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Appendix S1 Supplementary Methods

Study area

The study was conducted in NE Portugal, in the river Sabor catchment (Figure S1), which covers a wide
range of environmental conditions in terms of elevation (100-1500 meters above sea level), total
annual precipitation (443 - 1163 mm), and mean annual temperature (6.9 — 15.6°C). Climate is
Mediterranean, with precipitation largely concentrated in October-March, while it is virtually absent in
the hot summer months (June-August). Flow regime is highly seasonal, with most headwater streams
drying out or being reduced to a series of disconnected pools in summer, though the main

watercourse and some of the tributaries are permanent.

Fish sampling

Fish sampling was carried out at 50-m reaches of streams (hereafter referred to as sites) distributed
across the watershed, during the summer of 2012 (June 13 to July 15, and August 28 to September
15). The reach length was selected based on previous studies showing that it is appropriate for
describing spatial and temporal variations in Mediterranean stream fish assemblages (Magalh3es et
al., 2002, 2007). We visited 184 sites across the watershed, and sampled the 89 sites with flowing
water or isolated pools. The remaining sites were totally dry, and so they could not sustain fish
populations during the sampling period. The sites were selected in the field based on accessibility and
representativeness, as long they were 4 to 10km apart from each other, and provided a thorough
coverage of the watershed (Figure S1). Within each site, we sampled fish using a single anode
electrofishing gear (350-750 V, 3-5A, DC), following standard procedures (Zalewsky & Cowx, 1990;
Penczak & Gtowacki, 2008). Electrofishing was always conducted by the same operator (M.F.),
accompanied by a second operator to net fish displaced by electrofishing. Sampling was carried out
during 15 to 25 minutes, with longer surveys used in wider streams to cover adequately the entire
sector (Reynolds, 1996). During each sampling session, we electrofished progressively in the upstream
direction, and transferred fish alive to containers distributed along the margins. Because most fish
captured were small-sized or otherwise difficult to identify to species level without careful
examination, identification and the estimate of times to first detection were made at the end of the
sampling session. To this end, fish captured in each interval of 5 minutes were transferred to a
different set of marked containers, which allowed the recording of species detections in 5-minute

intervals. After identification fish were returned alive to the stream.
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1 Sampling vyielded 12 fish species (Table S1), of which four natives (Luciobarbus bocagei,
2 Pseudochodrostoma duriense, Squalius alburnoides, and Squalius carolitertti) and two exotics (Gobio
3 lozanoi and Lepomis gibbosus) were used in occupation-detection modelling. The remaining six
4 species occurred too rarely (1 to 13 sites), and so they were discarded to reduce potential problems
5 associated with a low number of events per variable in occupancy and detection models (e.g.,

6  Vittinghoff & McCulloch, 2007).

p Q ¢ = Sites
: ‘. ®  Sampled
QS S & ; - O  Dry

Q —— Streams

o Kilometers
0D 5 10

7 Figure S1. Map of the study area, showing the location of sites visited in the summer of 2012 (June 13 to July 15,
8 and August 28 to September 15). Fish sampling was carried in 89 sites that had flowing water or isolated pools,

9 while the remaining 95 sites were dry.
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Table S1. List of fish species sampled in the Sabor catchment in the summer of 2012. The percentage of sites
with detections is provided for each species (frequency of detection; n=89 sites). Species used in distribution

modelling (occurring in > 20 sites) are highlighted in bold type.

Species Frequency of detection
(%)
Native
Pseudochondostoma duriense 56.2
Squalius carolitertii 53.9
Luciobarbus bocagei 52.8
Squalius alburnoides 33.7
Achondrostoma arcasii 13.5
Salmo trutta 11.2
Cobitis paludica 10.1
Exotic
Gobio lozanoi 41.6
Lepomis gibbosus 31.5
Gambusia holbrookii 14.6
Alburnus alburnus 4.5
Carassius auratus 11

Environmental covariates

Detection probabilities were modelled in relation to stream width and depth (Table S2), because
electrofishing efficiency tends to be lower in larger and deeper watercourses (Reynolds, 1996). Also,
these variables may strongly influence fish abundances, which in turn may positively affect
detectability (MacKenzie et al., 2006; McCarthy et al., 2013). Mean reach width was estimated from
measurements taken along four equally spaced transversal segments, whereas mean depth was

estimated from three measurements taken in each of the four segments (Table S2).

