

SI Fig.1: Examples of environmental conditions (A,B) in the default dataset (climate) and output variables (C to L) of simulations carried out in the 5 examples provided in the help file of the function modelhydro(). I. Simulations with changed delta value. Red (line) J. Simulations with changed t_{ABA} values.

Modelhydro

Description

Compute the model of water transfer and leaf elongation described in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015.

Usage

```
modelhydro (data, ...)
```

Default:

```
modelhydro (data , complexsoil = FALSE, growth = FALSE, ampliinit = 0.4
, parags = list(alpha = 0.1826 , gsmin = 0.005 , beta = -0.003 , delta
= -1 , ga=0.17) , paragr = list (Gr0 = 0.08 , Grmin = 0.08 , Grmax =
0.75, Tautranspigr = 1.2,
                            Taucircadgr = 0.08 , TauABAgr = 0.01),
parage = list (Ge0 = 0.08, Gemin = 0.08, Gemax = 0.75, Tautranspige
= 1.2, Taucircadgc = 0.08, TauABAgc = 0.01), paragxl = list (Gxl0 =
0.8 , Gxlmin = 0.2 , Gxlmax = 2.5, Tautranspigxl = 0.05, Taucircadgxl
= 0.08 , TauABAgxl = 0.01), paracap = list(ncap = 1.5, alphacap =
0.075), parasoil = list(Teta = 0.25, soildepth = 0.5, rcol = 0.1,
soilw = 7.6 , Nplant = 3) , parasoil2 = list (soildepth2 = 0.54 , rcol2
= 0.14 , soilwcol2 = 8.5 , soilwbulk = 183), parahydrodyn = list(n =
1.209321, al = 3.21473540706308, Tetasat = 0.56, Ks = 1, p = 0.5),
pararoot = list(r = 0.0001, Lv=2000), surface = 0.02, shading = 0.2,
parav = list(Vsat = 11000 , Vres = 1100) , paragro = list(aLER = 4.1 ,
cLER = 0.8, arABA = 0.433), paraba = list(a = -600, constit = 1, b
= 4)
```

Arguments

data	a d	ata frame with environmental conditions. It must contain at least:
	\$hour	time (h)
	\$PPFD	Photosynthetic Photon Flux Density (µmol m ⁻² s ⁻¹)
	\$T	Temperature (°C)
	\$VPD	Vapor Pressure Deficit (kPa)

complexsoil a logical value indicating whether if soil is modeled with a single column (FALSE) or the three nested columns (TRUE)

growth maize only)	a logical value indicating if leaf elongation rate (LER) should be calculated (for
ampliinit	amplitude of Psi.xyl before beginning of periode (MPa)

parages a list of parameters for stomatal conductance and aerodynamic conductance (equation 1 and 2 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015)

\$alpha	α in equation 1
\$gsmin	gs _{min} in equation 1
\$beta	β in equation 1
\$delta	δ in equation 1
\$ga	α in equation 2

paracap parameters for the pressure-volume curve, fitted with Van Genuchten equation (Van Genuchten, 1980) ; equation 11 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015)

\$ncap	n_{cap} in equation 11
\$alphacap	α_{cap} in equation 11

paragr a list of parameters for the sensitivities of root hydraulic conductance Gr to transpiration (equation 8 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015), amplitude of water potential (equation 7) and ABA (equation 9).

\$Gr0	Gr ₀ in equation 8
\$Grmin	minimum value of Gr
\$Grmax	maximum value of Gr
\$Taucircadgr	τ_{circad} for Gr (equation 7)
\$Tauevapgr	τ_{evap} for Gr (equation 7)
\$TauABAgr	τ_{ABA} for Gr (equation 7)

parage a list of parameters for the sensitivities of hydraulic conductance Gc to transpiration (equation 8 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015), amplitude of water potential (equation 7) and ABA (equation 9).

\$Gc0	Gc ₀ in equation 8
\$Gcmin	minimum value of Gc
\$Gcmax	maximum value of Gc
\$Taucircadgc	τ_{circad} for Gc (equation 7)
\$Tauevapgc	τ_{evap} for Gc (equation 7)
\$TauABAgc	τ_{ABA} for Gc (equation 7)

paragx1 a list of parameters for the sensitivities of hydraulic conductance Gx1 to transpiration (equation 8 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015), amplitude of water potential (equation 7) and ABA (equation 9).

