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S1 Ecological and environmental data

Field sites Three villages were retained along the transition from the Sudanian to Sahelian climatic zones
(Fig. S1) (see also [1]). The choice of these experimental sites accounted for the spatially varying climatic
conditions in Burkina Faso, the habitat preferences of the snail intermediate hosts (Table S1), previously
studied habitats (see [2, 3]), and logistic constraints (site accessibility, travel time, total available budget).
The sampling sites were selected to cover the range of habitats harboring snail hosts (see Table S1), includ-
ing an irrigation canal, a temporary pond, one ephemeral stream and one permanent stream. Panamasso
(11◦23′23.4”N, 4◦12′02.5”W) is a village adjacent to a small perennial stream in the South-Western part of the
country. The Lioulgou site (12◦00′38.8”N, 0◦21′48.2”W) lies in the central part of the country in a lowland
subject to flooding (with the creation of temporary ponds) during the wet season and mostly dry to very dry
during the rest of the year (Fig. S1). Finally, Tougou (13◦41′06.0”N, 2◦14′22.2”W) is located in the Northern
Sahelian climate next to a reservoir that feeds a network of permanent irrigation canals active almost year
round. In total, four sampling locations were retained in the three experimental sites, one on the perennial
stream in Panamasso, two in Lioulgou in the ephemeral stream draining the low-land and in a temporary
pond, and one in Tougou within an irrigation canal.

Ecological data and sampling protocol Representative host species of both urinary and intestinal parasites
were sampled over 15 months in the three selected villages with distinct climatic and environmental charac-
teristics. Snail demographic data consisted of relative abundance counts in the four sampling sites between
May/July 2014 and October 2015.
A time-based snail sampling technique was employed analogously to the one previously used in malacologi-
cal studies in the country [2, 4]. The sampling protocol consisted of systematically scooping the investigated
habitats for 30 minutes using a 2mm metal mesh [5, 6]. The number of collected snails and sampling meta-
data were recorded in dedicated sampling sheets. Bulinus spp. or Biomphalaria spp. specimens were stored
in dated collection cups in a mixture of clear well water and (90%) alcohol (see e.g. [4]). Sampling was un-
dertaken by field technicians suitably trained by our campaign management. Training was provided during
one week before the start of the campaign, and feedback was given by bi-weekly contacts (phone calls) and
regular on-site visits during the entire sampling campaign. Biological samples were sent every 3 months
back to the Microbiology and Biotechnology Laboratory of the Institut International d’Ingenierie de l’Eau et de
l’Environnement (2iE) in Ouagadougou for recounting and species identification using standard identification
keys [7, 6, 4]. The main Bulinus species that were collected were B. truncatus in the irrigation canal in Tougou
and in the ephemeral stream in Lioulgou, B. senegalensis in the temporary pond in Lioulgou, and B. globosus in
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the perennial stream in Panamasso. A preliminary survey was carried out along the shores of the reservoir of
Tougou, during which no snails were found. Given that this type of habitat had already been covered in pre-
vious studies [2], regular snail sampling was not performed along the reservoir shores. Population abundance
timeseries are shown in Fig. 1 of the main text. Note that the irrigation canal was dry from April to June,
while intense rainfall events flooded the canal and the surrounding rice fields in August, making the area de
facto inaccessible during a period of about two weeks. Because of such exceptional environmental conditions,
the analysis of the snail dynamics in the canal focuses on the period up to March 2015.

Wireless sensor network A total of 15 stations with three sensors each was deployed in the four sampling
locations, starting May 2014 in Tougou, June 2014 in Panamasso and July 2014 in Lioulgou (Fig. S1). The
stations were equipped with sensors of key hydro-meteorological parameters including air temperature, water
level, conductivity and temperature, and precipitation [8] (see Fig.1 and Table S2). Measurements were taken
every 30 seconds and data were sent to a central server using the mobile phone network. Data were accessible
online through a dedicated web portal (http://climaps.com). Additional temperature data loggers were placed
in the temporary pond in Lioulgou because it was not covered by the wireless stations (Table S2).

