
Text S1: Privacy-Preserving Genetic Risk Test with

Ancestry Inference

Abstract

In this manuscript, we propose a privacy-preserving two-party algorithm that en-

ables a medical unit (MU) to efficiently perform genetic risk tests computation and

ancestry inference on participants’ (P) encrypted genetic data stored at a storage and

processing unit (SPU).

1 Preliminaries

In this section, we summarize the main concepts in cryptography that we use throughout

the manuscript. In particular, we describe the properties of the two cryptosystems used

in our algorithm for privacy-preserving genetic association studies: a modified version of

Paillier cryptosystem [1,2] and the DGK cryptosystem [3].

1.1 Modified Paillier Cryptosystem

The modified Paillier cryptosystem [1,2] is a public-key cryptosystem supporting additively

homomorphic operations and providing semantic security. To the best of our knowledge,

1

it is the most efficient additively homomorphic scheme supporting all the requirements of

the proposed system. Other additively homomorphic cryptosystems, such as ElGamal on

elliptic curves, that have better performance in terms of computation and storage costs,

do not support neither Algorithm 1 nor Algorithm 2, described in Section 2. We use the

modified Paillier cryptosystem to encrypt the privacy-sensitive data of the participants. Se-

mantic security is particularly required because the messages to be encrypted, during the

proposed protocol described in Section 2, have low entropy and could otherwise be recov-

ered by statistical attacks.

Let pbk = (n, g, h = g

x

) represent the public key for the modified Paillier cryptosystem.

Then, the strong private key is the factorization of n = pq (p, q are safe primes), and the

weak private key is x 2
⇥
1, n

2

/2

⇤
. Furthermore, let g be of order (p� 1)(q � 1)/2. Then, by

selecting a random a 2 Z⇤
n

2 , it can easily be computed as g = �a2n.

• Encryption: After generating a random r 2 [1, n/4], the encryption of a message,

m 2 Z
n

, is defined as:

E(m, pbk) = (C

1

, C

2

), (1)

where (C

1

, C

2

) is the ciphertext pair such that C
1

= g

r

mod n

2 and C

2

= h

r

(1+mn)

mod n

2.

• Decryption: The decryption of a ciphertext E(m, pbk) is performed as follows:

D(E(m, pbk), x) = �(C

2

/C

x

1

) = m, (2)

2

where �(u) =

(u�1) mod n

2

n

, for all u 2 {u < n

2 | u = 1 mod n}.

• Proxy re-encryption: Let us assume that the secret key is randomly split into two

shares x

1

and x

2

, such that x = x

1

+ x

2

mod n

2. The modified Paillier cryptosystem

enables an encrypted message (C

1

, C

2

) to be partially decrypted into a ciphertext

pair (˜C
1

,

˜

C

2

) using x

1

as below:

˜

C

1

= C

1

and ˜

C

2

= C

2

/C

x1
1

mod n

2

. (3)

Then, to recover the original message, (˜C
1

,

˜

C

2

) can be decrypted using x

2

, with the

aforementioned decryption function.

• Additive Homomorphic Property : The modified Paillier is an additively homomorphic

cryptosystem and, as such, it supports some computations in the ciphertext domain.

In particular, let m
1

and m

2

be two messages encrypted with the same key pbk. Then,

the encryption of the sum of m
1

and m

2

can be computed as:

E((m

1

+m

2

), pbk) = E(m

1

, pbk) · E(m

2

, pbk). (4)

As a consequence of this property, any ciphertext E(m, pbk) raised to a constant

number c is equal to the encryption of the product of the corresponding plaintext and

the constant as follows:

E((m · c), pbk) = E(m, pbk)

c

. (5)

3

For simplicity, throughout the manuscript, we represent the Paillier encryption of a message

m as [m] and its partial decryption as hmi. Operations between squared brackets, [],

denote homomorphic operations in the ciphertext domain.

