Inhibition of methane and natural gas hydrate formation by altering the structure of water with amino acids

Jeong-Hoon Sa^{1*}, Gye-Hoon Kwak¹, Kunwoo Han², Docheon Ahn³, Seong Jun Cho⁴, Ju Dong Lee⁴, and Kun-Hong Lee^{1*}

¹Department of Chemical Engineering, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea

²CO₂ Project Team, Research Institute of Industrial Science & Technology,

67 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-600, Korea

³Beamline Division, Pohang Accelerator Laboratory,

80 Jigok-Ro 127Beon-Gil, Nam-Gu, Pohang, Gyeongbuk 790-834, Korea

⁴Offshore Plant Resources R&D Center, Korea Institute of Industrial Technology,

30 Gwahaksandan 1-Ro 60Beon-Gil, Gangseo-Gu, Busan 618-230, Korea

*Corresponding authors:

Dr. Jeong-Hoon Sa; Tel: 82-54-279-5305; Fax: 82-54-279-5949; e-mail: jumuri@postech.ac.kr Prof. Kun-Hong Lee; Tel: 82-54-279-2271; Fax: 82-54-279-8298; e-mail: ce20047@postech.ac.kr

Present address of Dr. Jeong-Hoon Sa:

Chemical & Biological Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, Unites States

Correspondence and requests for materials should be addressed to J.H.S. (e-mail: jumuri@postech.ac.kr) or K.H.L. (e-mail: ce20047@postech.ac.kr)

1. Materials and methods

Materials

Distilled water was prepared in the laboratory. Ultra-high purity CH₄ (99.999%) was supplied by KOREA NOBLE GAS Co. (Korea), and the NG mixture (CH₄ 93.0%, C₂H₆ 5.0%, C₃H₈ 2.0%) was obtained from PS CHEM Co. (Korea). The chemicals used in this study, including glycine, L-alanine, L-serine, L-proline, polyvinyl pyrrolidone (PVP), and tetrahydrofuran (THF) were purchased from Sigma-Aldrich, USA. All chemicals were of reagent grade (\geq 99%) and used without further purification.

Crystal morphology observation

THF hydrate crystals were synthesized by using a glass pipette (Fig. S1). The experimental procedure was similar to that in previous reports^{1,2}. A glass test tube was filled with an aqueous THF solution with a concentration of 5.56 mol%, and closed with a rubber stopper coupled with a glass pipette. The test tube was then immersed in an ethylene glycol bath to maintain its temperature at 276.15 K. This temperature is 1.4 K above the phase equilibrium temperature of THF hydrates under atmospheric conditions³. To initiate THF hydrate formation, a thin Cu wire cooled in liquid N₂ was inserted into the glass pipette. As the growth front reached the end of the glass pipette, a small THF hydrate crystal grew into the aqueous phase. This procedure was repeated with aqueous THF solutions containing either 0.1 mol% of each amino acid or 0.5 wt% PVP.

Figure S1. Experimental system for THF hydrate crystal morphology observation.

2. Model amino acids

Each amino acid has different characteristic physical and chemical properties, which strongly depend on its side chains. The properties of the amino acids tested in this study are summarized in Table S1.

Amino acid	Glycine (gly)	Alanine (ala)	Serine (ser)	Proline (pro)
Molecular structure	H₂N∕COOH	H ₂ N COOH	H ₂ N COOH	NH СООН
Side chain	-H	-CH ₃	-CH ₂ OH	-CH ₂ CH ₂ CH ₂ -
Solubility in water at 273.15 K (mol%) ^a	3.32	2.51	3.00	16.63
Hydrophobicity ^b	1.8	-0.4	-0.8	-1.6
pK _{a1} (-COOH) at 273.15 K ^c	2.39	2.41	2.23	1.99
pK _{a2} (-NH ₂) at 273.15 K ^c	10.43	10.32	9.80	11.29

Table	S1 .	The	phy	vsicoc	hemical	pro	perties	of tl	he moo	del	amino	acids.
			r	/~		r	p					

^aSolubility values were obtained from previous reports^{4–6}.

^bHydrophobicity values were obtained from a previous report⁷.