S2 Population dynamics modeling

Density feedback detection in ecological timeseries has received considerable attention in the literature, build-
ing on a common framework of relatively simple mechanistic models for population dynamics coupled with
statistical methods for discriminating among alternative feedback processes [9, 10, 11]. Here, snail population
dynamics were simulated by discrete-time demographic models inclusive of extrinsic environmental forcing.
Specifically, if Nt denotes the abundance of the snail population in a given habitat at sampling time t, the
simplest demographic model reads

Nt+1 = λNt,

where λ corresponds, whatever its attributes, to the finite instantaneous growth rate of the population between
two sampling dates. This simple Malthusian formulation can be extended to incorporate non-linear density
feedback as proposed by Ricker in the form

Nt+1 = λNtebNt ,

were b is a parameter that sets the feedback’ strength [12]. On taking logarithms, the Ricker model reads:

log
(

Nt+1

Nt

)
= a + bNt, (S1)

where log is the natural logarithm, and a = log λ. Negative density feedback occurs for b < 0, i.e., decreased
recruitment and/or increased death rates at high population densities. In the following we denote as a the
instantaneous intrinsic population growth rate. Depending on the values of a and b, the model can produce
a wide range of dynamical behaviors including steady states, limit cycles and chaos [13]. Obviously, one
recovers the original Malthusian model by setting b = 0.

Exogenous forcing of environmental covariates, their lags, and lagged effects of abundance [14], can be
accounted for as:
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Nt

)
= a +
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∑
τn=0

bτn
Nt−τn

+
m

∑
i=1

rx

∑
τx=0

ciτx

Xi
t−τx

, (S2)

where: bτn
and ciτx

are respectively the weights of the lagged population abundances Nt−τn
, and the envi-

ronmental covariate features, Xi
t−τx

, taken at non-negative integer time lags τ
n
≤ rN and τ

x
≤ rX . Lagged

covariate features were taken in all possible combinations for a given maximum number m. Lagged abun-
dance effects were only considered one at a time or all at once. Product interactions of the type Nt−τn

Xi
t−τx

were not considered.
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A second class of models that incorporate density feedbacks is the Gompertz scheme [15], where the
feedback is a function of the logarithm of population abundance, Lt = log(Nt), rather than abundance itself.
The Gompertz model can be cast in the same form as eq. S2, i.e.

log
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)
= a +

rn

∑
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bτn
Lt−τn

+
m
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i=1

rx
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τx=0
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. (S3)

Note that the logarithmic dependence of the rate of increase on abundance implies a milder density feedback
process.

The modeled demographic processes were assumed to be subject to multiplicative log-normal white noise,
resulting in additive Gaussian for the logarithms of the discrete rates of increase i.e.

yt = log
(

Nt+1

Nt

)
,

yielding a linear regression equation
yt = f (N, X, θ) + εt,

where f (·) is the model structure used for the regression, N is the time vector of abundance observations, X
is the matrix of environmental covariate features, θ ∈ Rk×1 is the vector of true regression parameters,

εt
iid∼ N (0, σ2)

are the regression residuals, and σ is the standard deviation of the white noise.
These demographic models were also contrasted with random walk models in the standard form:

yt = εt + f (X, θ),

which was also tested against all ecological time series.

