The title page

The manuscript title:

Overexpression of the Eggplant (*Solanum melongena*) NAC Family Transcription Factor, *SmNAC*, Suppresses Resistance to Bacterial Wilt.

The author list: 1 Cao Bihao: *Corresponding author Institution : College of Horticulture, South China Agricultural University Postcode: 510642 Telephone: +86-2085280228 Fax: +86-20-85282107 E-mail: caobh01@163.com. 2 Chen Na: The first author Institution: College of Horticulture, South China Agricultural University Postcode: 510642 E-mail: 976210387@gg.com 3 Wu Shuanghua: The second author Institution: College of Horticulture, South China Agricultural University Postcode: 510642 E-mail: 398573280@qq.com 4 Fu Jinglong: The third author Institution: College of Horticulture, South China Agricultural University Postcode: 510642 E-mail: 1007674018@qq.com 5 Lei Jianjun: The fifth author Institution : College of Horticulture, South China Agricultural University Postcode: 510642, P.R.China E-mail: jjlei@scau.edu.cn 6 Chen Changming: The sixth author Institution: College of Horticulture, South China Agricultural University Postcode: 510642 E-mail: 104845357@gg.com 7 Jiang Jin: The seventh author Institution: College of Horticulture, South China Agricultural University Postcode: 510642 E-mail: 921571335@qq.com

down-regulated

Fig.S1. Distribution of gene coverage in each RNA-seq library, Differential gene expression analysis and GO-terms.

RNA-Seq analysis was performed on resistant (E-31) and susceptible (E-32) eggplant lines. Lines A0 and A1 corresponded to mock-inoculated and pathogen-inoculated E-31 plants at 7 days post-inoculation (dpi). Similarly, B0 and B1 correspond to mock-inoculated and pathogen-inoculated E-32 plants at also 7 dpi. RNA was extracted from ten plants stems of each of these four lines and used for RNA-Seq library construction, with 2 replicates for each treatment.

(a) Distribution of gene coverage of each library. (b) Differential gene expression analysis.

(c) Frequency of sequences with assigned Gene Ontology (GO) terms (slimmed) for the category biological process found in the stem tissue assemblies.

(b)

Fig.S2. The heat maps depict the expression patterns of *SmNAC* in resistant plant and susceptible plant, and the phenotypic symptoms of susceptible plants after inoculation with *Ralstonia solanacearum*.

(a): The heat maps depict the expression patterns of *SmNAC* in resistant plant and susceptible plant Heat-map values represent log-transformed relative expression values.

A0 and A1 corresponded to mock-inoculated and pathogen-inoculated E-31 plants, 7 days post-inoculation (dpi). B0 and B1 correspond to mock-inoculated and pathogen-inoculated E-32 plants, also 7 dpi. Arrow showing the expression level of *SmNAC*.

(b): The phenotypic symptoms of eggplants after 15 days inoculation with *Ralstonia solanacearum*. 'E-32': susceptible plant; 'E-31': resistant plant.

Fig.S3. A phylogenetic tree including *SmNAC* and related proteins.

Phylogenetic tree of NAC proteins (black circles). Protein sequences were aligned with those of the *A. thaliana* and rice NAC families. A multiple sequence alignment was carried out using CLUSTALW, and the phylogenetic tree was constructed in MEGA6.0 using the minimum evolution test and default parameters. Bootstrap values indicate the divergence of each branch and the scale indicates branch length. The full-length amino acid sequences of the ANAC proteins were obtained from the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/ family.php?sp=Ath&fam=NAC) and the full length amino acid sequences of the ONAC proteins were obtained from the Rice genome annotation project (http://rice.plantbiology.msu.edu). Full length sequences were used in the analysis.

CK EGT0-5 EGT₀₋₂₃ EGT₀₋₄₃ EGT₀₋₈₇ EGT₀₋₁₄₅ EGT₀₋₂₀₄

Fig.S4. Southern blot, qRT-PCR and Western blot analyses of *SmNAC* in *SmNAC*-overexpressing plants.