^cAcid dissociation constants at 273.15 K were calculated by using the Van't Hoff equation and literature values from previous reports⁸⁻¹⁰.

3. Lattice parameter calculations

The lattice parameter values were calculated from the PXRD patterns by performing profile matching¹¹ with the FullProf program¹².

Table S2. Calculated lattice parameters of CH₄ hydrates in the presence of amino acids.

Tomporatura		La	attice parameter (Å)	
(K)	Pure water	gly 1.0 mol%	L-ala 1.0 mol%	L-ser 1.0 mol%	L-pro 1.0 mol%
80	11.848886 ± 0.000059	11.846941 ± 0.000087	11.850635 ± 0.000086	11.840753 ± 0.000044	11.847330 ± 0.000060
110	$\begin{array}{c} 11.865589 \\ \pm \ 0.000059 \end{array}$	-	-	-	-
140	11.875465 ± 0.000063	-	-	-	-
170	$\begin{array}{c} 11.887923 \\ \pm \ 0.000167 \end{array}$	-	-	-	-
200	11.907848 ± 0.000136	-	-	-	-

Table S3. Calculated lattice parameters of NG hydrates in the presence of amino acids.

Tommorotuno	Lattice parameter (Å)								
(K)	Pure water	gly 1.0 mol%	L-ala 1.0 mol%	L-ser 1.0 mol%	L-pro 1.0 mol%				
80	17.119015 ± 0.000104	17.114351 ± 0.000191	17.105139 ± 0.000194	17.118622 ± 0.000173	17.104891 ± 0.000145				
110	17.133560 ± 0.000097	-	-	-	-				
140	17.150503 ± 0.000109	-	-	-	-				
170	17.170921 ± 0.000111	-	-	-	-				
200	17.200790 ± 0.000563	-	-	-	-				

4. Crystallographic information

Amino acid	Crystal system	Space group	Temperature (K)	Cell dimension (Å, °)	Reference
		P2 /n	298	a = 5.1020(8), b = 11.971(2), c = 5.458(2) $\alpha = \gamma = 90,$ $\beta = 111.42(3)$	Acta Cryst. 11, 654-663 (1958).
α-glycine	Monoclinic	(No. 14)	120	a = 5.084(1), b = 11.820(2), c = 5.4579(9) $\alpha = \gamma = 90,$ $\beta = 111.95(2)$	Acta Cryst. B36 , 3052-3059 (1980).
β-glycine	Monoclinic	<i>P2</i> ₁ (No. 4)	298	a = 5.077(4), b = 6.267(6), c = 5.379(9) $\alpha = \gamma = 90,$ $\beta = 113.12$	Acta Cryst. 13 , 35-45 (1960).
	Tricord	P3,	298	a = b = 7.037, c = 5.483 $\alpha = \beta = 90,$ $\gamma = 120$	Acta Cryst. 11, 225-226 (1958).
γ-giycine	Higolia	(No. 144)	83	$a = b = 6.975(2),c = 5.473(2)\alpha = \beta = 90,\gamma = 120$	Acta Cryst. B36 , 115-120 (1980).
Lalaria	Orthankanskie	P2 ₁ 2 ₁ 2	298	$a = 6.032(1),b = 12.343(1),c = 5.784(1)\alpha = \beta = \gamma = 90$	Acta Cryst. 20 , 550-555 (1966).
L-alanine	Orthornomole	(No. 19)	23	$a = 5.928(1),b = 12.260(2),c = 5.794(1)\alpha = \beta = \gamma = 90$	J. Phys. Chem. 92 , 966-973 (1988).
L-serine	Orthorhombic	<i>P2</i> ₁ 2 ₁ 2 ₁ (No. 19)	298	$a = 8.599(5),b = 9.348(3),c = 5.618(2)\alpha = \beta = \gamma = 90$	Acta Cryst. B30 , 2573-2578 (1974).
L-serine	Orthonkombie	P2 ₁ 2 ₁ 2	298	$a = 9.365(7),b = 12.239(9),c = 4.835(7)\alpha = \beta = \gamma = 90$	Acta Cryst. B29 , 876-884 (1973).
monohydrate		(No. 19)	97	$a = 4.7987(4),b = 9.3063(9),c = 12.1460(11)\alpha = \beta = \gamma = 90$	J. Phys. Chem. A 114 , 9570-9578 (2010).
L-proline	Orthorhombic	$\frac{P2_{1}^{2}2_{1}^{2}}{(No. 19)}$	298	a = 11.550, b = 9.020, c = 5.200 $\alpha = \beta = \gamma = 90$	Kristallografiya 10 , 833-844 (1965).