1.2 DGK Cryptosystem

The DGK cryptosystem [3] is optimized for the secure comparison of integers. Compared

to the modified Paillier cryptosystem, it is more efficient in terms of encryption and decryp-

tion due to its smaller message space of a few bits. Let k represent the number of bits of

the RSA modulus n, t be the size of two small primes v

p

and v

q

, and l be the message

space size in bits such that k > t > l. Also let p and q be two distinct primes of equal

bit length, such that p � 1 is divisible by v

p

and q � 1 is divisible by v

q

. Then, the public

key is represented as pbk

DGK

= (n, g, h, u), where u is a l-bit prime, g 2 Z⇤
n

with order

uv

p

v

q

, and h is an integer with order v
p

v

q

. Furthermore, the private key is represented as

prk

DGK

= (p, q, v

p

, v

q

).

• Encryption: The encryption of a message m 2 Z
u

is:

E(m, r, pbk) = g

m · rn mod n

2

, (6)

where r is a random number in Z⇤
n

.

• Decryption: The decryption needs a look-up table for all values of Z
u

. Because the

message space is very small, this can be achieved efficiently. However, DGK has a

4

particular feature: the encryption of a zero can be checked even faster just by raising

the ciphertext c to the power of w = v

p

·v
q

since c

w

mod n = 1 if and only if c encrypts

0.

For simplicity, we represent the DGK encryption of a message m as JmK.

2 Materials and Methods

2.1 Overview

The main goals of the proposed solution for privacy-preserving genetic risk test with ances-

try inference are: (i) to infer, in a privacy-preserving way, participants’ ancestry information,

and (ii) to privately compute, given their genetic and ancestry information, the genetic risk

scores.

The proposed solution can be summarized as follows. First, the participants (P) provide

to a certified institution (CI) their biological sample for genotyping. Then, the CI encrypts

each participant’s information and sends it in a pseudonymized way to the storage and

processing unit (SPU). Finally, after ancestry inference, the privacy-preserving genetic risk

test computation takes place between the medical unit (MU) and the SPU through a secure

two-party protocol. In such a protocol, the MU specifies a set of markers to the SPU for

each test to be run and obtains only the correspondent final genetic risk scores.

5

SNP1% SNP2% …% SNPM%

P1% AA% GA% GG%

P2% AT% GA% GG%

P3% TT% AA% GG%
…"

PN% AA% GA% GT%

SNP1% SNP2% …% SNPM%

P1% 0% 1% 0%

P2% 1% 1% 0%

P3% 2% 2% 0%
…"

PN% 0% 1% 1%

SNP1% SNP2% …% SNPM%

P1% [0]% [1]% [0]%

P2% [1]% [1]% [0]%

P3% [2]% [2]% [0]%
…"

PN% [0]% [1]% [1]%

Encoding Encryption (a) (b) (c)

Figure 1: Data model and encryption: (a) Genetic information represented in a matrix. (b) Each
genotype is encoded by following the additive model. For example, SNP1 has major allele T and
minor allele A, hence AA = 0, AT = 1, and TT = 2. (c) The genotypes of a given participant
are individually encrypted with his own public key. Different row colors represent encryption under
different public keys as each participant has a different key.

2.2 Data Model

We assume that the participants’ genetic data can be represented as a matrix, (SNP),

containing the genotype information of their single nucleotide polymorphism (SNP) as il-

lustrated in Fig. 1(a). In particular, each row of SNP contains the set of SNP genotypes

for a single participant while each column corresponds to a SNP identifier. Each element

SNP

j

i

of the table contains the i-th participant’s genotype for the j th SNP. We assume a

SNP to be encoded with the additive model [4]. In such a model, each copy of an allele

modifies the association with genetic risk in an additive form. Let M denote the major

allele and m the minor allele: Given its diallelic nature, a SNP can get value 0 when it is

homozygous major (genotype MM), value 1 when it is heterozygous (genotypes Mm or

mM), and value 2 when it is homozygous minor (genotype mm) (Fig. 1(b)). Note that both

the dominant model (MM ! 0, Mm ! 1, mm ! 1) and the recessive model (MM ! 0,

Mm! 0, mm! 1) can also be adopted in our framework.

