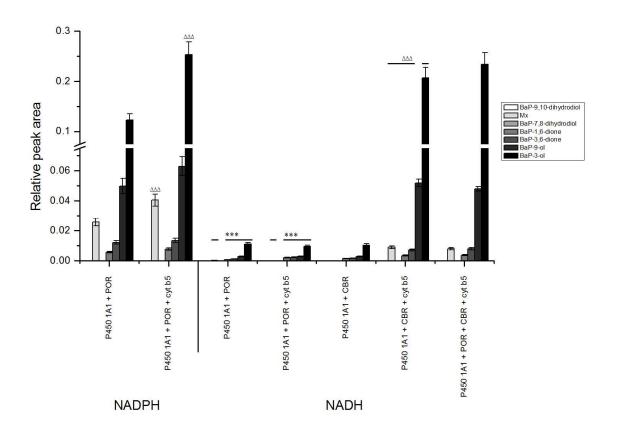
Supporting Information

NADH:Cytochrome b₅ Reductase and Cytochrome b₅ Can Act as Sole

Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and

DNA Adduct Formation by Benzo[a]pyrene

Marie Stiborová,*[†] Radek Indra,[†] Michaela Moserová,[†] Eva Frei,[†] Heinz H. Schmeiser,[‡] Klaus Kopka,[†] David H. Philips,^{§,⊥} and Volker M. Arlt^{§,⊥}


[†]Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic

[‡]Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

§Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building,150 Stamford Street, London SE1 9NH, United Kingdom

¹NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom

Figure S1. Amounts of BaP metabolites generated by human P450 1A1 reconstituted with POR or CBR with or without cytochrome b_5 (cyt b_5). Incubations were carried out in the presence of NADPH or NADH. ND, not detected. $^{\Delta\Delta\Delta}P$ < 0.001 (Student's t-test), significantly different from incubations without cytochrome b_5 ; ***P < 0.001 (Student's t-test), significantly different from incubations with NADPH as cofactor.

