
 - 1 - 

Supplementary Materials:  
Comparative transcriptomics across the prokaryotic 
tree of life 
 

Ofir Cohen 1,2, Shany Doron 1, Omri Wurtzel 1,3, Daniel Dar 1, Sarit Edelheit 1, Iris 
Karunker, 1 Eran Mick 1,4, and Rotem Sorek 1,§ 

 
1. Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 

76100, Israel 
2. Broad Institute of Harvard and MIT, Cambridge, MA, USA 
3. Whitehead Institute for Biomedical Research, Cambridge, MA, USA 
4. Department of Systems Biology, Harvard Medical School, Boston, 

Massachusetts, USA  
 

§ Corresponding author: rotem.sorek@weizmann.ac.il 

  



 
- 2 - 

Supplem
entary Tables 

Table	S1	–	Transcriptom
es	in	the	study	

A
 quantitative sum

m
ary of raw

 transcriptom
e sequencing data for each organism

 and each condition. V
alues represent the num

ber of uniquely m
apped reads (in m

illions). 

O
rganism

	
Accession	

Phylum
	

G
row

th	conditions	
RN

A-seq	
M
	reads	

5'	TAP		
M
	reads	

5'	untreated	
M
	reads	

Reference	

Bacillus	subtilis	
N
C_000964	

Firm
icutes	

Terrific	Broth,	m
id-log	phase	

2.26	
0.77	

0.35	
This	study	

D
esulfovibrio	vulgaris	

N
C_002937	

Proteobacteria	
DSM

Z	m
edium

	
3.70	

1.17	
4.03	

(1)	

Escherichia	coli	
N
C_000913	

Proteobacteria	
m
id-log	phase	

3.83	
0.37	

0.17	
This	study	

Listeria	m
onocytogenes	

N
C_003210	

Firm
icutes	

m
erged	

6.11	
1.78	

3.75	
(2)	

	
	

	
log	phase,	30°C	

N
A*	

0.15	
0.93	

(2)	

	
	

	
log	phase,	37°C	

N
A*	

0.41	
0.35	

(2)	

	
	

	
hypoxia	

N
A*	

0.44	
0.57	

(2)	

	
	

	
delta	prfA	

N
A*	

0.20	
0.31	

(2)	

	
	

	
delta	sigB	

N
A*	

0.41	
0.73	

(2)	

	
	

	
stationary	phase,	37°C	

N
A*	

0.16	
0.87	

(2)	

Bdellovibrio	bacteriovorus	
N
C_005363	

Proteobacteria	
m
erged	

9.94	
5.95	

6.60	
(3)	

	
	

	
HEPES	buffer,	attack	phase	

8.80	
5.95	

6.60	
(3)	

	
	

	
HEPES	buffer,	grow

th	phase	
1.14	

0.01	
0.00	

(3)	

Catenulispora	acidiphila	
N
C_013131	

Actinobacteria	
DSM

Z	m
edium

	
3.03	

2.10	
0.42	

(1)	

Clostridium
	acetobutylicum

	
N
C_003030	

Firm
icutes	

m
erged	

7.67	
0.25	

0.36	
This	study	

	
	

	
pH	4.5	

4.10	
0.19	

0.32	
This	study	

	
	

	
pH	5.7	

3.57	
0.06	

0.04	
This	study	

G
luconobacter	oxydans	

N
C_006677	

Proteobacteria	
m
erged	

3.02	
6.10	

1.97	
This	study	

	
	

	
glycerol	

1.41	
1.57	

0.51	
This	study	

	
	

	
m
annitol	

1.61	
4.53	

1.45	
This	study	
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Kangiella	koreensis	
N
C_013166	

Proteobacteria	
DSM

Z	m
edium

	
2.81	

0.37	
1.31	

(1)	

Lactobacillus	brevis	
N
C_008497	

Firm
icutes	

ATCC	m
edium

	
10.65	

0.95	
0.62	

(1)	

Lactococcus	lactis	
N
C_002662	

Firm
icutes	

M
17	m

edium
	

4.82	
0.62	

0.35	
(1)	

Pseudom
onas	aeruginosa	

N
C_008463	

Proteobacteria	
m
erged	

5.00	
1.53	

0.95	
(4)	

	
	

	
28°C,	LB,	early	stationary	phase	

2.13	
1.30	

0.82	
(4)	

	
	