6

2.3 Initialization and Encryption

During the initialization period, the study participants enrolled in system provide, upon

consent, their biological samples for genotyping to the CI that generates and distributes

to each participant a pair of cryptographic keys for the modified Paillier cryptosystem (de-

scribed in Section 1.1). Each pair is composed of a public key and a private key. The public

key of each participant is also distributed to the SPU, and the MU, and it is used by the

CI to individually encrypt the participant’s SNPs (Fig. 1(c)). The private key is randomly

divided into two shares that are distributed to the SPU and the MU, respectively. In partic-

ular, let prk
i

denote the private key for the i th participant. Then, prk
i

is randomly split into

prk

1

i

and prk

2

i

, such that prk
i

= prk

1

i

+ prk

2

i

mod n

2. As a result, prk1
i

is provided to the

SPU and prk

2

i

to the MU, thus no party, except the participant himself, has the complete

private key.1 Note that for simplicity, we assume the presence of a single MU. However,

in the case of multiple MUs, prk

2

i

is provided to each one of them. Finally, the CI also

establishes symmetric cryptographic keys to protect the communication between the par-

ties from eavesdroppers. We assume that the CI, as a trusted entity, can also handle the

update and the revocation of the cryptographic keys.

Let pbk
i

represent the public key for the i th participant; then [SNP

j

i

]

pbki denotes the

encrypted genotype of his j th SNP. For the sake of simplicity, in the rest of the paper we

refer to [SNP

j

i

]

pbki as [SNP

j

i

], unless specified otherwise. Furthermore, we refer to [SNP]

as the matrix containing the encrypted SNPs.

After encryption, the CI sends the encrypted SNPs, in a pseudonymized way, to the
1We assume in our solution that only the participant, who is the owner of the data, has the full control on

his genetic information.

7

SPU for storage. Participants’ data is stored using pseudonyms (without revealing the

identities of the participants) to prevent the SPU from associating a SNP to a specific

individual.

Note that the SNPs’ identifiers are encrypted through a deterministic encryption scheme

that generates the same ciphertext for the same plaintext, by using the symmetric key pre-

viously established between the CI and the MU. As a result, this type of encryption prevents

the SPU from knowing which SNPs are tested but still allows for matching queries within

the database and for checking and MU’s access rights.

2.4 Privacy-Preserving Ancestry Inference

The proposed algorithm for ancestry inference consists of a secure two-party protocol that

takes place between the MU and the SPU during the “offline” phase. We assume that this

protocol is executed only once for a given MU, as a preprocessing step to control for popu-

lation stratification before conducting genetic risk tests on the encrypted genotypes stored

at the SPU. As a result of the protocol, the SPU obtains the encrypted ancestry informa-

tion for each participant, without knowing any private information. Similarly to the genotype

information, the ancestry information can be represented in a matrix A, where each row

contains the ancestry information for a single participant and each column specifies a sin-

gle ancestry group. Each element Ak

i

of the matrix contains a binary value (either 0 or

1) indicating whether the i th participant belongs to the k th ancestry group. In particular,

the result of the proposed secure protocol consists of the encrypted matrix [A] where each

element of the i th row is individually encrypted by the i th participant’s public key. Below,

we describe the protocol in detail. The main operations are also illustrated in Fig. 2.

8

Computation of
Encrypted PCs

Cluster
Analysis

Secure
Similarity
Protocol

SNVs Principal
Components

Analysis

SN
Ps

w

ei
gh

ts

P1 : [𝑃𝐶ଵଵ][𝑃𝐶ଵଶ]
P2 : [𝑃𝐶ଶଵ][𝑃𝐶ଶଶ]
P3 : [𝑃𝐶ଷଵ][𝑃𝐶ଷଶ]
P4 : [𝑃𝐶ସଵ][𝑃𝐶ସଶ]

2

1

4

Cl
us

te
r

m
ea

ns

MEDICAL UNIT (MU)

STORAGE AND
PROCESSING UNIT (SPU)

3

P1 : [0][0][1]
P2 : [1][0][0]
P3 : [0][0][1]
P4 : [1][0][1]

Genotype data

P1 : [1][0][0][1][1] …

P2 : [0][1][1][1][2] …

P3 : [2][0][0][0][0] …

P4 : [0][0][0][1][1] …

External Training Set

Ancestry dataPrincipal Components

Figure 2: Main steps of the protocol for privacy-preserving ancestry inference.

2.4.1 Principal Components Analysis of the SNPs

According to recent studies [5], ancestry information can be accurately inferred by applying

principal components analysis (PCA) to genotype data from an admixed population. Intu-

itively, PCA infers continuous axes (or principal components) of genetic variation; these

axes reduce the data to a small number of dimensions, and describe as much variability as

possible. In data sets with ancestry differences between samples, these axes often have

a geographical interpretation. For example in Fig. 3, by accurately identifying European,

African and Asian groups, the top two axes of variation well reflect the structure in con-

tinental populations.2 Our main goal is to infer the participants’ ancestry groups without

revealing any sensitive information, neither to the SPU nor to the MU.