Table S4. Crystallographic information for the amino acid crystals.

5. In situ Raman spectra

The in situ Raman spectra of the CH_4 (Fig. S2) and NG hydrates (Fig. S3) in the presence of amino acids were recorded.

Figure S2. In situ Raman spectra of CH₄ hydrates at 274.15 K in the presence of (a) glycine, (b) L-alanine, (c) L-serine, and (d) L-proline for the C-H stretching region. I_L/I_S is the ratio of the peak intensities of the large and small hydrate cages.

Figure S3. In situ Raman spectra of NG hydrates at 274.15 K in the presence of (a) glycine, (b) L-alanine, (c) L-serine, and (d) L-proline for the C-H and C-C stretching regions. I_L/I_S is the ratio of the peak intensities of the large and small hydrate cages.

6. Hydrate phase equilibrium data

Pure	Pure water		gly 0.5 mol%		gly 1.3 mol%		gly 2.2 mol%		gly 3.0 mol%	
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	
274.65	29.63	274.45	29.40	273.95	29.53	273.35	29.42	272.85	29.16	
278.75	44.48	278.35	44.28	277.65	44.07	277.25	44.16	276.75	43.98	
281.55	59.45	281.15	59.28	280.45	59.10	279.95	58.99	279.45	58.78	
283.55	74.61	283.25	74.25	282.45	73.95	282.05	74.01	281.40	73.49	
285.15	89.96	284.85	89.65	284.30	89.30	283.75	89.23	283.05	88.71	

Table S5. Data for CH₄ hydrate phase equilibria in the presence of amino acids.

L-0.5 n	ala nol%	L-: 1.3 n	ala nol%	L- 2.2 n	ala nol%	L-ser 1.3 mol%		L-ser 3.0 mol%	
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
274.25	29.47	273.95	29.53	273.05	29.32	273.75	29.38	272.65	29.37
278.25	44.13	277.65	44.07	276.95	44.03	277.45	44.23	276.50	44.00
281.05	59.19	280.35	59.08	279.85	59.01	280.25	59.17	279.15	58.85
283.25	74.33	282.35	73.61	281.92	73.93	282.25	74.25	281.20	73.81
284.85	89.52	284.15	89.28	283.58	89.14	284.05	89.40	282.85	88.89

L-j 1.3 n	pro nol%	L-pro 3.0 mol%		L-pro 6.0 mol%		L-j 9.0 n	pro nol%
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
273.65	29.41	272.30	29.29	268.40	28.87	264.90	28.39
277.35	44.21	276.15	44.05	272.49	43.33	268.10	42.43
280.05	59.06	278.85	58.74	275.05	57.77	270.65	56.62
282.25	74.16	280.95	73.78	277.00	72.31	272.65	70.74
283.85	89.34	282.50	88.68	278.65	86.98	274.00	84.73

Pure	water	g 0.5 n	ly nol%	g 1.3 r	ly nol%	g 2.2 n	ly nol%	g 3.0 n	ly nol%
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
276.30	12.75	276.25	12.48	275.85	12.43	275.45	12.47	274.85	12.45
280.70	19.54	280.45	19.47	280.15	19.52	279.75	19.50	279.15	19.43
283.30	26.56	283.05	26.56	282.65	26.53	282.25	26.43	281.75	26.51
285.25	33.85	285.05	33.71	284.75	33.55	284.35	33.55	283.85	33.55
287.05	40.94	286.75	40.86	286.45	41.03	285.95	40.88	285.35	40.70

Table S6. Data for NG hydrate phase equilibria in the presence of amino acids.