	
37°C,	LB,	early	stationary	phase	

2.87	
0.23	

0.13	
(4)	

Synechococcus	W
H
7803	

N
C_009481	

Cyanobacteria	
Artificial	seaw

ater	m
edium

		
5.53	

3.11	
0.65	

(5)	

Synechococcus	W
H
8102	

N
C_005070	

Cyanobacteria	
Artificial	seaw

ater	m
edium

		
7.74	

4.58	
2.50	

(5)	

Spirochaeta	aurantia	
Saur_Contig1177	

Spirochaetes	
DSM

Z	m
edium

	
5.71	

12.16	
2.27	

(1)	

Sulfolobus	acidocaldarius	
N
C_007181	

Crenarchaeotes	
yeast	extract,	stationary	phase	

2.97	
0.98	

2.73	
This	study	

Sulfolobus	solfataricus	
N
C_002754	

Crenarchaeotes	
m
erged	

14.90	
4.89	

4.13	
(6)	

	
	

	
cellobiose	

7.67	
2.26	

2.91	
(6)	

	
	

	
glucose	

4.66	
2.26	

2.91	
(6)	

	
	

	
m
inim

al	
3.01	

2.26	
2.91	

(6)	

Therm
us	therm

ophilus	
N
C_005835	

Deinococcus-Therm
us	

m
id-log	phase	

1.51	
2.26	

2.91	
This	study	

* In Listeria, R
N

A
-seq (coverage) exists only for the “m

erged” grow
th condition. In the different grow

th conditions in Listeria, inference of TSS 
is based on grow

th-condition specific 5’ reads but a single “m
erged” coverage. 
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 Table	S2	–	Features	used	for	TSS	inference	
G

enom
ic and transcriptom

ic features used for the inference of TSSs based on a random
 forest classifier 

 Feature	nam
e	

Feature	details	
Feature	Type	

Distance	
Distance	of	site	from

	annotated	gene	
G
enom

ic	

TAP	
N
um

ber	of	TAP	treated	5’	reads	
5'	RN

A-seq	

Ratio	
Ratio	of	TAP	treated	vs.	untreated	5'	reads	

5'	differential	RN
A-seq	

Diff	
N
um

ber	of	TAP	treated	+1	divided	by	untreated	+1	
5'	differential	RN

A-seq	

Δ	Coverage	short	
Expression	increase	w

ithin	20	bp	(log)	
RN

A-seq	

Δ	Coverage	long	
Expression	increase	w

ithin	80	bp	(log)		
RN

A-seq	

Coverage	ratio	
Ratio	of	average	coverage	80	bp	dow

nstream
	and	40	bp	upstream

	(log)	
RN

A-seq	

Coverage	dow
nstream

	
Average	coverage	80	bp	dow

nstream
	

RN
A-seq	

Alternative	sites	in	vicinity	(Diff)	
N
um

ber	of	adjacent	sites	w
ith	higher	"Diff"	value	in	100	bp	vicinity	

5'	differential	RN
A-seq	

Alternative	sites	in	vicinity	(TAP)	
N
um

ber	of	adjacent	sites	w
ith	higher	"TAP"	value	in	100	bp	vicinity	

5'	differential	RN
A-seq	

Alternative	sites	in	vicinity	
N
um

ber	of	adjacent	sites	w
ith	both	higher	"Diff"	and	"TAP"	value	in	100	bp	vicinity	

5'	differential	RN
A-seq	

Processing	value	(Ratio)	
Ratio	of	TAP	treated	vs.	the	sum

	of	all	untreated	5'	reads	up	to	100	bp	upstream
	

5'	differential	RN
A-seq	

Processing	value	(Diff)	
TAP	treated	m

inus	the	sum
	of	all	untreated	5'	reads	up	to	100	bp	upstream

	
5'	differential	RN

A-seq	

Coverage	com
patibility	w

ith	gene	
Ratio	betw

een	coverage	at	TSS	and	m
in	coverage	till	gene's	end	(40	bp	slide	w

indow
)	

RN
A-seq	+	G

enom
ic	

Is	overlapping	other	gene	
True,	if	putative	upstream

	TSS	is	located	w
ithin	adjacent	gene	

G
enom

ic	
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Table	S3	–	gene	families	with	recurring	long	5’UTRs	
Gene families (COGs) with recurring propensity for recurring long 5’UTRs across organisms. Gene 
families with 5’UTRs of at least 100 bp found within least 5 different genera are presented. 
COG	ID	 Type	 Genes	description	 #	Rfam	ID	or	

reference	
#	Genera	with	
long	5’UTRs	(#	
reported	in	
RFAM)	