The first step of the proposed privacy-preserving ancestry-inference algorithm consists

in performing a PCA on an external reference panel (or training set) of plaintext genotypes.

As a result of such a PCA, the MU obtains a set of SNP weights that will then be used

by the SPU to predict the encrypted principal components (PCs) for each participant. The

ancestry information can be extracted from the encrypted PCs of each participant. The
2Mixed ancestries can be identified using a lager number of top principal components.

9

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

Figure 3: Plots of the first two principal components for the HapMap [6] reference panel including
HIV-affected individuals with European (green, top left), Asian (blue, right) or African ancestry (red,
bottom left).

computation of SNP weights is performed as follows.

First, the MU selects an external reference panel consisting of genotype samples from

an admixed population that we assume will share a similar structure with the participants’

population. Such a panel can be retrieved from international genomics-related projects like

the HapMap project [6] or the 1000Genomes project [7], where admixed populations have

been extensively studied.

Then, the external reference panel is used as a training set for the PCA. Let X be the

V ⇥ N matrix of SNPs for the reference panel composed of N individuals with V SNPs.

Then, by performing a PCA on X|X, the MU obtains an N ⇥N matrix U and a N ⇥N diag-

onal matrix S. U represents the set of orthonormal eigenvectors or principal components

(PCs) for the symmetric matrix X|X and S is the matrix with the k th largest eigenvalue at

the k th diagonal element. The SNP weights are computed as W = S�1

(XU)|. Note that

W is a N ⇥ V matrix with the SNP weights for predicting the k th PC in the k th row.

Finally, let W
L

be the matrix obtained by keeping only the first L principal components of

10

W. Then, after selecting the L top PCs that best describe participants’ population structure,

the MU sends W
L

to the SPU along with the encrypted identifiers of the SNPs in the

reference panel. L = 2 has been proved to be a reasonable value for identifying continental

ancestry groups in admixed populations [5]. Next, the SPU computes the encrypted top

L PCs for each patient by applying the SNP weights W
L

to their encrypted SNPs through

homomorphic computations.

2.4.2 Computation of the Encrypted PCs

As mentioned in Section 2.3, each element [SNP

j

i

] of [SNP] is individually encrypted by

the i th participant’s public key pbk

i

. Once the SNP weights and the SNP identifiers are

received, the SPU selects, from [SNP], the columns corresponding to the V SNPs used to

compute W
L

. Let I be the total number of participants and [

˜SNP] be the I ⇥ V submatrix

extracted from [SNP], then the encrypted principal components are computed as [PC] =

[

˜SNP ·W|
L

]. In particular, each element [PC

l

i

] of the I ⇥L matrix [PC] is computed through

homomorphic operations as follows:

[PC

l

i

] = [

VX

v=1

SNP

v

i

·W l

v

] =

VY

v=1

[SNP

v

i

]

W

l
v
. (7)

2.4.3 Cluster Analysis

A cluster analysis at the MU is performed to automatically identify the main ancestry groups

within the reference panel population. Once the matrix W
L

is computed by keeping the

SNP weights for the L top principal components, the MU computes an N ⇥ L matrix X
L

=

(W
L

⇥ X). Matrix X
L

contains the PCs for each individual in the reference panel. Note

11

SNP1% SNP2% …% SNPM%

P1% [0]% [1]% [0]%

P2% [1]% [1]% [0]%

P3% [2]% [2]% [0]%
…"

PN% [0]% [1]% [1]%

Anc1% Anc2% Anc3%

[1]% [0]% [0]%

[0]% [1]% [0]%

[0]% [0]% [1]%

[1]% [0]% [0]%

Genotype data Ancestry data

Figure 4: Encrypted data model after ancestry inference.

that in this way the reference panel is reduced to L dimensions. Then, the MU performs a

K-means clustering on the X
L

matrix in order to partition the N individuals of the reference

panel into K clusters or ancestry groups.3 Each individual belongs to the ancestry group

with the nearest mean, that serves as an identifier of the ancestry group itself. Finally, the

MU sends a vector C, which contains the means of the clusters, to the SPU for comparing

them with the encrypted PCs of each participant and, thus infer his ancestry group.