(a) Genomic DNA from transgenic Km-resistant plants was digested with *Hin*dIII, and a *NPT*-II gene fragment was used as a probe. CK: pBI-*SmNAC*. (b) qRT-PCR analysis of *SmNAC* expression in transgenic plants using the primers: F-P1 5'-GAAAATTAGAAAGATTACAAC-3' and R-P1 5'-TAAAAGAATATACATGTCCCT-3'. CK: Non-transgenic plant from the 'E-31' line. (c) Western blot detection of *SmNAC* in overexpression transgenic plants, anti-*SmNAC* was used as the probe. CK: Non-transgenic plant from the 'E-31' line; EGT₀₋₅, EGT₀₋₂₃, EGT₀₋₄₃, EGT₀₋₈₇, EGT₀₋₁₄₅, and EGT₀₋₂₀₄ represent the *SmNAC*-overexpression plants.

Ck RNAi-1 RNAi-2 RNAi-3 RNAi-4 RNAi-5

Fig.S5. Southern blot, qRT-PCR and Western blot analysis of expression of *SmNAC* in RNAi-*SmNAC* plants.

(a) Genomic DNA from the resistant transgenic plants was digested with *Hind* III, and *Bar* gene fragments were used as a probe. CK: pFGC5941-*SmNAC*. (b) qRT -PCR analysis of *SmNAC* in transgenic plants using the primers: F-P1 5'-GAAAATTAGAAAGATTACAAC-3' and R-P1 5'-TAAAAGAATATACA TGTCCCT-3'. CK: Non-transgenic plants from the 'E-32' line. (c) Western blot detection of *SmNAC* RNAi transgenic plant, anti-*SmNAC* was used as the probe. CK: Non-transgenic plants from the 'E-32' line; RNAi-1, RNAi-2, RNAi-3, RNAi-4, and RNAi-5 represent the *SmNAC*-RNAi transgenic plants.

(c)

(d)

Fig.S6. Immunohistochemical localization analysis of *SmNAC* in *SmNAC*-overexpressing and *SmNAC*-RNAi transgenic plants.

Fresh *S. melongena* stem tissues were used, and cross-sections of eggplant tissue labeled with purified *SmNAC* antibodies and visualized using an anti-rabbit IgG conjugated to green fluorescent protein. Scale bars, 100µm. Each experiment repeated three times.

(a) *SmNAC* protein distribution in the stem of a non-transgenic plant (E-31);

(b) *SmNAC* protein distribution in the stem of a *SmNAC*-overexpressing plant (EGT_{1-87});

(c) *SmNAC* protein distribution in the stem of a non-transgenic plant (E-32);

(d) SmNAC protein distribution in the stem of a SmNAC-RNAi transgenic plant (RNAi-2-1).

Gene	Forward(5'-3')	Reverse(5'-3')	Gen Bank
name			accession
Pin2	TGATGCCAAGGCTTGTACTAGAGA	AGCGGACTTCCTTCTGAACGT	AY129402
JAR1	GCAGCTATGGGGTTTGAATGGCAGA	AAGAGGTCAGGAATCAAGCCGTACC	DQ359730.1
LoxA	GACCAAAACGCTCGTCTCTC	TGGTAGACCACCAACACGAA	U09026
EDS1	GTTTCGCAGACAAGTTGAGCC	CTCTGTGTGAACCGATAACGC	AY679160.1
GluA	GCCGACTGGGTGAGATGGTAA	ACATTGTTGTGCCCGTGGAC	M80604
NPR1	CTTGGACTGGGTGTTGCTAATG	TGCCCATCCAATGTAATGTCTG	NM_001247633.1
TGA	GCAAGTGACCCTGAACTACGAAG	GGGTTTTTCCACATCCCTGACAAG	GQ386946.1
SGT1	TTCTCGGTTTTGAGGAAGGG	GCAGATACCAAGTGATGTCTACCA	NM_001247758.1
PAD4	ACATCGGCTGAAACCTCCTTATT	TTTGATAAGTGGTGGGGAAATGA	AY753546.1
PR-1a	GAGGGCAGCCGTGCAA	CACATTTTTCCACCAACACATTG	M69247
EIN2	GGGACGAACGGGCACTGCAGCA	GTGATGAGGCAGACAGCGTTACT	AY566238
EIL1	TTGAACGACAGCCCTGAGTATG	AGGTGTCCAGTTCTTCTTTGTTCG	NM_001247612.1
ICS1	GCATGGGACAATGCTGCTGCCTCATGGA	TCTGGTGCTACGAGCAAGTACCACCT	NM_001247865.1
PBS3	GTTTGCACTATGTATGCTTCCTCTG	GCTCATACTCCTGACCAATCTTtgtcGACA	XM_004251437.2
BSMT1	TATGAGTGGGAACTTTTTGGCTACGACGC	GCCATATCGTATTTCATCATCACAAG	XM_004237341.1
SAGT1	GCCTTCGTTTATTTACGTACATGGAACG	CCACATGGAATAGATTGAGACCATAC	XM_004245012.1
ACTIN	TATTGTGGGTCGTCCTCG	TCTCTCTGTTGGCCTTGG	XM_016658880.1

