Table of contents

- **1. Figure S1:** FACS analysis of commercial exosomes.
- 2. Figure S2: Western Blot analysis of commercial exosomes.
- **3. Figure S3:** Hydrodynamic size distribution profiles of different exosomes used.
- 4. Figure S4. Comparison of capture antibodies by LFIA.

Figure S1. FACS analysis of CD9, CD63 and CD81 expression on plasma (HBM-PEP) and urine (HBM-PEU) purified exosomes. Green line, isotype control. Purple line, the indicated antibody.

Figure S2. Western Blot analysis of CD63, CD81 and CD9 expression on 20 µg of exosomes purified from plasma (HBM-PEP) and urine (HBM-PEU) using respectively antibodies anti-CD63, anti-CD81 and anti-CD9 (HansaBioMed, Tallinn, Estonia).

Figure S3. Hydrodynamic size distribution profiles of different types of exosomes (Ma-Mel- 86c, plasma and urine exosomes from healthy donors). The graph shows one reading representative of three. Data shown an average size of 311 nm (PDI=0.072) and 174 nm (PDI=0.270) for exosomes purified from plasma and urine of healthy donors (HBM), respectively.

Figure S4. Comparison of capture antibodies by LFIA using 1.78×10^7 exosomes/µL of the melanoma cell line Ma-Mel-86c. All the assays were performed in triplicate and were scanned in grey scale and optical densities measured using ImageJ 1.48v software. Capture mAb: A) Anti-CD81. B) Anti-CD9. C) Blend of anti-CD9 and anti-CD81. Mixtures of antibodies in the test line did not improve the results obtained when anti-CD9 alone was used as capture antibody.