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We consider the change in dynamics of our model when we allow for genetic predisposition to my-
cobacterial disease. Here we add the assumption that exposure to the pathogen over time decreases the
susceptibility of the human population to infection due to an increase in frequency of protective alleles
against intracellular infection [1].

Assume that a protective allele that confers partial resistance can become fixed in the host population
between pathogen introduction events. If it takes on average 1/r introductions of the pathogen into the
human population from the environmental reservoir for an allele to become fixed in the host population,
then the number X of introductions required until fixation is a geometrically distributed random variable
with parameter 1/r and probability mass function

Pr(X = x) = (1− r)x−1r

where x = 1, 2, . . .. When fixation occurs, we assume the probability of emergence after a single
introduction reduces to pr where pr < pemerge.

We are interested in how many introductions are required for emergence to occur. Therefore we con-
sider the process where, if the protective allele is not yet fixed in the host population, a single introduction
will result in emergence with probability pemerge. If emergence does not occur, then with probability r
the protective allele will become fixed in the population and the probability of emergence will reduce to
pr. In this scenario, the number Y of introductions required for emergence to occur is a random variable
with probability mass function:

Pr(Y = y) =
∞∑
x=1

Pr(Y = y|X = x) Pr(X = x)

=

y−1∑
x=1

(1− pemerge)
x(1− pr)y−x−1pr Pr(X = x)︸ ︷︷ ︸

emergence occurs after fixation

+
∞∑
x=y

(1− pemerge)
y−1pemerge Pr(X = x)︸ ︷︷ ︸

emergence occurs before fixation

.



After some algebra, it can be shown that the mean value of Y is given by the expression

E(Y ) =
∞∑
y=1

yPr(Y = y) =
1

pemerge

[
1 +

(
pemerge − pr

pr

)(
1− pemerge

pemerge + r(1− pemerge)

)]
. (1)

Therefore, if host susceptibility changes at a much slower rate than pathogen emergence (r � pemerge),
the expected value approaches that from the original model where host susceptibility remains constant,
i.e.,

E(Y ) ≈ 1/pemerge, r � pemerge.

If, on the other hand, host susceptibility changes at a much faster rate than pathogen emergence (r � pemerge),
then

E(Y ) ≈ 1/pr, r � pemerge.

Simulations of this process shown in Fig. S5 illustrate these results.
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Fig. S1: Fitness landscapes that govern the evolution of introduced strains in our model of infectious disease
emergence. Here, ten mutations are required for the introduced strain to evolve an R(i)

0 > 1 (m = 10).
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Fig. S2: Model quantities that determine the cumulative probability of TB emergence through time. The number of
mutations required for an introduced strain to evolve an R0 > 1 (m), the shape of the fitness landscape (z) and the
factor of increase in the basic reproductive number due to fire use (L) influence the probabilities pevolve and p∗evolve
an introduced strain evolves an R0 > 1 and the cumulative probabilities P (t) and Pf(t) of TB emergence through
time. In Panels A, C and E, dotted lines correspond to pevolve and solid lines represent p∗evolve, while increasingly
light coloured lines represent pevolve and p∗evolve calculated with increasing values ofm = 1, 2, . . . , 10. Notice that
pevolve is constant with respect to L. The steep increases in the probabilities p∗evolve which lead to the jumps seen
in the cumulative probabilities Pf(t) (Panels B, D, F) occur for a given value of m when L becomes sufficiently
high to cause a reduction in the number of mutations required for R0 to become greater than unity. This reduces
m∗ and the number of terms in Eq. (6) by one each time. In Panels B, D and F, solid lines correspond to Pf(t) with
L = 2, broken lines to P (t) (i.e., L = 1), while colours indicates the value of m: blue for m = 1, red for m = 2,
and purple for m = 3. The values of unspecified parameters are provided in Table S1.
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Fig. S3: Sensitivity analysis of the cumulative probability of TB emergence 70,000 years ago. (A)–(C) The
frequency distributions of the absolute cumulative probabilities Pf (blue) and P (red) of the emergence of MTBC
70,000 years ago for z = 0.5 and m = 1, 2, 3. This data determines the frequency distributions of the ratio Pf/P
of cumulative probabilities of the emergence of MTBC 70,000 years ago shown in Panel D.
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Fig. S4: Sensitivity analysis of the cumulative probability of TB emergence 70,000 years ago. (A)–(C) The
frequency distributions of the absolute cumulative probabilities Pf (blue) and P (red) of the emergence of MTBC
70,000 years ago for z = 2 and m = 1, 2, 3. This data determines the frequency distributions of the ratio Pf/P of
cumulative probabilities of the emergence of MTBC 70,000 years ago shown in Panel D.
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Fig. S5: The expected number of introductions required for emergence E(Y ) as a function of the mean num-
ber (1/r) of introductions until fixation of a protective allele conferring partial immunity to the host population
as determined by Eq. (1) (solid red line) and averaged over 1000 simulations of the discrete stochastic pro-
cess outlined above in SI Appendix A (blue crosses) when pemerge = 10−3, pr = 10−4 and 1/r ∈ [101, 105].
Here, the dash-dot lines indicate 1/r = 1/pemerge and E(Y ) = 1/pemerge and the dotted black line indicates
E(Y ) = 1/pr. For r � pemerge (or equivalently 1/r � 1/pemerge), E(Y ) → 1/pr while for r � pemerge (or
equivalently 1/r � 1/pemerge), E(Y )→ 1/pemerge.



SI Appendix Tables

Table S1: Model parameters

Symbol Parameter name Value Reference

R
(0)
0 Basic reproductive number of introduced pathogen 0.01 —

R
(m)
0 Basic reproductive number of evolved pathogen 1.01 —

µ Mutation rate per year (mutation rate × generation time ×103) 3.65× 10−5 [2]
C Disease prevalence (cases per capita per year) 7.2× 10−5 [3]
N0 Census population size for hunter gatherers (effective size × 10) 1× 105 [4]
α Host growth rate per generation (25 years) during population expansion 8.5× 10−4 [5]
te Onset time of population expansion (years before present) 105 [4]
tf Onset time of widespread controlled fire use (years before present) 4× 105 [6]
L Factor of increase in basic reproductive number due to fire use 2 [7]

Table S2: Sample distributions used in the sensitivity analysis

Parameter Distribution Reference

R
(0)
0 U(0.001,0.02)∗ —

N0 N (105, 1.5× 104)† [4]
α N (7× 10−4, 1.5× 10−4) [5]
te U(200,000 years ago, 20,000 years) [4]
tf N (400,000 years ago, 66,000 years) [6]
L N (2.5, 0.5) [7]

∗ U(a, b) is the uniform distribution with lower bound a and upper bound b.
† N (c, d) is the normal distribution with mean c and standard deviation d.
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