooperation (21), in that molecules are forced kinetically to 
forego some of their reproductive potential to assemble others (22). In the converse case, the Selfish 
scenario, the diagonal terms in the matrix exceed the off-diagonal terms, leading also to co-existence, but 
one achieved in the opposite manner. (The CG vs. AU game is perhaps the most extreme example of a 
Selfish scenario, and while the CG self-assembly rate constant exceeds that of AU by only 30%, we predict 
that the steady-state frequency of CG should reach 96% even with a continual supply of equimolar AU; see 
Fig. S4.)  
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Supplementary Figure 1. Calculation of self-assembly autocatalytic rate constants. Left: raw data for the 
rates of self-assembly for the 16 genotypes GMGWXYCNU, where M and N are free to vary. Rates were 
measured by doping in 0 µM, 0.5 µM, 1 µM, or 2 µM full-length WXYZ into reactions containing 1 µM 
GMGWXYCNU and 1 µM Z as described in ref. (2) and the Methods above. Each point represents the average 
of three independent trials. Main plot: data for the 11 fastest self-assembling genotypes, where rates were 
measured for reaction times of 5 minutes or less. Inset: data for the five slowest self-assembling genotypes, 
where rates were measured for reaction times of 10 minutes or less. Right: Table (with r2 linear regression 
values included) that depicts the computed autocatalytic rate constants (ka) via the means described above 
(2), based on the method of von Kiedrowski (7). 
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Supplementary Figure 2. Variation of the initial frequencies in the AU vs. UC contest. From left to right, 
the initial WXY molar frequencies are AU:UC:50:50 (experimental), AU:UC:20:80 (experimental), 
AU:UC:5:95 (experimental), and AU:UC:20:80 (model). All experiments converge on similar final 
equilibrium concentrations, with AU > UC (but not exclusionary), as predicted by the model. Note, in this 
2-strategy contest, the chemical outcome (Selfish) is an analog of the Stag Hunt biological game scenario. 
In biological evolutionary competitions, the Stag Hunt scenario is a bi-stable one, in which the final 
outcome is heavily dependent on the initial conditions, with a definable tipping point. Such bi-stability is 
not observed in these experiments, highlighting a key difference between biological games based on 
replication and chemical games based on reproduction (assembly). See main text for more discussion. 
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Supplementary Figure 3. Use of IGS and tag nucleotides to predict 2-strategy outcomes. Here the logic 
for the construction of the predicted 2x2 payoff matrices is explained. (a) A depiction of how the MN 
notation translates into the a, b, c, and d values in the payoff matrix. The a and d values (diagonal terms) 
are data taken from the empirical self-assembly experiments tabulated in the Table in Fig S1. (b) and (c) 
An example game of AU vs. UC is shown. The a value is the self-assembly autocatalytic rate constant that 
results when GAGWXYCUU is incubated with Z. This reaction is determined by the strength of a A-U 
nucleotide pair within the interaction between an IGS triplet in one RNA fragment and the “tag” in another 
(Fig. 1C). Likewise the d value is the self-assembly autocatalytic rate constant that results when 
GUGWXYCCU is incubated with Z. On the other hand, the b and c values (off-diagonal terms) can be derived 
in two different manners. They can either be estimated using the appropriate nucleotide-pair value from the 
Table in Fig. S1 (panel c), or they can be measured using an experimental competition between two WXY 
genotypes as shown in Fig. 2 (panel b). Using estimated values of b and c, we have predicted the outcomes 
of all 72 contests in which no values are predicted to be equal (Fig. S4). For example, the AU vs. UC 
contest is predicted to give a Selfish outcome by this method, as shown. In all panels, the asterisk (*) here 
denotes that in a 2-genotype interaction, the payoff is to the row player in competition with the column 
player, and using the differential 32P-labeling technique (Fig. 2A), we can track the rate of assembly of 
single genotypes in a mixture. 
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Supplementary Figure 4. Plots of outcomes of all 72 strict 2-strategy contests from predicted self-
assembly matrices. By eliminating cases with equal payoffs (e.g., AU vs. AC; Fig. S5), there are 72 
possible such contests. The predictions are that 26% of the scenarios should lead to the Dominance, 32% to 
the Cooperation, 32% to the Selfish, and 10% to the Counter-dominance outcomes (Fig. S4). It is important 
to realize that the Dominance and Counter-dominance scenarios occasionally lead to fairly high frequencies 
of the “losing” genotype (e.g., 30% UU, in CC vs. UU; Fig. S4). Conversely the two co-existence scenarios 
can sometimes lead to the near fixation of one genotype (e.g., CG in CG vs. GU). These cases are the 
exceptions to the rule however, and are a consequence of the steady-state nature of both the experiments 
and modeling where the Z resource is continually replenished. Each panel shows the expected 2-strategy 
dynamics, for all 72 payoff matrices that can be derived from the self-assembly data in the Table in Fig. S1. 
For details on how these matrices were obtained, see Fig. 2B and Fig. S3. These matrices were then used as 
our input to calculate the expected dynamics according to the kinetic equation [1] above. As this figure 
suggests, different 2-strategy contests can have remarkably different dynamics, even if the contests are 
taken from the same game class. The predicted equilibrium frequencies according to equation [2] above are 
depicted by the dotted black lines. Exact equilibrium frequencies are provided at the bottom of each panel. 
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Supplementary Figure 5. Tabluation of the 48 2-genotype contests that generate predicted equal values in 
their 2x2 payoff matrices. There are 16(15)/2 = 120 distinct 2-strategy contests from 16 WXY genotypes, 
but 48 of these will generate values in the predicted payoff matrix that are equal, using the logic shown 
here. When two genotypes compete with the same M or N nucleotide, then the self-assembly values (Table) 
will predict two identical values in the matrix. For example, when AU competes vs. AC as shown here, the 
a and b values in the matrix both would derive from the AU self-assembly rate constant value in the Table, 
which is 0.0319 min–1. The a value represents an A-U pairing during the catalytic self-assembly of 
GAGWXYCUU and Z, while the b value represents an A-U pairing during the catalytic cross-assembly of 
GAGWXYCUU and Z by a GAGWXYCCU-containing ribozyme. Likewise in this particular contest, the c and d 
values would be predicted to be equal. Equal values in the payoff matrix do not lead to strict equilibria. 
Thus for the purposes of forecasting outcomes from all possible 2-strategy contests using only self-
assembly data, these 48 cases are excluded, leaving 72 possible contests, as shown in Fig. S4. Again, the 
asterisk (*) here denotes that in a 2-genotype interaction, the payoff is to the row player in competition with 
the column player, and using the differential 32P-labeling technique (Fig. 2A), we can track the rate of 
assembly of single genotypes in a mixture. 
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Supplementary Figure 6. Predicted 3x3 payoff matrix in the 3-strategy contest between UC, AA, and GU 
(Fig. 4). (a) The 3x3 matrix, compiled from two sources (in analogy to Fig. 2B). The diagonal terms 
(0.0038, 0.0004, and 0.0091) were self-assembly autocatalytic rate constants from the Table in Fig. S1. The 
off-diagonal terms were collected from the appropriate off-diagonal terms measured in individual 2-
strategy contests shown in panel (b). For example, the value 0.0504 (first column, second row) in the 3x3 
matrix derives from the measured value of c in the 2x2 matrix for the UC vs. AA contest. A stable interior 
equilibrium point is predicted to exist (23, 24). This was in fact seen in the experiment (Fig. 4A), and the 
scenario is thus a chemical form of Rock-Paper-Scissors (RPS). Because one pairwise interaction (UC vs. 
AA) in this context results not in pure dominance, but Cooperation, the present contest is technically a 
weak form of a RPS, in the sense that every strategy can invade the previous strategy, and it can be invaded 
by the next strategy (see Fig. S7). In our system with only 16 possible genotypes that are roughly binary in 
their interactions with other genotypes (Watson-Crick base pairing in the M-N interaction or not), it is not 
possible to construct a strictly strong RPS scenario, because at least one pairwise interaction will not be a 
dominance scenario. With this matrix analysis, one can see a more general connection to network 
evolution. The values in the payoff matrix are equivalent to the weights of the connections in a network, 
and the sum of the weighted paths in a network gives an approximation of the dominant eigenvector xi (the 
steady-state frequencies of each of i species in a network). See reference (25) for more discussion of this 
point. 
 