2.4.4 Secure Similarity Protocol

Given the encrypted principal components [PC] of the participants and the plaintext vec-

tor of cluster means C, the SPU infers the encrypted ancestry group of each participant

through a secure similarity protocol. Intuitively, without revealing any sensitive information,

the SPU assigns each participant to one of the K ancestry groups based on the maxi-

mum similarity between his encrypted PCs and the cluster means. In summary, for each

participant, the protocol consists in (i) securely computing the similarity between his en-

crypted PCs and each cluster’s mean, (ii) finding the maximum encrypted similarity, and

(iii) computing the encrypted binary values that indicate the ancestry group he belongs to.
3The value of K depends on the reference panel selected for the PCA. Note that different MUs can choose

different reference panels.

12

Algorithm 1 Secure Comparison f

C

([a], [b])

Input: @SPU: [a], [b] and prk

1. @MU: prk2.
Output: @SPU: fC([a], [b]) = [(a  b)]. @MU: ?.

// Let a and b be two l-bit integers
1: SPU computes [z] [a] · [b]�1 · [2l] = [a� b+ 2

l
].

2: SPU generates a random number r, 0  r < n

2, and blinds [z]: [ẑ] [z] · [r] = [z + r].
3: SPU partially decrypts [ẑ], hẑi D([ẑ], prk

1
), and sends hẑi to MU.

4: MU decrypts hẑi with prk

2, ẑ D(hẑi, prk2)
5: MU computes � ẑ mod 2

l.
6: SPU computes ↵ r mod 2

l.
7: SPU and MU run a modified DGK comparison protocol (Appendix A.1) with private inputs ↵ and

� and obtain �SPU (@SPU) and �MU (@MU).

8: MU computes
ẑ

2

l
and sends


ẑ

2

l

�
and [�MU] to SPU.

9: SPU computes [(� < ↵)]:
if �SPU = 1 then [(� < ↵)] [�MU],
else [(� < ↵)] [1] · [�MU]

�1.

10: SPU computes [(a  b)]

ẑ

2

l

�
· (
h
r

2

l

i
· [(� < ↵)])

�1

To design such a protocol, we rely on three secure subprotocols adapted from [8].

The first one, described in Algorithm 1, consists of a secure two-party comparison pro-

tocol that, given two ciphertexts [a] and [b] encrypted under the same public key, outputs

the encrypted result of their comparison. Let f
C

([a], [b]) represent the encrypted result of

the comparison protocol with inputs [a] and [b], where a and b are l-bit integers. Then,

f

C

([a], [b]) outputs the encryption of 1 when a 6 b and, otherwise, the encryption of 0.

Note that homomorphic encryption does not preserve any order in the ciphertext domain,

hence Algorithm 1 is needed to let a party compare two ciphertexts in a privacy-preserving

way.

The second protocol, described in Algorithm 2, is a secure two-party multiplication pro-

tocol that, given two ciphertexts [a] and [b] encrypted under the same public key, provides

the encryption of their corresponding plaintexts. We denote by ⌦ the secure multiplication

protocol, such that [a] ⌦ [b] = [a · b]. Note that the modified Paillier cryptosystem used in

13

Algorithm 2 Secure Multiplication [a]⌦ [b] = [a⇥ b]

Input: @SPU: [a], [b] and prk

1. @MU: prk2.
Output: @SPU: [a · b]. @MU: ?.
1: SPU generates two random numbers r1 and r2.
2: SPU blinds [a] and [b]:

[â] [a] · [�r1] = [a� r1],
[

ˆ

b] [b] · [�r2] = [b� r2].
3: SPU partially decrypts [â] and [

ˆ

b] with prk

1:
hâi D([â], prk

1
),

hˆbi D([

ˆ

b], prk

1
).