S3 Model implementation and identification

The selection of demographic models required calibration via least-square regression of all possible linear
combinations of covariate features within the four modeling families described in the text (namely, random
walk, Malthusian, Ricker and Gompertz). Continuous environmental covariates consisted of average and
standard deviation of the measurements taken over the week preceding snail sampling dates at each site
(Table S2). Precipitation data covariates consisted of cumulative sums over two different windows (2 weeks
and 1 month), and of the number of precipitation events - daily precipitation higher than 20mm - during the
week preceding sampling dates. A limit of rX = 3 time lags on the covariates was imposed, which is equivalent
to taking into account habitat environmental conditions up to 1 month preceding sampling. Furthermore the
maximum number of covariate features was set to m = 7 in the face of the relatively limited number of
ecological data points (a maximum of 66 weeks of data), and the number of resulting models to be tested.
Lags in the effect of population abundance were limited to rN = 3, and density feedback processes were
tested either individually (therefore only one lag present for each combination of environmental covariates),
or all together. For a given m, all possible combinations of parameters were tested, giving a total number
of models to test equal to the sum of the number of lagged covariate combinations, ∑m

j=0 (
M
j ), were M is the

total number of available features and their lags (38 in our study), times the number of model structure types
(namely, random walk, Malthusian, Gompertz and Ricker) accounting for lagged abundance covariates:

(2(τ
n
+ 1) + 2)

m

∑
j=0

(
38
j

)
≈ O(107)
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for m = 7. Weeks in which no snails were observed were given an abundance of 1 to be able to compute
logarithms. The Gompertz and Ricker models for which the estimated intrinsic rate of increase was negative,
â < 0, or suggesting positive density feedback, b̂τn

> 0, were rejected as implausible. Indeed, to our knowl-
edge, there is no experimental evidence of positive density feedbacks for any intermediate host species of
schistosomiasis. The positive constraint on a is necessary to ensure that the modeled dynamics have a positive
nontrivial equilibrium abundance [13]. Multiplicative interactions between variables were not considered. The
computations were run in parallel with R (R Core Team (2015). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria) and the foreach package (Revolution
Analytics & Weston, S. (2014). foreach: Foreach looping construct for R, R package version 1.4.2.) on the CASTOR
cluster of the Scientific IT and Application Support Center of EPFL.

S4 Model selection and abundance predictions

Statistical tools for the detection of density feedbacks have been extensively studied, for instance through
the use of hypothesis testing with bootstrapping [9], or information-theoretical methods such as the Akaike
information criterion (AIC) [16]. Recently, Structural Risk Minimization (SRM) has been proposed as a viable
alternative tool for ecological model selection [13]. One advantage of SRM is that it does not depend on par-
ticular assumptions about the nature of the joint probability distribution of process and measurement errors.
It has been shown to yield better density feedback recognition capabilities than widely used compensated
Akaike information criteria (AICc) [11, 13]. Within the SRM framework, the selection criterion corresponds
to the choice of the model structure and parameter set that minimize the empirical upper bound of the true
structural risk (R), given by:

R(θ) ≤ R(θ̂) =
1
q

∑
q
t=1 ε̂t

2[
1−

√
p− p log(p) + log(q)

2q

]
+

, (S4)

where
ε̂t = yt − f (N, X, θ̂)

gives the estimated model residuals associated to the vector θ̂ ∈ Rk×1 of optimal parameter estimates for a
given model structure f (·), k is the number of parameters, q is the total number of observations, and p is an
index of complexity known as the VC-dimension, conveniently equal to k/q in the case of linear models. The
denominator is kept if strictly positive [13].

To assess the actual predictive ability of the models retained by the SRM criterion, we performed a leave-
one-out cross-validation (LOO-CV) consisting of sequentially removing one data point, re-fitting the models
to the rest of the data, and predicting the values of the ignored observation. The LOO-CV residuals, say
ε̃t, resulting from this process are used to assess the predictive capacity of each model based on the mean
squared cross-validation error [10],

MSEcv =
q

∑
t=1

ε̃t
2/q.

The MSEcv is an unbiased estimator of the true expected model MSE, thus providing a way of comparing
models using MSECV ratios. Moreover candidate models can be combined using LOO-CV to obtain an optimal
average model for prediction by minimizing the weighted sum of the cross-validation residuals of the retained
set of models [17], resulting in the so-called jackknife model average (JMA, see below). Given the large number
of tested models, here this technique was applied to a subset of the models retained using the SRM criterion.
The same modeling framework was used to validate the results with the available historical ecological data in
Burkina Faso gathered from the literature [2].