L- 0.5 n	ala nol%	L-: 1.3 n	ala 101%	L- 2.2 n	ala nol%	L-ser 1.3 mol%		L-ser 3.0 mol%	
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
276.15	12.51	275.75	12.45	275.15	12.37	275.45	12.40	274.05	12.36
280.15	19.48	279.95	19.50	279.45	19.50	279.75	19.49	278.35	19.38
282.95	26.55	282.55	26.55	282.05	26.55	282.55	26.55	281.45	26.43
284.85	33.71	284.55	33.57	284.15	33.59	284.45	33.73	283.45	33.50
286.65	41.02	286.35	41.06	285.75	40.86	286.15	40.67	284.75	40.52

L-j 1.3 n	pro nol%	L-j 3.0 n	L-pro 3.0 mol%		L-pro 6.0 mol%		pro nol%
T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)	T (K)	P (bar)
274.85	12.41	273.65	12.34	270.75	12.35	267.65	12.06
279.35	19.46	277.65	19.30	274.50	19.03	271.25	18.91
282.05	26.46	280.45	26.31	277.10	25.95	274.00	25.68
283.95	33.60	282.45	33.39	279.20	32.92	275.70	32.57
285.45	40.66	283.75	40.55	280.65	39.95	276.75	39.32

7. Regression of hydrate phase equilibrium data with an Antoine-like equation

Antoine-like equation: $\ln P (bar) = a + b/T (K)$

System	Concentration (mol%)	a	b
Pure water	-	34.4404	-8540.8199
	0.5	34.3362	-8502.7111
	1.3	33.9824	-8384.0658
gly	2.2	34.0895	-8399.8548
	3.0	34.8552	-8598.0141
	0.5	33.7398	-8333.2723
L-ala	1.3	34.4614	-8516.3482
	2.2	33.7328	-8294.9022
_	1.3	34.2065	-8440.1339
L-ser	3.0	34.6077	-8520.9912
	1.3	34.3594	-8479.5797
	3.0	34.4927	-8479.6671
L-pro	6.0	34.3103	-8317.8703
	9.0	36.0147	-8654.0903

Table S7. Coefficients of the regression equation fitted to CH₄ hydrate phase equilibria.

Table S8. Coefficients of the regression equation fitted to NG hydrate phase equilibria.

System	Concentration (mol%)	а	b
Pure water	-	35.1041	-9011.5565
	0.5	35.8276	-9210.4818
	1.3	35.6570	-9151.4956
gly	2.2	35.8975	-9206.2017
	3.0	35.7538	-9148.0186
	0.5	35.5808	-9135.0064
L-ala	1.3	35.5282	-9110.2807
	2.2	a 35.1041 35.8276 35.6570 35.8975 35.7538 35.5808 35.5282 35.5595 35.2683 35.0677 36.0779 36.7703 36.2210 39.2628	-9103.2140
Ţ	1.3	35.2683	-9032.8011
L-ser	3.0	35.0677	-8938.4139
	1.3	36.0779	-9244.6081
Ŧ	3.0	36.7703	-9388.7323
L-pro	6.0	36.2210	-9133.3231
	9.0	39.2628	-9857.5821

8. Quantitative analysis of hydrate phase equilibrium data

The ΔT and ΔP values were calculated by performing quantitative analyses of the hydrate phase equilibrium data.