Covariates for site occupancy included total annual precipitation, elevation, and Strahler’s stream
order, which have been widely reported to strongly influence the distribution of stream fish in
Mediterranean regions (Magalhdes et al., 2002; Filipe et al., 2004; Ferreira et al.,, 2007). The same
covariates were used to model the probability of water presence at each site. Elevation at each

sampling site was calculated from a 10-m resolution Digital Elevation Model (DEM) derived from 1:
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25,000 topographic maps using ArcMap 10.0 (ESRI, 2011). Stream order was used to define stream
size based on the hierarchy of tributaries, and it was extracted from the Catchment Characterization
and Modelling database (CCM2), based on a 100-m resolution DEM (Vogt et al., 2007). Precipitation
was extracted from WorldClim current climate predictors, which are based on the monthly mean
interpolations from records collected over a 50-year period (1950-2000), with a 30 arc-seconds grid
resolution (approximately 1km?; Hijmans et al., 2005). The resolution of this variable was converted to

match the 10-m resolution of the DEM.

Table S2 Description and summary statistics (mean * SD, range) of environmental variables used to model

variation in detection rate and occupancy probability.

Variables Description Mean + SD Range

Detection model
Stream width (m) Mean of four width measurements taken at equally 9.746.8 1.5-34.8
spaced transversal segments along the 50-m
sampling reach.
Stream depth (cm)  Mean of depth measurements taken at, 25%, 50%, 34419 9-100

and 75% of the length of each transversal segment.

Occupancy model

Elevation (m) Altitude above sea level extracted from a 10-m 4691202 110-800
resolution digital elevation model derived from 1:
25,000 topographic maps

Precipitation (mm)  Average of total annual precipitation (1950-2000), 686182 568-894
extracted from WorldClim and downscaled to a 10-m
resolution.

Stream order Strahler’s stream order, extracted from the River 2.611.4 1-6

and Catchment Database CCM2
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Appendix S2 Interval-censored time to detection model

The modelling procedure was based on the exponential time to detection model developed by
(Garrard et al., 2008, 2013), using a modified formulation of interval-censored parametric survival
models to deal with cases when detections are recorded in time intervals instead of continuously
(Chen et al., 2012; Kleinbaum & Klein, 2012). Under the general parametric survival model for the time
T observed for a certain event of interest (e.g. the first detection of a species), the probability of
observing an event after time t (i.e. time of the event T is greater than t) equals the survival

distribution for time t:

Pr(T > t) = S(t) Egn S1

and the probability of observing an event before a time t equals the complementary probability of

observing the event after time t:

Pr(T <t)=1-5(t) Eqn S2

Therefore, the probability of the event occurring in a given time interval defined by a lower bound (t;)
and a upper bound (t;) is the probability of observing the event before the time t, minus the

probability of observing the event before time t;:

Pr(ty <T <t;) =1-5(t;) — (1 —5(ty) = S(t1) — S(t2) Eqn S3

This very general formulation can be parameterized using one of several available distributions of
survival times, including in the simplest case the exponential model, which is fully described by a

single parameter — the detection rate (1):
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S(t) = e M Eqn S4

In the context of species detection, the previous equations can be combined to estimate the likelihood
of species detection in a given time interval. Considering that a species occupies a site i, and that first
detections follows an exponential distribution with detection rate 4, the likelihood of observing a first-

detection event (denoted §; = 1) during a survey interval defined by (t;;,t,;], is

8; = 1,t15,tp;|1) = e Hri — e~z Eqn S5
( irt2,il4)

and the likelihood of not detecting (§; = 0) the species during a survey of duration T; is