Fig. S4 shows that the SRM criterion can rank the models according to their predictive power (i.e. according
to the smaller values of MSECV) . Density feedback processes selected by the SRM criterion were consistent
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with the ones selected with other commonly used criteria. In Fig. S5 we show results for the AICc criterion
[11, 13], formulated as

AICC = 2k− 2 log

(
1
q

q

∑
t=1

ε̂t
2

)
+

2k(k + 1)
q− k− 1

,

and the Bayesian information criterion (BIC), given by

BIC = q log(
1
q

q

∑
t=1

ε̂t
2) + k log(q).

Note that, as opposed to the SRM criterion in eq. S4, here k is the number of parameters of the model plus
1 (including the estimation of the noise variance), q is the total number of observations, and the ε̂t are the
estimated residuals of the model.

The roles of density feedbacks and environmental covariates are further illustrated in terms of regression
coefficients values by species and habitat in Tables S3-S7. Details on lagged density feedback and covariate
occurrence in best selected models for the ecology of the snail populations are given in Fig. S6, highlighting
the distinct roles of hydrologic controls across habitats and climatic regimes.

S5 Jackknife model averaging

By applying models to intermediate host abundance data we pursue two goals: model identification, to disen-
tangle the ecological processes underpinning snail population dynamics, and evaluating the model predictive
capacity in the perspective of building demographic forecasting tools. Using our model selection process we
obtain a set of models with minimal structural risk that can be combined to build a predictive model that
outperforms any single model candidate. Model averaging consists in assigning a weight to each model. Such
weight is a function of its score in terms of an information criterion such as the Akaike Information Crite-
rion or the Bayesian Information Criterion (see [18] for an overview on model averaging techniques). Here,
specifically, we use the so-called Jackknife model averaging technique (for the derivations and properties of
this technique we refer the reader to [17]). The jackknife model average (JMA) estimator is asymptotically
optimal when dealing with weighted averages of linear regression estimators (with positive weights summing
to 1) in terms of minimizing both the in-sample fit, and the expected true error (sensu [19]) which accounts
for un-observed data. Furthermore the JMA method holds also for heteroscedastic errors. Finally it outper-
forms information-criteria-based model averages on finite-sample simulation benchmark experiments [17]. In
our procedure the JMA ensues directly from the computation of the leave-one-out cross-validation (LOO-CV)
mean-squared error statistic used to asses model predictive power, MSEcv = ∑

q
t=1 ε̃t/q, where the ε̃t are the

residuals of the model fit to the dataset removing the data point at time t, and evaluated at time t. In the
JMA framework, we seek the weight vector w that minimizes the expected true error of the model average.
Let ε̃j indicate the vector of jackknife residuals for model j among N candidate models. The estimate the of
expected true error is

CVN(w) =
1
N

wT ε̃T ε̃w (S5)

where CVn is the least-square cross-validation criterion, ε̃ is the matrix composed of the N LOO-CV residual
vectors ε̃j, and T indicates matrix transposition. Given the expression of the expected true error, computing
the optimal weight vector ŵ to obtain the JMA reduces to solving the quadratic programming problem

minimize
w

CVN(w)

subject to wT1N = 1,
diag(w)1N ≥ 0N ,
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where 0N , 1N denote N× 1 vectors of 0s and 1s respectively, and diag(u) denotes a diagonal matrix with main
diagonal composed of the elements of u. The constraints force the weights to be non-negative and to sum to
1. The optimization problem can be solved using any quadratic programming tools. The quadprog package
in R (Weingessel, A. (2013). quadprog: Functions to solve Quadratic Programming Problems. R package version
1.5-5.) was used in our analysis.

The weights of the 500 best models for each habitat and species show that only a reduced number of
models are indeed included in the JMA, and that the best SRM models did not systematically appear in the
model average (Fig. S7).