\$Gxl0	Gxl_0 in equation 8
\$Gxlmin	minimum value of Gx1
\$Gxlmax	maximum value of Gx1
\$Taucircadgxl	τ_{circad} for Gx1 (equation 7)
\$Tauevapgxl	τ_{evap} for Gx1 (equation 7)

 $\texttt{STauABAgxl} \qquad \quad \tau_{ABA} \text{ for } G\texttt{xl} \text{ (equation 7)}$

parasoil	a list of parameters for soil characteristics in the main soil column (rhizosphere)
\$Teta	initial value of soil humidity (g g^{-1})
\$soildepth	column depth (m)
\$rcol	column radius (m)
\$soilw	soil dry weight (kg)
\$Nplant	number of plants in the column
parasoil2	a list of parameters for the second and third soil column (if complexsoil =
TRUE)	
\$soildepth:	2 second column depth (m)
\$rcol2	second column radius (m)
\$soilwcol2	soil dry weight (kg) in column 2 surrounding column 1
\$soilwbulk	soil dry weight (kg) in column 3 (bulk)
parahydrodyn	a list of parameters for soil hydrodynamic properties (equation 4 and 5 in
Tardieu, Simonneau and	d Parent, Journal of Experimental Botany, 2015)
\$n	n in equation 4, 5
\$al	α_v in equation 4 , 5
\$Tetasat	θ sat, soil humidity at soil saturation
\$Ks	ks in equation 5
\$p	p in equation 5
pararoot	a list of parameters for roots
\$r	root radius, m
\$Lv	root length per soil volume, m m ⁻³
surface	Plant leaf area (m ²).
shading	a value from 0 to 1 considering selfshading
parav Parent, Journal of Expe	a list of parameters for leaf volume (equation 11 in Tardieu, Simonneau and rimental Botany 2015)
\$Vsat	leaf volume at saturation (mm ²)
\$Vres	leaf residual water volume (mm^2) .
4 v T C 2	icai iesiduai water volume (mm).
paragro	a list of parameters for leaf elongation rate (equation 12 in Tardieu, Simonneau
	Experimental Botany, 2015) may leaf elementian rate $(mm h^{-1})$ a LEP in equation 12
\$aLER	max leaf elongation rate (mm h^{-1}). a_LER in equation 12
\$cLER	sensitivity to xylem water potential. c_LER in equation 12

```
$arABA
```

paraba a list of parameters for ABA biosynthesis (equation 3 in Tardieu, Simonneau and Parent, Journal of Experimental Botany, 2015)

\$a	a in equation 3
\$constit	$ABA_{constit}$ in equation 3
\$b	b in equation 3

Value

The model is computed and a data.frame with all variables at the time step of one minute is returned.

\$hour	time (h)
\$hourday	hour of the day (h)
\$Tetacol1	humidity in first soil column (rhizosphere), g g ⁻¹
\$T	Temperature (°C)
\$PPFD	Photosynthetic Photon Flux Density (μ mol m ⁻² s ⁻¹)
\$VPD	Vapour Pressure Deficit (kPa)
\$gs	Stomatal conductance (mol $m^{-2} s^{-1}$)
\$J	Transpiration flux per plant (mg s ⁻¹)
\$Jtot	Transpiration flux per column (mg s ⁻¹)
\$Jxc	Flux (mg plant ^{-1} s ^{-1}) between mature tissues and bundle sheaths
\$Psisoil	Soil water potential (MPa) in soil column (rhizosphere)
\$Psir	Root water potential (MPa)
\$Psixyl	Xylem water potential (MPa)
\$Psicel	Water potential in cells considered as a capacitance (MPa)
\$Psievap	Water potential in cells of evaporative sites (MPa)
\$ABA	ABA concentration in xylem (pmol m^{-3})
\$Gr	Root hydraulic conductance (mg MPa ⁻¹ s ⁻¹)
\$Gc	Hydraulic conductance between capacitance and evaporative sites (mg MPa ⁻¹ s ⁻¹)
\$Gxl	Hydraulic conductance xylem and evaporative sites (mg MPa ⁻¹ s ⁻¹)
\$Jsoil1	Flux from column 2 (surrounding column 1) and column 1 (if complexsoil = TRUE)
\$Jsoil1	Flux from bulk soil (surrounding column 2) and column 2 (if complexsoil = TRUE)
\$Psisoil2	Soil water potential (MPa) in column 2 (if complexsoil = TRUE)
\$Psibulk	Soil water potential (MPa) in bulk soil (if complexsoil = TRUE)
\$LER	Leaf Elongation Rate $(mm h^{-1})$ (if growth = TRUE)

References

Tardieu F., Simonneau T., Parent B. 2015. Modelling the coordination of the controls of stomatal aperture, transpiration, leaf growth and abscissic acid: update and extension of the Tardieu Davies model. Journal of Experimental Botany.