1(6; = 0|A,T;) = e~ T, Eqn S6

These equations assume that the event will occur, even if it is not detected during the survey time.
However, in contrast to survival analysis, it is uncertain whether a species is present or absent, and so
it may remain unrecorded either because it is absent or because it is present but remained
undetected. This possibility is considered in time to detection models by including in equations S5 and
S6 the probability that the species actually occupy the site. That is, the probability of detection in a

given time interval under unknown occupancy is given by

l (5 = 1 ) tl,il t2,i|/1, 1/)) = 1/) (e_ltl'i — e_AtZ,i),
Egn S7

1(6; = 0IA4, 9, Ty) =p(e™*Ti) + (1 — ),
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where A is the rate at which detection events occur, ¢ is the probability of the species occupying a
site, T; is the survey time at site i. This formulation implies that the likelihood of not recording a

~ATi) and true

species during a survey (6 = 0) is now a function of both imperfect detection (y.e
absence (1 — ) (Garrard et al.,, 2008, 2013). The model assumes that the species is available for
detection during the entire sampling period, which is a reasonable assumption, considering that all
fish occurring in a stream reach are exposed to electrofishing sampling (Reynolds, 1996). However, a
more general treatment of imperfect detection would have to describe both the probability of a

species being available for sampling and the probability of detection given availability (e.g., Kéry &

Schmidt, 2008), but this was beyond the scope of this study.

In the above we have specified the observation process as the exponential model from egn S4
onward; returning now to full generality we give the likelihood expressions for any given parametric

detection-time distribution S(t) = S(t, ) with vector of parameters 6:

l(éi =1’tl,i912,i |st) = w(S(tl,i’a)_S(tz,me)),

eqn S8
1(6,=016.9.T) =y S(T.0) +(1-y).

Whereas the exponential model has the property that the detection probability for any time interval
(t1,t,] depends only on the length t; — t, of the interval (the memoryless property, Murphy et al.,
2002), more general distributions such as the 2-parameter Weibull distribution allow detection
probabilities for equal intervals to increase or decrease with later times. This allows, for example, for
inclusion of changing detection probability over time due for instance to disturbances from survey

efforts.

Due to this property, when using the exponential model, i.e. the simplest of parametric survival
models (Kleinbaum & Klein, 2012), the interval-censored time to detection model with equal intervals
is the mathematical equivalent of the occupation-detection models with removal design (MacKenzie
et al., 2006) with equal detection probabilities for each of a series of discrete surveys. In this approach
researchers record species detections at the end of intervals of length At, stopping after the 1st
detection or once a predefined maximum number (K) of intervals has elapsed. If time to first
detection of species follows an exponential survival time model with detection rate A then the

detection probability in each intervalis p =1 — gAML

When the first detection at a site happens within the interval defined by times t; and t,, and calling

that interval the k;-th repeat visit we can developed the likelihood in Eqn. S7 as follows:
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1y, 612, 9) = . (e — e72) = [ (7)) = (7)) = .| 1 — p) Var — (1 — p) Vae]
If we keep At constant then by definition of the k-th repeat visit, we know that t, /At = k; and

t /At = k; — 1, so we have:

Ity 1A Y) = [A-pA Tt = -phl=p.A-ptU-1+p) =91 -p~tp

which is the expression for removal sampling detection data for a site where 1st detection happens at
the ki-th repeat visit, i.e. we get (k; — 1) non-detections followed by the single detection (MacKenzie et

al., 2006).

When there are no detections after a total survey time T; (i.e. K repeat visits with K = T/At):

I(TiA ) =p(e™) + (1 —y) =yp(A —p)X + (1 — )

The first-detection time models considered here generalize the above scheme to allow (i) uneven
sampling times/intervals, (ii) variation of detection rates between sites and (iii) variation of detection
rates as a function of time by employing non-exponential parametric survival models (e.g. Weibull

model Kleinbaum & Klein, 2012).
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Appendix S3 Code used to fit the time to detection model using
WinBUGS

model {

# priors

a0 ~ dnorm(0, .1) I(-10, 10) # Intercept for Water availability
b0 ~ dnorm(0, .1) I(-10, 10) # Intercept for occupation

g0 ~ dnorm(0, .1) I(-10, 10) # Intercept for detection

for (n in 1:Xocc) { # mean effects in occupation
a[n] ~dnorm(0, .1) I(-10, 10) #Effects Water availability
b[n] ~ dnorm(0, .1) I(-10, 10) #Effects occupancy