S6 Historical data and results validation

To our knowledge, only two field studies have specifically focused on the population dynamics of intermediate
hosts of schistosomes in Burkina Faso. Both studies were conducted in the 90’s and concerned a temporary
pond harboring Bulinus senegalensis (12◦11′41”N, 2◦35′58”W) and a small reservoir in the central part of the
country for Bulinus truncatus (12◦12′54”N, 2◦28′36”W) [2, 3]. Ecological data consisted of fortnightly relative
abundance counts using a 30-min sampling technique (see Sampling protocol in this SI).

Environmental covariates were measured locally on snail sampling dates, including water temperature,
conductivity and pH. Bi-weekly cumulative precipitation was available for a location adjacent to the sampling
sites. Significantly, data showed an annual cycle of snail abundance with population bursts during the rainy
season in both habitats, followed by subsequent population reduction and snail aestivation in the case of the
temporary pond (Fig. S8). B. senegalensis abundance presented a double-peak in the temporary pond, with
an early peak around July at the start of the rainy season and a second one around October. On the other
hand, B. truncatus was present in the monitored reservoir during a much longer portion of the year, with a
peak of population abundance at the end of January. Poda et al. investigated the correlations between snail
counts and environmental covariates, reporting as significant the negative correlation with temperature for
B. truncatus, and a positive association with pH for B. senegalensis.

The modeling framework used to analyze our original field observations was also applied to the historical
data available for Burkina Faso. In our study we use continuously monitored environmental signals whereas
only point data (on the dates of snail sampling) were available in the historical studies, thus containing less
information about the environmental conditions impacting snail development and reproduction. Interestingly,
density feedbacks were consistently found by contrasting Poda’s reservoir data via the SRM criterion. Most of
the 100 best SRM models selected for the temporary pond, however, corresponded to the random walk model,
indicating that the upper bound of the structural risk does not support any ecological modeling (Fig. S9 A). It
seems likely that this result stems from the limited amount of available environmental data in the 1990-1992
time series, but no proof can be provided. Nevertheless, AICc, BIC, and LOO-CV MSE favored the Gompertz
model type, i.e. a mild density feedback (Fig. S9 B). This less clear-cut model identification is speculated to
be a direct consequence of the lack of continuous environmental data, specifically for the temporary pond
during the dry season.

The JMA was able to satisfactorily capture the multi-annual dynamics of Bulinus spp. in both habitats. It
may be noted that the best selected models overestimate the initial population rate of increase in the reservoir
whereas the JMA adequately smooths them out (Fig. S9 C). Interestingly, a density feedback in the reservoir
was found to be correlated to the snail population one month before snail sampling dates, in contrast with
the feedbacks identified in the habitats studied in our field work. Models for both habitats were mainly
driven by water temperature (particularly in the temporary pond), with pH, cumulative precipitation and
conductivity appearing less frequently (Fig. S9 D,E). The performance of the JMA is encouraging despite
the lack of continuously measured environmental data for the potential of extending our eco-hydrological
approach to settings with more sparse and episodic environmental and ecological data.
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S7 Upscaling of climatic and hydrological drivers