COG0052	 Ribosomal	Leader	 30S	ribosomal	subunit	protein	S2	 RF00127	 11	(3)	

COG0244	 Ribosomal	Leader	 50S	ribosomal	subunit	protein	L10	 RF00557	 10	(3)	

COG0441	 T-box	 threonyl-tRNA	synthetase	 RF00230	 10	(1)	

COG0290	 Ribosomal	Leader	 protein	chain	initiation	factor	IF-3	 RF00558	 9	(3)	

COG0102	 Ribosomal	Leader	 50S	ribosomal	subunit	protein	L13	 RF00555	 9	(3)	

COG0085	 Lacto-rpoB	 RNA	polymerase,	beta	subunit	 RF01709	 9	(2)	

COG1158	 Pseudomon-Rho	 transcription	termination	factor	Rho	 RF01720	 8	(1)	

COG0048	 Ribosomal	Leader	 30S	ribosomal	subunit	protein	S12	 (7)	 8	

COG1278	 Thermometer	 cold-shock	csp-family	 RF01766	 8	(8)	

COG0261	 Ribosomal	Leader	 50S	ribosomal	subunit	protein	L21	 RF00559	 7	(3)	

COG0513	 Thermometer	 DEAD/DEAH	box	RNA	helicase	 (8)	 7	(1)	

COG0192	 S-box	 S-adenosylmethionine	synthetase	 RF00162	 7	(2)	

COG0209	 Riboswitch,	Cobalamin	 vitamin	B12-dependent	ribonucleotide	reductase	 RF00174	 7	(1)	

COG0051	 Ribosomal	Leader	 30S	ribosomal	subunit	protein	S10	 (9)	 7	(1)	

COG0422	 Riboswitch,	TPP	 thiamine	biosynthesis	protein	ThiC	 RF00059	 7	(6)	

COG0776	 Novel	candidates	 HU,	DNA-binding	transcriptional	regulator	 NA	 7	

COG1271	 Novel	candidates	 Cytochrome	bd-type	quinol	oxidase,	subunit	1	 NA	 6	

COG0550	 Novel	candidates	 DNA	topoisomerase		 NA	 6	

COG0539	 Ribosomal	Leader	 30S	ribosomal	subunit	protein	S1	 (10)	 6	(1)	

COG0525	 T-box	 Valyl-tRNA	synthetase	 RF00230	 6	(3)	

COG0060	 T-box	 Isoleucyl-tRNA	synthetase	 RF00230	 6	(2)	

COG0495	 T-box	 Leucyl-tRNA	synthetase	 RF00230	 6	(2)	

COG1622	 Novel	candidates	 cytochrome	o	ubiquinol	oxidase	subunit	II	 NA	 6	

COG0833	 Riboswitch,	Lysine	 lysine	transporter	(permease)	 RF00168	 6	(2)	

COG0119	 Leucine	operon	leader	(leuA)	 Isopropylmalate/homocitrate/citramalate	
synthases	

RF00512	 5	(1)	

COG0838	 mini-ykkC	 NADH:ubiquinone	oxidoreductase	 RF01068	 5	(1)	

COG0117	 Riboswitch,	FMN	 riboflavin	biosynthesis	protein		 RF0005	 5	(2)	

COG0449	 glmS	ribozyme	 glucosamine--fructose-6-phosphate	 RF00234	 5	(1)	

COG0404	 Riboswitch,	Glycine	 Glycine	cleavage	system	T	protein	
(aminomethyltransferase)	

RF00504	 5	(2)	

COG0752	 T-box	 Glycyl-tRNA	synthetase,	alpha	subunit	 RF00230	 5	(1)	

COG0234	 Pseudomon-GroES	 Co-chaperonin	GroES	(HSP10)	 RF01721	 5	(1)	

COG0522	 Ribosomal	Leader,	candidate	 30S	ribosomal	subunit	protein	S4	 NA	 5	

COG1544	 Ribosomal	Leader,	candidate	 sigma	54	modulation	protein/30S	ribosomal	 NA	 5	