}

for (m in 1:Xdet) {
g[m]~ dnorm(0, .1) I(-10, 10) #Effects Detection

}

a.sp ~ dnorm(0, .1) I(-10, 10) #Spatial Effect on Water availability
b.sp ~ dnorm(0, .1) I(-10, 10) #Spatial Effect on occupation

#Spatial Autologistic term computation

for (i in 1:nsite) {
for(j in 1:nnbli]) {
autoZ[i,j] <- Z[nblists[i,j]]
}
Z.splil<-inprod(autoW][i,1:nnb[i]],autoZ[i,1:nnbli]])
}

#Model
for (i in 1:nsite) {

#Water availability

IW[i] <- a0 + inprod(a[ ], X1[i, ]) + a.sp * W.sp[i]
pWIi] <- 1/(1+exp(-IW[i]))

WIi] ~ dbern(pWT[i])

#Occupancy Model
Ipsi[i] <- b0 + inprod(b[ ], X1[i, ]) - (1 - WI[i]) * pow(10, 9) + b.sp * Z.sp[i]
psi[i] <- 1/(1+exp(-lpsi[i]))

Z[i] ~ dbern(psi[i]) #True state occupation

#Detection rate
lambdal[i] <- exp(g0 + inprod(g[], X2[i,]))

#Survival function for Left bound
S1[i] <- exp(-lambdali] * y1[i])

#Survival function for Right bound
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S2[i] <- exp(-lambdali] * y2[i])

#when species is detected
ppli] <- (S1[i] - S2[i]) * psili]

#when species is not detected
pnli] <- S2[i] * psi[i] + (1 - psili])

#Select likelihood
pli] <- (d[i1*ppli] + (1-d[i])*pnli]) #d[i] = 1 where detected, d[i]= 0 where not detected

onesJi] ~ dbern(p[i]) #ones trick

# Probability of detecting an individual at site i (Evaluation purposes)
p1[i] <- psi[i] * (1 - exp(-lambdali] * TT[i]))
Res[i] <- d[i] - p1[i] #Residuals

#Replicate observations
d_repli] ~ dbern(p1[i]) #Generate replicate observations
Res_repli] <- d_repli] - p1[i] #Replicate residuals

}

fit <- sum(Res[]) # Sum of residuals for actual data set

fit.new <- sum(Res_rep[]) # Sum of residuals for new data set

test <- step(fit.new - fit) # Test whether new data set more extreme
bpvalue <- mean(test) # Bayesian p-value

# Catchment area extrapolation

#Spatial Autologistic term computation
for (i in 1:nsite2) {
for(j in 1:nnb2[i]) {
autoZ2[i,j] <- Z[nblists2[i,j]]
}
Z2.sp[i]<-inprod(autoW2[i,1:nnb2[i]],autoZ2[i,1:nnb2[i]])

for (jin 1:nsite2) {
#Water availability
IW2[j] <- a0 + inprod(a[ 1, X3[j, ]) + a.sp * W.sp2][j]
pW2[j] <- 1/(1+exp(-IW2[j]))
W2[j] ~ dbern(pW2[j])

#Occupancy Model
Ipsi2[j] <- b0 + inprod(b[ ], X3[j, 1) - (1 = W2[j]) * pow(10, 9) + b.sp * Z.2sp[j]
psifj] <- 1/(1+exp(-Ipsi2[j]))

}

H end of model

10
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1 Appendix S4 Response curves to environmental variables
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Figure S2 Relationships estimated from hierarchical occupancy-detection models between environmental

variables and both the probability of the watercourse having water during the sampling visit, and the probability
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of occupancy for each fish species when surface water is present.
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1 Appendix S5 Maps of prediction uncertainty
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