Extending the forecasting capacity of the JMA for each type of habitat to other regions of Burkina Faso could
provide a valuable tool for planning the application of snail control measures and for the distribution of
preventive chemotherapy and mass drug administration. Since all models rely on climatic and hydrological
variables for which monitoring stations such as the ones installed in our experimental sites are not widely
available in the country, we propose a list of remote-sensing data sources which could be used as substitutes
to field data. Needless to say, the bias (if any) and quality of remotely-sensed data could hinder the predictive
capacity of our models, but we deem them valuable nonetheless for locating the most common habitats in
which snails can be found, and capturing seasonality and peaks of intermediate host population abundance.
Examples of remotely sensed data that are freely accessible are given in Table S8. In a first stage these data
can be used to determine the spatial distribution of habitat types on large scales based on the physical and
hydrological characteristics of the country. Flow accumulation rasters derived from Digital Terrain Models
(DTMs), evapo-transpiration data and multi-seasonal satellite imagery can be used to determine the location
and ephemerality of waterbodies at the national scale. Furthermore, existing databases on water resources
infrastructure provide the localization of man-made reservoirs and valuable information on irrigation works
[20]. The development of a robust methodology to perform this task is the object of ongoing work. Snail
abundance fluctuations can then be inferred by feeding spatio-temporal remotely sensed data on precipitation
and air, surface and water temperature into the modeling framework developed in this study. The approach
we present here has the unique feature of not only yielding the possible locations of the intermediate hosts
of schistosomiasis, but also providing estimates of seasonal population fluctuations. Both of these aspects
represent important insights this type of approach could give to disease surveillance-response mechanisms.
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Table S1: Occurrence and habitat preferences of snail intermediate host species of human schistosomes in
Burkina Faso. Species relative occurrence is indicated by (+++) most common, (++) common, (+) rare. Qual-
itative habitat preference is given by (***) preferred, (**) very common, (*) recurrent, (-) rare or not observed.
Symbols are our interpretation of data from 496 biotopes across the country reported by [21].

Schistosome
species Snail species Occurrence

Habitat preference

reservoir stream pond irrigation
canal lake

Schistosoma
haematobium

Bulinus
truncatus +++ *** ** ** * *

B. senegalensis +++ ** ** *** - -
B. globosus ++ ** *** - * *
B. forskalii ++ ** ** * - -
B. umbilicatus + * * - - -

Schistosoma
mansoni

Biomphalaria
pfeifferi +++ ** *** - * *

Table S2: Environmental covariates at sampling locations.

Water a,b Air c Precipitation d

Village Site temperature conductivity depth temperature sum e events f

Tougou canal yes yes yes yes yes yes
reservoir yes yes yes yes yes yes

Lioulgou stream yesg - - yes yes yes
pond yes - - yes yes yes

Panamasso stream yes yes yes yes yes yes

a Measurements made in Tougou and Panamasso using Decagon Devices CDT sensor, Decagon Devices, http://www.decagon.com/en/

hydrology/water-level-temperature-electrical-conductivity/ctd-10-sensor-electrical-conductivity-temperature-depth/
b Measurements made in Lioulgou using TidBiT v2 Temp, Onset HOBO Data Loggers, Onset Computer Corporation, http://www.

onsetcomp.com/products/data-loggers/utbi-001
c Measurements made using Decagon Devices VP-3 sensor, Decagon Devices, http://www.decagon.com/en/canopy/canopy-environment/vp-

4-humidity-barometricpressure-temperature-and-vapor-pressure-sensor/
d Measurements made using Davis Rain Collector, Davis Instuments, http://www.davisnet.com/weather/products/weather_product.asp?

pnum=07852
e Cumulative sum over 2 weeks and 1 month time windows preceding snail sampling dates
f A rainfall event is considered to be a day with total precipitation larger than 20mm
g Only in 2015
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model1 model2 model3 model4 model5 model6 model7 model8

a 0.435 10.24∗∗∗ 8.152∗∗∗ 0.747 −4.654∗∗∗ 5.719∗∗∗ 1.201∗ −4.862∗∗∗
(0.230) (0.732) (0.816) (0.421) (0.495) (0.536) (0.355) (0.519)

Lt −1.974∗∗∗ −1.446∗∗∗ −1.140∗∗∗ −1.346∗∗∗
(0.118) (0.092) (0.089) (0.078)

Lt .lag3 −0.394∗∗∗
(0.051)