4: SPU sends hâi and hˆbi to MU.
5: MU decrypts hâi and hâi with prk

2:
â D(hâi, prk2),
ˆ

b D(hˆbi, prk2).
6: MU computes [â · ˆb] and sends it to SPU.
7: SPU computes [a · b] [â · ˆb] · [a]r2 · [b]r1 · [�r1 · r2] = [â · ˆb+ r2 · a+ r1 · b� r1 · r2].

the proposed solution is only additively homomorphic and does not support multiplication

between ciphertexts. Hence, Algorithm 2 is needed to obtain the encrypted product of two

plaintext messages, given only their corresponding ciphertexts.

The third protocol, described in Appendix A.1 (Algorithm 4), is a modified DGK com-

parison protocol for private inputs [9]. It is used as a subprotocol in Algorithm 1.

The secure similarity protocol requires as input parameters the matrix of encrypted

principal components [PC] along with the vector of clusters’ means C; it outputs the en-

crypted matrix of ancestry information [A]. The details of the protocol are described in

Algorithm 3.

Once [A] is obtained, this can be used to establish clinical relevance for genetic risk

testing.

14

Algorithm 3 Secure Similarity Protocol
Input: @SPU: [PC] and C. @MU: ?.
Output: @SPU: [A]. @MU: ?.

//Let I be # of participants, K # of ancestry groups (or clusters), and L # of selected top PCs.
1: for all i : 0 < i  I do

// SPU computes the encrypted similarities between encrypted PCs and cluster means:
2: for all k : 0 < k  K do
3: [Sim

k
i] [

PL
l=1(PC

l
i � C

k
l)

2
] =

QL
l=1([PC

l
i] · [�Ck

l])⌦ ([PC

l
i] · [�Ck

l]).
4: end for

// SPU computes the maximum similarity:
5: [Mi] [Sim

1
i].

6: for all k : 1 < k  K do
7: [Mi] [Mi · (Sim

k
i  Mi) + Sim

k
i · (Mi  Sim

k
i)] =

{[Mi]⌦ fC([Sim
k
i], [Mi])} · {[Simk

i]⌦ fC([Mi], [Sim
k
i])}

8: end for
// SPU computes the encrypted value of each ancestry group for each participant:

9: for all k : 0 < k  K do
10: [A

k
i] fC([Mi], [Sim

k
i])

11: end for
12: end for

2.5 Privacy-Preserving Genetic Risk Test Computation

The privacy-preserving computation of the risk test is performed as follows. Once a clin-

ician at the MU wants to compute the genetic risk of participant P for condition X, the

MU sends to the SPU the set of encrypted IDs of the SNPs correlated with X, '. The

SPU retrieves from its database the corresponding set of encrypted SNPs of that patient,

{[SNPj

P

(X)]}, and sends them back to the MU, along with the relevant encrypted ancestry

information [A

k

P

]. We assume that the genetic risk score, G(X), is computed with an addi-

tive model as proposed in [10]. The computation of its encrypted version, [G(X)], is based

on the homomorphic properties of the cryptosystem, as shown below:

[G(X)] =

h
A

k

P

⇥
⇣
↵+

X

SNP

j
P2'

�

j

SNP

j

P

⌘i
= [A

k

P

]⌦
⇣
[↵]⇥

Y

SNP

j
P2'

[SNP

j

P

]

�j

⌘
, (8)

15

where �

j

represents the contribution of SNPj

P

to condition X, ↵ represents the baseline

risk, and⌦ represents the secure multiplication protocol described in Algorithm 2. Note that

to prevent the SPU from inferring the nature of the test based on the number of requested

SNPs, the MU can include an arbitrary number of “dummy” SNPs with null contribution to

X.4

Finally, the encrypted genetic risk score is sent back to the SPU, where it is partially

decrypted by using prk

1

P

to obtain [

ˆ

G(X)]. The SPU sends [

ˆ

G(X)] back to the MU, where

it is decrypted using prk

2

P

to obtain the final plaintext risk score G(X).

References

[1] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key cryptosystem with a

double trapdoor decryption mechanism and its applications,” Proceedings of Asiacrypt

03, pp. 37–54, 2003.

[2] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-encryption

schemes with applications to secure distributed storage,” ACM Transactions on Infor-

mation and System Security (TISSEC), vol. 9, no. 1, pp. 1–30, 2006.

[3] I. Damgård, M. Geisler, and M. Krøigaard, “Homomorphic encryption and secure com-

parison,” Int. J. Appl. Cryptol., vol. 1, pp. 22–31, 2008.