TableS1 primer sequence of qRT-PCR

TableS2 Primer sequences used for promoter isolation

Tubles 11 mier sequences used for promoter isolution				
Primer	Sequence of primer			
LAD1	5'-ACGATGGACTCCAGAGNTCGA(G/C)T(A/T)T(G/C)G(A/T)GTT-3'			
LAD2	5'ACGATGGACTCCAGAG NGTCGA(G/C)(A/T)GANA(A/T)GAA-3'			
LAD3	5'ACGATGGACTCCAGAG (A/T)TCTGNCT(A/T)ANTANCT-3'			
LAD4	5'ACGATGGACTCCAGAG AG(A/T)GNAG(A/T)ANCA(A/T)AGG-3'			
AC1	5'-ACGATGGACTCCAGAG-3'			
SP1	5'-AGGATCGGACTTAATCATATCGGAGATGGC-3'			
SP2	5'-GCAGGGCTAGAAACTGCAGGCAAAGT-3'			
SP3	5'-CCAATAGGAGCTCTTGAATCGCCTTGGCA-3'			

Tab	leS3 Main regu	latory motifs fou	nd within the promoter sequence of <i>ICS</i> 1 in eggplant
Factor or			
site name	Site	Signal sequence	Function
ABRE	167(+),1350(+)	CACGTG	cis-acting element involved in the abscisic acid
			responsiveness
AE-box	881(-)	AGAAACAT	part of a module for light response
ARE 1	134(-)	TGGTTT	cis-acting regulatory element essential for the anaerobic induction
ATCT-motif 501(+)		AATCTAATCT	part of a conserved DNA module involved in light responsiveness
Box-4 343	3(+),265(+)	ATTAAT I	part of a conserved DNA module involved in light
			responsiveness
Box – I 9	9(-),846(-),	TTTCAAA	light responsive element
615((+),1075(+)		
ERE 125 CAAT-box	5 (-) ,1389(-) 109(+),316(+)	ATTTCAAA CAAT	ethylene-responsive element common cis-acting element in promoter and enhancer regions
4	471(+),936(+),		10510115
CAT-box	138(+),1323(+) 1336(+)	GCCACT	cis-acting regulatory element related to meristem
EIRE	125(-),1389(-)	TTCGACC	elicitor-responsive element
G-Box	167(+), 956(+),	CACGTG,	cis-acting regulatory element involved in light responsiveness
IID 7: 1	1350(+)	CACGTT	alament involved in differentiation of the relieved
пр-ги т	57(+)	CAAI (A/T)AI IO	mesophyll cells
HSE 7	3(+),998(+), ,	AAAAAATTTC	cis-acting element involved in heat stressres ponsiveness
l Sim 1motif	150(+)	CTCAT	ais acting regulatory element required for endogramm
SKII-III0UI	130(+),495(-)	GICAI	expression
TATA-box	69(+),145(+), 242(+),386(+),489(+ 642(+),789(-),908(- 116(-),1163(+)	TATAA),),	core promoter element around -30 of transcription start
TC-rich rep	peats $928(+)$	ATTTTCTTCA	cis-acting element involved in defense and stress responsiveness
WUN-motif Circadian	808(-) 618(+)	AAATTTCCT CAAAGATATC	wound-responsive element cis-acting regulatory element involved in circadian control
CACG	364(+),427(+	+), CACG	core binding site of NAC factor domain
	681(+),1152(+),		
	1190(+), 1547(+	+)	