gly 0.5 mol% $T_0(K)$ $\Delta T(K)$ P_0 (bar) ΔP (bar) T (K) P (bar) 274.9834 274.45 29.40 -0.53337 27.67788 1.722119 278.35 44.28 278.6577 -0.30765 42.80508 1.474916 59.28 -0.18553 1.175726 281.15 281.3355 58.10427 74.25 283.4378 -0.18778 72.78146 1.468540 283.25 285.2218 284.85 89.65 -0.37178 86.21378 3.436218 gly 1.3 mol% $T_0(K)$ $\Delta T(K)$ P_0 (bar) ΔP (bar) P (bar) T (K) 273.95 29.53 275.0224 -1.07244 26.14964 3.380363 278.6144 -0.96444 39.61858 277.65 44.07 4.451418 -0.85735 53.86149 280.45 59.10 281.3073 5.238513 282.45 73.95 283.3997 -0.94970 66.82367 7.126335 284.3 89.30 285.1845 -0.88453 81.35518 7.944816 gly 2.2 mol% P_0 (bar) ΔP (bar) $T_0(K)$ $\Delta T(K)$ T (K) P (bar) 273.35 29.42 274.9894 -1.63939 24.42002 4.999984 277.25 44.16 278.6330 -1.38298 37.89874 6.261257 279.95 58.99 281.2901 -1.34009 7.979889 51.01011 283.4073 282.05 74.01 -1.35733 64.01860 9.991403 -1.42706 283.75 89.23 285.1771 76.75313 12.47687 gly 3.0 mol% $T_0(K)$ $\Delta T(K)$ P_0 (bar) ΔP (bar) T (K) P (bar) 6.098919 272.85 29.16 274.9108 -2.06082 23.06108 276.75 43.98 278.5959 -1.84586 35.84708 8.132919 279.45 58.78 281.2571 -1.80705 48.30028 10.47972 73.49 283.3410 -1.94104 13.79623 281.40 59.69377 283.05 88.71 285.1214 -2.07142 71.24720 17.46280

Table S9. Quantitative analysis of the CH₄ hydrate phase equilibrium data.

L-ala 0.5 mol%					
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
274.25	29.47	275.0044	-0.75442	27.05682	2.413180
278.25	44.13	278.6268	-0.37680	42.33565	1.794352
281.05	59.19	281.3214	-0.27145	57.47962	1.710382
283.25	74.33	283.4479	-0.19791	72.78146	1.548540
284.85	89.52	285.2080	-0.35796	86.21378	3.306218
		L-ala 1.	3 mol%		
T (K)	P (bar)	$T_{0}\left(K ight)$	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
273.95	29.53	275.0224	-1.07244	26.14964	3.380363
277.65	44.07	278.6144	-0.96444	39.61858	4.451418
280.35	59.08	281.3042	-0.95421	53.27956	5.800436
282.35	73.61	283.3564	-1.00637	66.11183	7.498166
284.15	89.28	285.1824	-1.0324	80.07518	9.204824
		L-ala 2.	2 mol%		
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P_0 (bar)	ΔP (bar)
273.05	29.32	274.9592	-1.90925	23.59593	5.724070
276.95	44.03	278.6062	-1.65618	36.65495	7.375046
279.85	59.01	281.2932	-1.44323	50.45703	8.552965
281.92	73.93	283.3972	-1.47716	63.13089	10.79911
283.58	89.14	285.1675	-1.58745	75.38060	13.75940

L-ser 1.3 mol%					
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P_0 (bar)	ΔP (bar)
273.75	29.38	274.9773	-1.22734	25.56076	3.819243
277.45	44.23	278.6474	-1.19738	38.74976	5.480244
280.25	59.17	281.3183	-1.06831	52.70354	6.466461
282.25	74.25	283.4378	-1.18778	65.40711	8.842888
284.05	89.40	285.1952	-1.14518	79.23234	10.16766
		L-ser 3.	0 mol%		
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
272.65	29.37	274.9743	-2.32433	22.53761	6.832395
276.50	44.00	278.6000	-2.09999	34.86067	9.139334
279.15	58.85	281.2681	-2.11807	46.73961	12.11039
281.20	73.81	283.3819	-2.18188	58.41900	15.39100
282.85	88.89	285.1407	-2.29071	69.74321	19.14679