[4] J. H. Relethford, “Hardy-Weinberg equilibrium,” in Human Population Genetics. John

Wiley & Sons, Inc., 2012, pp. 23–48.
4The system also allows for the integration of non-genomic (clinical and environmental) factors that are

usually required when there are strong known influences of environment on a particular trait, such as metabolic
disorders, because they increase the accuracy of the test.

16

[5] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich,

“Principal components analysis corrects for stratification in genome-wide association

studies,” Nature Genetics, pp. 904–909, 2006.

[6] The International HapMap 3 Consortium, “Integrating common and rare genetic vari-

ation in diverse human populations,” Nature, vol. 467, pp. 52–58, 2010.

[7] T. . G. P. Consortium, “An integrated map of genetic variation from 1,092 human

genomes,” Nature, vol. 491, pp. 56–65, 2012.

[8] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk, “Generating private recommendations

efficiently using homomorphic encryption and data packing,” IEEE Transactions on

Information Forensics and Security, vol. 7, no. 3, pp. 1053–1066, Jun. 2012.

[9] T. Veugen, “Improving the DGK comparison protocol,” in 2012 IEEE International

Workshop on Information Forensics and Security (WIFS), 2012, pp. 49–54.

[10] M. Rotger and et al., “Contribution of genetic background, traditional risk factors and

HIV-related factors to coronary artery disease events in HIV-positive persons,” Clinical

Infectious Diseases, mar 2013.

A Appendix

A.1 DGK Comparison Protocol

In this section, we describe an extension by Veugen [9] of the secure comparison protocol

for private inputs proposed by Damgård, Geisler and Krøigaard [3]. The initial protocol has

17

been originally designed to efficiently solve the so-called millionaire’s problem and it is cur-

rently used as a sub-protocol in applications with secure comparisons on encrypted data.

The extended version achieves perfect security for both parties involved in the protocol

with a small increase in communication and computational complexity. The details are ex-

plained in [9]. In Algorithm 4, we provide a formal description of the protocol adapted to the

system model proposed in the main manuscript. We assume that the two parties involved

in the protocol are the SPU and the MU, and that each of them has a private input, ↵ and

�, respectively (see Algorithm 2). At the end of the protocol only the SPU, which has com-

puted s (at step 8), can learn the comparison result by computing �

SPU

� �

MU

= (↵  �).

Algorithm 4 DGK comparison with private inputs
Input: @SPU: ↵. @MU: �.
Output: @SPU: �SPU 2 {0, 1}. @MU: �MU 2 {0, 1}
1: MU generates pbkDGK and prkDGK .
2: MU sends to SPU JdK, where d = 1 if (ẑ < (N � 1)/2) or d = 0 otherwise.
3: MU sends to SPU the encrypted bits J�iK, 0  i < l.
4: SPU modifies JdK:

if 0  r < (N � 1)/2 then JdK J0K.
5: for all i, SPU computes J↵i � �iK:

if ↵i = 0, then J↵i � �iK J�iK,
else J↵i � �iK J1K · J�iK�1

mod n

6: SPU computes ↵̄ = (r �N) mod 2

l, and for all i:
if ↵i = ↵̄i, then JwiK J↵i � �iK,
else JwiK J↵i � �iK · JdK�1.

7: for all i, SPU computes JwiK Jw2i
i K mod n.

8: SPU chooses a uniformly random bit �SPU , and computes s = 1� 2 · �SPU .
9: for all i, SPU computes JciK JsK · J↵iK · JdK↵̄i�↵i · J�iK�1 · (

Ql�1
j=i+1JwjK)3 mod n.

10: SPU blinds ci with a random exponent ri of 2t bits:
JciK JciKri mod n.

11: SPU sends JciK to MU in a random order.
12: MU checks if one of the JciK decrypts to zero:

if yes, �MU 1, else �MU 0.

18

	Preliminaries
	Modified Paillier Cryptosystem
	DGK Cryptosystem

	Materials and Methods
	Overview
	Data Model
	Initialization and Encryption
	Privacy-Preserving Ancestry Inference
	Principal Components Analysis of the SNPs
	Computation of the Encrypted PCs
	Cluster Analysis
	Secure Similarity Protocol

	Privacy-Preserving Genetic Risk Test Computation

	Appendix
	DGK Comparison Protocol