COG1418	 Novel	candidates	 Predicted	HD	superfamily	hydrolase	 NA	 5	

COG0227	 Ribosomal	Leader,	candidate	 50S	ribosomal	subunit	protein	L28	 NA	 5	

COG0605	 Novel	candidates	 superoxide	dismutase	(Fe,	Mn)	 NA	 5	

COG0568	 Novel	candidates	 RNA	polymerase,	sigma	70	(rpoD)	 NA	 5	

COG0016	 T-box	 Phenylalanyl-tRNA	synthetase	alpha	subunit	 RF00230,	RF01859	 5	(3,1)	

COG0779	 rimP	leader	 ribosome	maturation	factor	for	30S	subunits	 (11)	 5	(1)	

COG2252	 Riboswitch,	Purine	 xanthine/uracil/vitamin	C	permease,	membrane	
transporter	

RF00167	 5	(2)	

COG1077	 Novel	candidates	 rod	shape-determining	protein	MreB	 NA	 5	
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Supplementary Results and Figures 

Figure	S1	–	The	transcriptome	maps	reconstruction	pipeline		
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Accuracy of TSS inference 

Our compendium of organisms includes three organisms with published 
transcriptomes maps including manually curated single-base resolution TSSs (Listeria 
monocytogenes (2), Pseudomonas aeruginosa (4) and Sulfolobus solfataricus (6)). 
These published sets were used as benchmarks to evaluate the accuracy of our 
automatic approach (tolerance of 1 bp in position was allowed). Assuming that the 
published TSSs represent the true set of TSSs, we considered a site to be “True 
Positive” (TP) if the position, strand, and association of TSS to genes were the same 
as in the published set, “False Positive” (FP) if a TSS was inferred but is missing from 
the published set, and “False Negative” (FN) if a TSS appears in the published set but 
was not inferred by the automatic approach (Figure S2). We find strong agreement 
between the automatically inferred TSSs and the published sets. In Listeria 
monocytogenes, out of 1,371 published gTSSs we infer 1,087 (sensitivity of 79.3%) 
while a total of 1,388 gTSSs were inferred (precision of 78.3%). The agreement with 
the published sets of Pseudomonas and Sulfolobus was lower with sensitivity of 
74.5% and 64.1% while maintaining precision of 70.9% and 61.6%, respectively. In 
all three benchmarks the False Positive Rate at the cited sensitivity was extremely 
low, rejecting tens of thousands of processed sites, with FPR of 0.0000035%, 
0.000054%, and 0.000026% for	Listeria,	Pseudomonas and Sulfolobus, respectively. 

Importantly, further manual inspection of the sites in which disagreement with the 
published set was found, suggests that only a subset of the cases deemed “false” are 
the result of inaccurate inference by the automatic algorithm. Manual inspection of 50 
sites that are inferred by our method but missing from the published set (“FP”) 
revealed that most of them are justified TSSs (“TP”, 52%, 68%, and 96%, for 
Listeria, Pseudomonas, and Sulfolobus, respectively), while only a small fraction 
were wrongly inferred (16%, 8%, and none, for Listeria, Pseudomonas, and 
Sulfolobus, respectively), with the rest deemed inconclusive. Similarly, out of 50 sites 
that appear in the published set and were not inferred by the computational pipeline 
(“FN”), many are indeed not justified primary TSS (“TN”, 80%, 34%, and 50%, for 
Listeria, Pseudomonas, and Sulfolobus), while only a few sites (2%, 14%, and 14%, 
for Listeria, Pseudomonas, and Sulfolobus) were clearly missing from inference, with 
the rest inconclusive. 
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Figure	S2	–	Accuracy	of	TSS	inference.		
Accuracy of the automated inference of TSSs is estimated by comparison to the curated/manually 
annotated gTSSs of the published transcriptomes. The TP (agreement with published, center), FP 
(inferred but missing from published, left area) and FN (appear in published but not inferred, right 
area) are shown in purple, red and blue, respectively. (A) Listeria: sensitivity of 79.3% with precision 
of 78.3% (B) Pseudomonas: sensitivity of 74.5% with precision of 70.9% (C) Sulfolobus: sensitivity of 
64.1% with precision of 61.6%. 

