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Supplementary Methods

Analysis of variant allele fraction differences between the transcriptome and

genome in TCGA data

To validate our finding, we calculated differences in transcriptional output in TCGA’s
breast cancer cohort. Aligned BAM files for 980 breast cancer samples with both
RNA-Seq and exome sequencing were downloaded from CGHUB

(https://cghub.ucsc.edu/) using GeneTorrent. PCR duplicates for both exome and

transcriptome were removed using SAMtools. The position of somatic mutations, in
MAF file format, and gene expression values (using the RSEM method) were

obtained from https://tcga-data.nci.nih.gov/. Additional clinical covariates were

obtained from cBioPortal (http://www.cbioportal.org/). All putative mutations

were re-annotated using Annovar (release 2013Aug23) and all potential germline
variants were removed (present in NCBI dbSNP Human build 142). Finally, 70,071
exonic/splicing substitutions present in the 980 RNA-Seq and WES paired samples
were considered for further analysis. Mutations in the 5’ or 3’ UTRs were excluded.
Mutated loci were considered not expressed, and therefore excluded from this
analysis, if the total coverage was less than five reads, or the number of reads

supporting the mutated base was less than five reads.

These substitution mutations were evaluated in a number of ways, including by
measuring the proportion of reads reporting the mutation in the transcriptome
(variant allele fraction or VAF) and subtracting it from the same measure in the
genome (i.e. VAFuitference = VAFtranscriptome = VAFgenome). We used linear regression to
model the relationship between the amount of ESR1 expressed by a tumor and the

VAFdiff of its mutations.



We classified TCGA breast cancers into known subtypes (Luminal B, Luminal A,
HER2-related and triple negative) by immunohistochemistry as per Blows et al

(PLOS Med 2010).

Estimating the excess of rearrangements with maximum rank for aberrant

transcription

We use a maximum likelihood approach to estimate the excess of rearrangements at
highest rank. Basically, we allow the ranks to be distributed as a multinomial
process with probabilities of rank~{m,m,---,t,mt+1}, where we are interested in
estimating 7. It is straightforward to show that the maximum likelihood estimator

for 7 is given by:
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where C is the number of samples (different ranks) and r; is the number of
rearrangements garnering the ith rank. Bootstrapping of the observed counts across
all possible ranks was used to estimate the 95% confidence intervals for the point

estimates.

Detection of genomic rearrangements

Paired-end maps were generated using a new in-house algorithm that will be
published separately (J. Marshall et al, manuscript in preparation). Briefly,
discordantly mapped read pairs were filtered against BWA read pileup loci, repeat
features and mitochondrial sequences in GRCh37. Additionally alternative mapping
locations were evaluated to assess whether both reads could be aligned to an
alternative location as a concordant pair. Remaining discordant read pairs were
clustered to generate a putative list of rearrangements with respect to the GRCh37
reference genome. Candidate rearrangements found in paired normal blood DNA
analyses, or previously confirmed by PCR to be germ line in other studies, were
removed. These steps produced a paired-end map cured from the majority of the

artefacts resulting from BWA-mapping and from putative germ line variants.



In this manuscript we only report high confidence rearrangements for which we
have successfully resolved the breakpoint. To find the breakpoints we first
determined the window surrounding rearrangements using the average and
maximum insert size of each BAM file. We then looked for reads where one end
mapped within this window and the other end was unmapped. Unmapped reads
were realigned to the genome (BLAT, using optimised parameters). Realigned reads
that accurately mapped within the both windows of a rearrangement were grouped
together, and finally each putative breakpoint was evaluated by measuring the
distance between the breakpoint region and the breakpoint, and the coefficient of
variation of the breakpoint position themselves (ideally, there is no variability at the

position).

Validation of changes to gene transcript structure

We validated our RNA-Seq results by using replicate RNAs, comparing the junctions

to existing datasets, using RNA pull-down sequencing, and by manual inspection.