L-pro 1.3 mol%						
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)	
273.65	29.41	274.9864	-1.33638	25.27099	4.139010	
277.35	44.21	278.6433	-1.29326	38.32205	5.887953	
280.05	59.06	281.3011	-1.25107	51.56887	7.491134	
282.25	74.16	283.4264	-1.17637	65.40711	8.752888	
283.85	89.34	285.1888	-1.33879	77.57139	11.76861	
		L-pro 3	.0 mol%			
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)	
272.30	29.29	274.9502	-2.65018	21.64818	7.641818	
276.15	44.05	278.6103	-2.46031	33.52225	10.52775	
278.85	58.74	281.2507	-2.40074	45.22616	13.51384	
280.95	73.78	283.3781	-2.42806	56.86126	16.91874	
282.50	88.68	285.1182	-2.61820	67.18228	21.49772	
		L-pro 6	0 mol%			
T (K)	P (bar)	$T_{0}\left(K ight)$	$\Delta T(K)$	P_0 (bar)	ΔP (bar)	
268.40	28.87	274.8224	-6.42240	13.72424	15.14576	
272.49	43.33	278.4606	-5.97061	22.12685	21.20315	
275.05	57.77	281.0966	-6.04661	29.62206	28.14794	
277.00	72.31	283.1890	-6.18896	36.85958	35.45042	
278.65	86.98	284.9341	-6.28408	44.24277	42.73723	
L-pro 9.0 mol%						
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)	
264.90	28.39	274.6742	-9.77422	9.013511	19.37649	
268.10	42.43	278.2702	-10.1702	13.24415	29.18585	
270.65	56.62	280.9107	-10.2607	17.88038	38.73962	
272.65	70.74	282.9830	-10.3330	22.53761	48.20239	
274.00	84.73	284.6852	-10.6852	26.29884	58.43116	

	gly 0.5 mol%						
T (K)	P (bar)	$T_{0}(K)$	ΔT (K)	P ₀ (bar)	ΔP (bar)		
276.25	12.48	276.5980	-0.34804	11.97811	0.501888		
280.45	19.47	280.4261	0.02388	19.52335	-0.053350		
283.05	26.56	283.1624	-0.11240	26.22647	0.333532		
285.05	33.71	285.2995	-0.24948	32.79086	0.919140		
286.75	40.86	287.0476	-0.29757	39.55031	1.309695		
		gly 1.3	mol%				
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)		
275.85	12.43	276.5640	-0.71396	11.42471	1.005291		
280.15	19.52	280.4485	-0.29850	18.86299	0.657008		
282.65	26.53	283.1523	-0.50234	25.07105	1.458953		
284.75	33.55	285.2565	-0.50651	31.71668	1.833319		
286.45	41.03	287.0855	-0.63553	38.26977	2.760229		
		gly 2.2	mol%				
T (K)	P (bar)	T ₀ (K)	ΔT (K)	P ₀ (bar)	ΔP (bar)		
275.45	12.47	276.5912	-1.14123	10.89538	1.574624		
279.75	19.50	280.4396	-0.68956	18.01506	1.484939		
282.25	26.43	283.1187	-0.86875	23.96347	2.466533		
284.35	33.55	285.2565	-0.90651	30.33566	3.214337		
285.95	40.88	287.0520	-1.10204	36.22146	4.658543		
	gly 3.0 mol%						
T (K)	P (bar)	T ₀ (K)	ΔT (K)	P ₀ (bar)	ΔP (bar)		
274.85	12.45	276.5776	-1.72761	10.14438	2.305621		
279.15	19.43	280.4082	-1.25817	16.80994	2.620061		
281.75	26.51	283.1456	-1.39563	22.64346	3.866540		
283.85	33.55	285.2565	-1.40651	28.68858	4.861419		
285.35	40.70	287.0117	-1.66170	33.89904	6.800955		

Table S10. Quantitative analysis of the NG hydrate phase equilibrium data.

L-ala 0.5 mol%					
T (K)	P (bar)	$T_{0}\left(K ight)$	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
276.15	12.51	276.6184	-0.46842	11.83745	0.672550
280.15	19.48	280.4306	-0.28060	18.86299	0.617008
282.95	26.55	283.1590	-0.20905	25.93302	0.616976
284.85	33.71	285.2995	-0.44948	32.07102	1.638977
286.65	41.02	287.0833	-0.43331	39.11907	1.900932
		L-ala 1.	.3 mol%		
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
275.75	12.45	276.5776	-0.82761	11.29016	1.159842
279.95	19.50	280.4396	-0.48956	18.43445	1.065545
282.55	26.55	283.1590	-0.60905	24.78974	1.760260
284.55	33.57	285.2619	-0.71189	31.01897	2.551027
286.35	41.06	287.0922	-0.74222	37.85163	3.208374
		L-ala 2.	2 mol%		
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P_0 (bar)	ΔP (bar)
275.15	12.37	276.5229	-1.37290	10.51358	1.856417
279.45	19.50	280.4396	-0.98956	17.40272	2.097282
282.05	26.55	283.1590	-1.10905	23.42704	3.122962
284.15	33.59	285.2673	-1.11727	29.66648	3.923524
285.75	40.86	287.0476	-1.29757	35.43125	5.428746