(A) Listeria monocytogenes 

 

 

 

 

 
 

(B) Pseudomonas aeruginosa 

 
 

 

 

 

 

(C) Sulfolobus solfataricus 

 

 

 

 

  

Inferred	TSSs Published	TSSs 

Inferred	TSSs Published	TSSs 

Inferred	TSSs Published	TSSs 
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Figure	S3	–	distribution	of	5’UTR	length	across	the	tree	of	life	
(A) Comparable collection of 5’UTRs across the analyzed organisms (B) Percent of long 5’UTRs (at 
least 100 bp) per organism, across the tree of life, out of total genes. 

(A) 

 
 

(B) 
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Figure	S4	–	Gene	families	with	recurring	long	UTRs.		
Functional characterization of gene families (COGs) with high propensity for recurring long 5’UTRs 
multiple species. Approximately three quarters of the gene families with recurring long 5’UTRs (30 out 
of 41) recapitulate previously reported 5’UTR regulatory elements partitioned into ribosomal leaders, 
riboswitches and thermosensor elements. Additional three gene families are candidates for ribosomal 
leaders and eight gene families are novel candidates for cis-acting 5’UTR regulators (COG0776, 
COG1271, COG0550, COG1622, COG1418, COG0605, COG0568, COG1077). 

 

 

 

 

 	

Ribosomal	leader	(8)	

Ribosomal	leaders	candidates	(3)	

Riboswitches	(8)	

T-box	leaders	(6)	

Various	reported	cis	regulators	(6)	

Thermosensors	(2)	

Novel	candidates	(8)	
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Extended Methods 

RNA-seq protocols  
RNA-seq protocols were employed as described in the individual references presented 
in Table S1. In cases marked as “this study”, RNA-seq protocols were performed 
using standard Illumina strand insensitive library preparation kits as described in (1). 
 

Determination and assessment of reliability of TSSs  

Training set selection 

For each organism, a “positive TSS training set” was selected as follows. We 
automatically selected dominant 5’ sites (gTSS) upstream of genes that are the first in 
their operon. We defined genes as starting new operons if the distance to the nearest 
upstream gene on the same strand is greater than 40bp, as used previously (2, 4). Two 
criteria were used to define the “top” (best) TSS for each gene (gTSS): (1) maximal 
number of TAP-treated reads uniquely mapped to the site  (2) minimal level of 
processing at the site or upstream to it, as defined by TAP(+) reads mapped to the site 
minus the TAP(-) reads in the range of 100bp upstream (and including the site itself). 
If, for a specific gene, the two criteria resulted with two or more sites, both sites were 
included in the training set only if the distance between them was greater than 50bp 
and the number of TAP(+) reads in both sites was above the 75 percentile of all gTSS 
sites in this transcriptome. Otherwise, the site with higher number of TAP(+) reads 
was preferred unless the alternative site was better supported by the local coverage 
increase (“Coverage ratio” and “Δ Coverage short”, Table S2). 

Filtering of training set TSSs 

To omit sites that have very low probability of representing primary TSS, sites that 
did not satisfy one of the following filters were excluded. We used two types of 
filters: (A) simple unary conditions - omitting sites that include (1) less than two 
TAP(+) reads mapped to the site, and (2) an average RNA-seq coverage of less than 
one read per bp downstream of the site (average calculated over 80bp window). (B) 
composite conditions – omitting sites based on rules that take into account the 
transcriptome-computed distributions for all observed 5’ sites that are present 
upstream of genes (up-5’ sites). The condition to omit sites from the positive training 
set include: (1) the ratio of TAP(+)/TAP(-) was below the median of up-5’ sites, with 
lack of either (i) RNA-seq coverage increase starting at site was below the median for 
up-5’ sites or (ii) number of TAP(+) reads was below the 90th percentile among up-5’ 
sites; (2) TAP(+) reads was below 90th percentile among up-5’ sites, and coverage 
increase value was below the 90th percentile among up-5’ sites; and (3) low values in 
coverage increase (below median among up-5’ sites) while no compensatory signal by 
high number of TAP(+) reads (below 90th percentile among up-5’ sites).  
These automated selections were found to fit well with the benchmark of previously 
published sets of manually curated gTSS, quantified as accuracy in classification of 
curated gTSSs, we found TP=949, FP=211, and FN=422 for Listeria monocytogenes 
(2), TP=1,393, FP=481, and FN=724 for Pseudomonas aeruginosa (4), and TP=544, 
FP=288, and FN=508 for Sulfolobus solfataricus (6). 