Sample HCC1599 was run as a technical replicate. A new library was created,
sequenced and analysed using the same algorithms. One hundred percent of the
genomic rearrangements causing an exon skip with the highest rank were found to
lead to the same event in the replicate transcriptome (5/5). Of the three genomic
rearrangements involving two genes in the same orientation, which were previously
found to cause an expressed fusion, two caused the same event in the replicate
transcriptome and one was missed in the replicate. We compared the in-frame
fusions to those we previously reported (Stephens et al. Table 3). Of the 14 in-frame
fusions found in both analyses, which had previously been validated by RT-PCR, we
identified 10 expressed fusions in the new RNA-Seq data as well as many other

others not reported in the previous data set.



Supplementary Figures Legends

Supplementary Figure 1. RNA Architect, a suite of algorithms for the analysis

of cancer RNA-Sequencing. Related to Figure 3.

(A) Overview of RNA Architect’s seed-and-extend and discordant pair algorithm.

(B) Statistics from a representative sample that has been run through this pipeline.

(C) All samples sequenced at high depth, and there is no association between
coverage and percentage of expressed mutations.

(D) Similar levels of expressed mutation found in TCGA data.

Supplementary Figure 2. Estimating the proportion of reads derived from the

tumour and the stromal cells. Related to Figure 1.

(A) Comparison of variants from the active and inactive X chromosome.

(B) Observed fraction of reads reporting reference allele vs. the posterior
probability of the reference allele deriving from the active X chromosome. The
depth of colour reflects the level of expression.

(C) Estimated distribution and 95% posterior intervals for relative gene expression

in cancer versus stromal cells for ER+ and ER- breast cancers.

Supplementary Figure 3. Related to Figure 1; Figure 2.

(A) Increased expression of the mutated allele in ER- as compared to ER+ breast
cancer transcriptomes (plotted relative to the genome).

(B) Variant allele fraction in genome compared to the transcriptome, for all samples

including cell lines.



(C) Absence of negative selection in nonsense mutations. Comparison of expression
levels from the organoids of normal breast epithelium for genes mutated in the
cancer samples.

Supplementary Figure 4. A recurrent in-frame fusion between TRMT11 and

NCOA7 in two breast cancers. Related to Figure 3; Figure 4.

A tandem duplication on chromosome 6 joins the 5’ end of TRMT11 with the 3’ end

of NCOA7. In both samples the fusion is in-frame and highly expressed as shown by

the numerous junction reads (split reads) between TRMTI11 exon 11 and NCOA7
exon 13 in sample PD4005a, and TRMT11 exon 6 and NCOA7 exon 7 in sample

HCC1954.

Supplementary Figure 5. Regions of local complexity in breast cancer sample
PD4103a. Related to Figure 7. One sample’s regions of complexity are shown as
pairs of Circos plots, for the genome and transcriptome. The genomic events one
would predict to be expressed are highlighted (blue arcs). The tumour does not
express all of these events, or multiple cis rearrangements have been amalgamated
and expressed as a single transcript that combines genes only indirectly linked to

another.

Supplementary Figure 6. Compound event in the gene MLL3. Related to Figure

3.

(A) A tandem duplication in the genome within the footprint of MLL3, an established
breast cancer gene, results in a complex aberrant transcript involving the
reusage of exons and the activation of an alternative donor site. The reads from

TopHat support junctions between the canonical exon edges (red arcs) only



whereas RNA Architect identifies the compound event (horizontal lines
represent split reads).

(B)Aberrant MLL3 transcripts. Shown are novel isoforms of MLL3 found in TCGA
breast cancers (n=980). Data were reanalysed and reprocessed using our
pipeline. We compared each putative aberrant junction in MLL3 to 1,277
normals from 30 tissue types and excluded anything found in these samples

(GTEX).

Supplementary Figure 7. Transcriptional output of ER-positive and ER-
negative breast cancers. Related to Figure 1.

(A) The expression of mutations differs within known molecular subgroups of
breast cancer. Samples were grouped using available clinical data
(Supplementary Methods), into known molecular subgroups. Plotted on the Y-
axis is the VAFqitr. The pie charts, shown each subgroup, depicts the percentage
of mutations expressed.

(B) Differences in expression of TP53 missense mutations between ER+ and ER-
breast cancers.

(C) Expression of common mutated genes in ER-negative and ER-positive cancers.
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