  



 14 

 

 
 
Supplementary Figure 7. Comparison of biological (replicator) dynamics with the chemical game 
dynamics. Based on the 3x3 experimental matrix displayed in Fig. S6, the two graphs show the resulting 
replicator dynamics (left) and the dynamics according to the kinetic equation [4] above (right). Replicator 
dynamics predicts cyclical behavior: AA can be invaded by GU, GU can be invaded by UC, and UC in turn 
can be invaded by AA. The fixed point on the edge between UC and AA is unstable, and all orbits spiral 
towards the unique Nash equilibrium in the interior of the state space (with equilibrium proportions UC 
35.8%, AA 50.4%, GU 13.8%). However, in the kinetic equilibrium (right), AA is considerably less 
abundant than predicted by the Nash equilibrium (UC 39.1%, AA 35.0%, GU 25.8%). Moreover, in the 
right graph, the edges of the Simplex are no longer invariant because absent strategies are introduced 
continually (as described in detail in the Mathematical Modeling section above). 
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Supplementary Figure 8. Statistical tests for ordinal rankings. The Kruskal-Wallis non-parametric test 
was used to test the statistical significance of the rank order of the values in the 2x2 payoff matrices. The 
seven 2-strategy contests depicted in Fig. 2 were analyzed in this fashion, using the variation in empirical 
data provided by the three independent replicates of the experiments. The test statistic H was computed as 
per Sokal and Rohlf (26) and compared to the critical values provided by Meyer and Seaman (27) from the 
exact probability distribution. All rank-order values for these games were statistically significant at the P < 
0.05 value or better. 
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