. 
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Random Forest learning procedure 

The positive training set of TSSs for a typical transcriptome consisted of several 
hundred sites. We referred to the remaining sites (defined as sites supported by at 
least 2 TAP(+)) as the negative training set (consisting of the rest of the putative 5’ 
sites, typically few tens of thousands). Therefore, the sizes of training sets produced 
by the automated selection procedure are imbalanced. Thus, to allow efficient 
learning we used “Random Forest” classifier (12, 13) with the negative training set 
sampled to maintain a 1:10 ratio of positive vs. negative sites. The learning accuracy 
and reproducibility was improved by averaging the score for each site over ten 
independent sampling of the negative training set, with each forest consisting of 1,000 
trees. The cutoff score for sites was set for sensitivity of 95% of the positive training 
set. The cutoff for “high reliability score” was defined by the score set for sensitivity 
of 90% of the positive training set (these sites appear in bold color in the 
transcriptome maps). We note that the cutoff was set according to sensitivity rather 
than false positive rate due to the large, highly variable number of negatives in the 
trainning set. 
Association of TSSs to genes 

For many genes the learning process infers multiple alternative gTSSs in close 
proximity. Aiming to reconstruct useable transcriptome maps, we present only the top 
scoring sites in a 50bp region. A major challenge is to associate TSSs in cases where 
the TSS is located in an unusual distance from the start of the gene, because it could 
belong to an exceptionally long 5’UTRs (gTSSs), but also to a ncRNA (nTSSs). 
Initial association was performed prior to the learning with initial simplified rules 
reflecting that long 5’UTRs are rare in Archaea (6) but are more common in bacteria 
(14) . Sites were defined as gTSS if the distance to the closest gene was smaller than 
300bp and 30bp in bacteria and archaea, respectively. If the distance was in the range 
of 300 to 600bp in bacteria and 30 to 300bp in archaea, the association remained 
ambiguous allowing for either gTSS or nTSS. The final association of these 
ambiguous sites was performed by taking into account the RNA-seq coverage. Distant 
sites were only associated with genes if there was a minimal level of continuity in the 
expression level between the TSS and the gene with maximal coverage drop along a 
10 bp sliding window from the TSS to the ORF start was below the median of this 
value measured for all gTSS. 

 

Inference of operons, and sRNAs 

Operons 

Operons (Transcriptional Units, TUs) prediction was performed similarly to the 
previously used approach (2, 4) with the main difference of allowing overlapping 
TUs. That is, each gTSS defines the beginning of a new TU, however in this study the 
existence of gTSS does not necessarily define the end of previous TU. An inferred TU 
was terminated if the downstream gene was located on the opposite strand, or the 
intergenic distance to the downstream gene was more than 200bp. In addition, an 
inferred TU was terminated based on coverage - if: (1) The expression level of 
downstream gene is below average coverage of one read covering each position, (2) 
there was a substantially different RNA-seq coverage level in the downstream gene, 
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with the threshold determined from calculating the distribution of coverage ratios 
between the first and the second half of single genes: If the ratio between the 
expression levels of two adjacent genes is above the 90 percentile of ratios within 
genes, the adjacent genes are not included in the same TU. (3) Termination of TU is 
also derived from substantial drop in coverage in the intergenic region, with the 
threshold determined from the distribution of the observed coverage drops within 
genes: If the coverage drop observed in the intergenic region is above the 75 
percentile of coverage drops within genes, the TU is considered as terminated. 

Small non-coding RNAs (sRNAs) 

The prediction of small RNAs (sRNAs) was performed similarly to (2, 4), with a 
modified algorithm that allows sRNAs to be inferred within long 5’UTRs. The 5’ of a 
putative sRNA was inferred from a TSS within intergenic region, which is not 
associated with a downstream gene, and only if sufficiently high coverage was 
observed (>= 20 percentile of the coverage in genome-wide intergenic regions). The 
3’ termination site of the sRNA was defined by 3-fold drop in expression as compared 
to the average coverage of that putative sRNA. An association of the sRNA transcript 
to the downstream gene was defined based on the maximal coverage drop between the 
TSS and the downstream gene start position (along a 10 bp sliding window). If the 
maximal drop from this TSS to the gene was above the median maximal drop 
measured for all TSSs and genes in this transcriptome, the sRNA transcript was 
defined as terminating at its inferred 3’ end. Otherwise, the sRNA transcript was 
defined as part of a long 5’UTR associated with the downstream gene. 
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