Exemples

Some outputs of these examples are presented in SI. Fig. 1

########## Example 1 : Simulations with different former amplitudes of Ψ_1 or varying options for circadian influences on conductances Gr, Gc and Gx1 (SI. Fig. 1CD in Tardieu et al., 2015)

#The first simulation (mod.init) is obtained by running the model with the example dataset (climate) and default parameter values (for maize, mainly genotype B73).

mod.init <- modelhydro (data = climate) ## this can take a few minutes</pre>

Changing the amplitude of Ψ_1 on former days (mod.ampli), from 0.4 MPa (the default value) to 1.4 MPa:

mod.ampli <- modelhydro (data = climate , ampliinit = 1.4)</pre>

Changing the sensitivity of Gr, Gc and Gxl to the amplitude of Ψ_1 (respectively paragr\$Taucircadgr, paragc\$Taucircadgc and paragxl\$Taucircadgxl) from default values (0.08) to respectively 0.15, 0.15 and 0.2.

mod.Taucircad <- modelhydro (data = climate , ampliinit = 1.4 , paragr = list (Gr0 = 0.08 , Grmin = 0.08 , Grmax = 0.75, Tautranspigr = 1.2, Taucircadgr = 0.15 , TauABAgr = 0.01), paragc = list (Gc0 = 0.08 , Gcmin = 0.08 , Gcmax = 0.75, Tautranspigc = 1.2, Taucircadgc = 0.15 , TauABAgc = 0.01) , paragxl = list (Gx10 = 0.8 , Gxlmin = 0.2 , Gxlmax = 2.5, Tautranspigxl = 0.05, Taucircadgxl = 0.2 , TauABAgxl = 0.01))

#########Example 2 : Simulations with different sensitivities of conductances Gr and Gc to transpiration (paragr\$Tautranspigr, paragc\$Tautranspigc) either with the default values (1.2, mod.init) or increased values (1.5; mod.Tautranspi). (SI. Fig. 1EF in Tardieu et al., 2015)

mod.Tautranspi <- modelhydro (data = climate , paragr = list (Gr0 = 0.08 , Grmin = 0.08 , Grmax = 0.75, Tautranspigr = 1.5, Taucircadgr = 0.2 , TauABAgr = 0.01), paragc = list (Gc0 = 0.08 , Gcmin = 0.08 , Gcmax = 0.75, Tautranspigc = 1.5, Taucircadgc = 0.2 , TauABAgc = 0.01))

############Example 3. Simulations with either considering a simple soil column (rhizosphere, default value, mod.init_) or with the complex soil system with three nested columns (rhizosphere, intermediate and bulk soil; mod.complexsoil). mod.complexsoil <- modelhydro (data = climate , complexsoil =
TRUE)</pre>

######### Example 4. Simulations for simulating plant behaviours closer to isohydric behaviour, either by modifying δ value (parags\$delta) from -1 to -2 or changing the sensitivities of conductances Gr, Gc and Gxl to [ABA]_{xvl}.

##Simulation in well-watered conditions

mod.WW <- modelhydro (data = climate , parasoil = list(Teta = 0.5 , soildepth = 0.5 , rcol = 0.1 , soilw = 7.6 , Nplant = 3))

##Simulation with varying δ value (parags\$delta)
mod.delta <- modelhydro (data = climate , parags = list(alpha =</pre>

0.1826, gsmin = 0.005, beta = -0.003, delta = -2, ga=0.17))

Simulation with sensitivities of conductances to [ABA]_{xyl}.

mod.TauABA <- modelhydro(data = climate , paragr = list (Gr0 = 0.08 , Grmin = 0.08 , Grmax = 0.75, Tautranspigr = 1.2, Taucircadgr = 0.08 , TauABAgr = 0.2) , paragc = list (Gc0 = 0.08 , Gcmin = 0.08 , Gcmax = 0.75, Tautranspigc = 1.2, Taucircadgc = 0.08 , TauABAgc = -0.2) , paragxl = list (Gx10 = 0.8 , Gxlmin = 0.2 , Gxlmax = 2.5, Tautranspigxl = 0.05, Taucircadgxl = 0.15 , TauABAgxl = -0.2))

#########<u>Example 5. Simulations with transgenic plants affected on ABA biosynthesis as in Parent et</u> al., 2009. Parameters of ABA biosynthesis (paraba), leaf area(surface) and root length (pararoot) are affected.

```
geno <- c ("AS" , "WT" , "sens")
mulroot <- c(1 , 1 , 0.4)
muls <- c (1 , 1 , 0.2)
a.geno <- c (-200 , -600 , -50)
constit.geno <- c (0 , 0 , 150)

for (i in 1:3) {
    mod <- modelhydro (data = climate , complexsoil = TRUE ,
    growth = TRUE, surface = 0.02 * muls[i] , paraba = list( a =
    a.geno[i], constit = constit.geno[i], b = 4) , pararoot = list(r
    = 0.0001 , Lv = 2000 * mulroot[i]) )
    assign (paste ("mod" , geno[i] , sep = ".") , mod )
</pre>
```

```
} ## this can take a few minutes
```