
S2 Table. Sub-models used in the FFM for this study 

 
 

Code Sub-model Notes Source 
 

FLAMMABILITY 

    

TTI Time to ignition Predicted from temperature, moisture and leaf 

thickness 

[1] Eq. 4.10 

E Endotherm Entered as either measured value or modelled 

from silica-free ash content 

[2] Eq. 1 

FRh Flame residence in a heated leaf Predicted from leaf dimensions and moisture [1] Eq.4.21  

FRu Flame residence in an unheated leaf Cut-off temperature and default duration of 1s - 

FRs Flame residence in surface fuel Predicted from mean fuel diameter [3] 

λl Flame length from a leaf Predicted from leaf dimensions and moisture [1] Eqs. 4.18 - 4.20 

Tmax Maximum flame temperature Two values recorded in settings [4,5] 

Ln Number of leaves per branch Calculated from leaf separation, stem 

ramification and branch diameter 

[1] Eq. 5.69 

    

 FLAME PHYSICS 

    

Mlat Lateral merging of flames Predicted from flame length and separation [6] 

Llon Longitudinal merging of flames Predicted from flame length and depth ignited [7] 

θfw Effect of wind on flame angle Predicted from flame length and wind speed [8] 

θfs Effect of slope on flame angle Predicted for either point or line fires [1] Eqs. 5.30, 5.33 

θfc Interaction of wind and slope effects on 

flame angle 

Cut-off value defines where competing effects 

dominate 

- 

θft Effects of turbulence on flame angle Set value defines a +/- value to apply to flame 

angle 

- 

λs Surface flame length Empirical model [9] 

ROSs Surface flame ROS Empirical model [9] 

Tp Plume temperature Empirical model [10] 

    

 MICROCLIMATE 

    

Ws Wind profile Empirical model [1] Eq. 6.18 adjusted, [11–13] 

Ta Ambient temperature Assumed equal throughout - 
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