L-ser 1.3 mol%					
T (K)	P (bar)	$T_{0}(K)$	$\Delta T(K)$	P_0 (bar)	ΔP (bar)
275.45	12.40	276.5435	-1.09345	10.89538	1.504624
279.75	19.49	280.4351	-0.68508	18.01506	1.474939
282.55	26.55	283.1590	-0.60905	24.78974	1.760260
284.45	33.73	285.3048	-0.85484	30.67554	3.054465
286.15	40.67	287.0050	-0.85496	37.02814	3.641859
		L-ser 3.	0 mol%		
T (K)	P (bar)	T ₀ (K)	$\Delta T(K)$	P ₀ (bar)	ΔP (bar)
274.05	12.36	276.5160	-2.46603	9.218462	3.141538
278.35	19.38	280.3857	-2.03569	15.32046	4.059544
281.45	26.43	283.1187	-1.66875	21.88450	4.545496
283.45	33.50	285.2430	-1.79305	27.43165	6.068350
284.75	40.52	286.9712	-2.22119	31.71668	8.803319

	L-pro 1.3 mol%						
T (K)	P (bar)	T ₀ (K)	ΔT (K)	P ₀ (bar)	ΔP (bar)		
274.85	12.41	276.5503	-1.70029	10.14438	2.265621		
279.35	19.46	280.4216	-1.07164	17.20298	2.257020		
282.05	26.46	283.1288	-1.07884	23.42704	3.032962		
283.95	33.60	285.2700	-1.31996	29.01114	4.588861		
285.45	40.66	287.0027	-1.55271	34.27617	6.383831		
		L-pro 3	.0 mol%				
T (K)	P (bar)	T ₀ (K)	ΔT (K)	P ₀ (bar)	ΔP (bar)		
273.65	12.34	276.5023	-2.85229	8.785851	3.554149		
277.65	19.30	280.3496	-2.69961	14.11964	5.180362		
280.45	26.31	283.0783	-2.62827	19.52335	6.786651		
282.45	33.39	285.2134	-2.76335	24.51139	8.878606		
283.75	40.55	286.9779	-3.22795	28.36939	12.18061		
		L-pro 6	0 mol%				
T (K)	P (bar)	$T_{0}\left(K ight)$	$\Delta T(K)$	P_0 (bar)	ΔP (bar)		
270.75	12.35	276.5092	-5.75917	6.174448	6.175552		
274.50	19.03	280.2268	-5.72679	9.729034	9.300966		
277.10	25.95	282.9558	-5.85581	13.23871	12.71129		
279.20	32.92	285.0854	-5.88544	16.90740	16.01260		
280.65	39.95	286.8418	-6.19178	19.97556	19.97444		
	L-pro 9.0 mol%						
T (K)	P (bar)	T ₀ (K)	ΔT (K)	P ₀ (bar)	ΔP (bar)		
267.65	12.06	276.3077	-8.65771	4.199302	7.860698		
271.25	18.91	280.1717	-8.92168	6.565127	12.34487		
274.00	25.68	282.8629	-8.86292	9.163312	16.51669		
275.70	32.57	284.9891	-9.28908	11.22344	21.34656		
276.75	39.32	286.6967	-9.94672	12.70527	26.61473		

9. Polarized Raman spectra

Figure S4. Polarized Raman spectra of the aqueous amino acid solutions for the parallel and cross polarizations. The orange region indicates the unique stretching band of each amino acid¹³. The blue and green regions indicate the collective and non-collective bands of water molecules, respectively.

Figure S5. Polarized Raman spectra of aqueous solutions containing (a) glycine, (b) L-alanine,(c) L-serine, and (d) L-proline for the parallel (p) and cross (c) polarizations.

10. Experimental investigation of THF hydrate crystal morphologies

The morphologies of THF hydrate crystals were investigated. Pure THF hydrate crystals are octahedral (Fig. S6a) because their (111) faces are the slowest growing planes^{1,2}. In the presence of PVP, THF hydrate crystals are planar (Fig. S6b), as is consistent with previous results^{1,2}. This planarity is attributed to the preferential adsorption of PVP onto the (111) faces, which interrupts further hydrate growth. Interestingly, it has previously been demonstrated that polyvinyl caprolactam completely inhibits the growth of THF hydrate crystals¹⁴. This inhibition of hydrate growth by polymeric hydrate inhibitors has been explained with the adsorption inhibition hypothesis¹⁵. However, the addition of amino acids does not alter the morphologies of THF hydrate crystals (Figs. S6c to S6f), which implies that adsorption phenomena do not explain hydrate inhibition by amino acids. Amino acids readily form hydrogen bonds with water molecules, but their molecular sizes are too small for efficient blocking of hydrate surfaces. The inhibition of hydrate formation by amino acids can be explained by the perturbation of the structure of water.

Figure S6. Morphologies of THF hydrate crystals with (a) no additives, (b) PVP, (c) glycine,

(d) L-alanine, (e) L-serine, and (f) L-proline.

References

- Makogon, T. Y., Larsen, R., Knight, C. A. & Sloan, E. D. Melt growth of tetrahydrofuran clathrate hydrate and its inhibition: method and first results. *J. Cryst. Growth* 179, 258–262 (1997).
- (2) Larsen, R., Knight, C. A. & Sloan, E. D. Clathrate hydrate growth and inhibition. *Fluid Phase Equilibr*. 150–151, 353–360 (1998).
- (3) Ballard, A. L. & Sloan, E. D. The next generation of hydrate prediction I. Hydrate standard states and incorporation of spectroscopy. *Fluid Phase Equilibr*. 194–197, 371–383 (2002).
- (4) Dunn, M. S., Ross, F. J. & Read, L. S. The solubility of the amino acids in water. J. Biol. Chem. 103, 579-595 (1933).
- (5) Fasman, G. D. Handbook of Biochemistry and Molecular Biology (CRC Press, Cleveland, OH, 1976).
- (6) Amend, J. P. & Helgeson, H. C. Solubilities of the common L-α-amino acids as a function of temperature and solution pH. *Pure Appl. Chem.* 69, 935–942 (1997).
- (7) Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
- (8) Bruice, P. Y. Organic Chemistry (Pearson Education, Upper Saddle River, NJ, 2007).
- (9) Kiss, T., Sovago, I. & Gergely, A. Critical Survey of stability constants of complexes of glycine. *Pure Appl. Chem.* 63, 597–638 (1991).
- (10)Smith, P. K., Taylor, A. C. & Smith, E. R. B. Thermodynamic properties of solutions of amino acids and related substances. III. The ionization of aliphatic amino acids in aqueous solution from one to fifty degrees. *J. Biol. Chem.* **122**, 109–123 (1937).

- (11)Sa, J.-H., Kwak, G.-H., Lee, B. R., Ahn, D. & Lee, K.-H. Abnormal incorporation of amino acids into the gas hydrate crystal lattice. *Phys. Chem. Chem. Phys.* 16, 26730– 26734 (2014).
- (12)Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. *Physica B* **192**, 55–69 (1993).
- (13)Sa, J.-H., Kwak, G.-H., Han, K., Ahn, D. & Lee, K.-H. Gas hydrate inhibition by perturbation of liquid water structure. *Sci. Rep.* **5**, 11526 (2015).
- (14)Carver, T. J., Drew, M. G. B. & Rodger, P. M., Inhibition of crystal growth in methane hydrate. *J. Chem. Soc. Faraday Trans.* **91**, 3449–3460 (1995).
- (15)Anderson, B. J., Tester, J. W., Borghi, G. P. & Trout, B. L. Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. *J. Am. Chem. Soc.* 127, 17852–17862 (2005).