Nt −0.031∗∗∗
(0.002)

air.temp.sd.lag1 −0.426∗∗∗
(0.047)

air.temp.sd.lag2 0.475∗∗∗ 0.330∗∗∗ 0.386∗∗∗
(0.048) (0.050) (0.052)

air.temp.sd.lag3 0.293∗∗∗
(0.039)

conductivity.mean.lag1 −0.052∗∗∗
(0.004)

conductivity.mean.lag3 0.015∗∗∗ −0.031∗∗∗
(0.002) (0.005)

conductivity.sd.lag2 −0.116∗∗∗
(0.011)

conductivity.sd.lag3 0.024 −0.008 −0.048∗ 0.047∗∗ −0.005
(0.013) (0.014) (0.018) (0.013) (0.015)

precip.14 −0.045∗∗∗ 0.119∗∗∗ −0.024∗∗∗
(0.002) (0.009) (0.003)

precip.30 −0.017∗∗∗
(0.001)

precip.7 −0.096∗∗∗ −0.089∗∗∗ 0.053∗∗∗
(0.017) (0.013) (0.006)

precip.events.14 −3.367∗∗∗ 0.456∗∗∗ −0.618∗∗∗
(0.262) (0.048) (0.065)

precip.events.30 0.441∗∗∗ 0.824∗∗∗ 0.845∗∗∗
(0.042) (0.073) (0.076)

precip.events.7 2.418∗∗∗ 3.598∗∗∗ 1.462∗∗∗ 0.770∗∗∗ 3.522∗∗∗
(0.134) (0.513) (0.158) (0.110) (0.383)

water.level.mean 0.007∗∗∗ 0.007∗∗
(0.001) (0.001)

water.level.mean.lag1 0.012∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.007∗∗∗
(0.001) (0.001) (0.001) (0.001)

water.level.mean.lag2 −0.002∗∗ −0.004∗∗∗ −0.005∗∗∗
(0.000) (0.001) (0.001)

water.level.sd 0.023∗∗∗ 0.024∗∗∗
(0.003) (0.003)

water.level.sd.lag2 −0.011∗∗∗ −0.013∗∗∗
(0.002) (0.002)

water.level.sd.lag3 0.012∗∗
(0.002)

water.temp.mean 0.106∗∗∗ 0.090∗∗∗
(0.015) (0.013)

water.temp.mean.lag1 0.071∗∗∗
(0.012)

water.temp.mean.lag3 −0.191∗∗∗ −0.174∗∗∗ −0.114∗∗∗
(0.016) (0.019) (0.017)

water.temp.sd.lag1 −0.740∗
(0.272)

water.temp.sd.lag3 1.992∗∗∗
(0.218)

R2 0.984 0.992 0.982 0.973 0.970 0.969 0.987 0.967
Adj. R2 0.968 0.983 0.964 0.949 0.943 0.943 0.972 0.938
Num. obs. 17 16 17 16 16 16 16 16
MSE 0.062 0.050 0.067 0.080 0.084 0.084 0.059 0.088
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Table S3: Regression coefficents of the 8 best SRM-ranked models of the ecology of Bulinus spp. in an irrigation
canal. Coefficients are color-coded for significant (p-value< 0.05) positive (green) and negative (red) effects
on snail abundance variantions. Standard error at 95% CI is given in bellow coefficient values (light gray, in
parenthesis). Environmental covariate names are color-coded by type as in Fig. 3. Table produced using R
package texreg [22].
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model1 model2 model3 model4 model5 model6 model7

a 4.404 5.638 2.203∗∗∗ 2.628∗∗∗ 2.105 2.962∗∗∗ 2.579∗∗∗
(2.662) (3.487) (0.541) (0.661) (2.500) (0.656) (0.555)

Lt −0.650∗∗∗ −0.744∗∗∗ −0.409∗∗∗ −0.425∗∗∗ −0.662∗∗∗ −0.486∗∗∗ −0.469∗∗∗
(0.109) (0.133) (0.101) (0.105) (0.112) (0.105) (0.100)

air.temp.mean 0.786∗∗∗ 0.737∗∗∗ 0.714∗∗∗
(0.184) (0.191) (0.188)

air.temp.mean.lag2 −0.405∗ −0.406∗
(0.156) (0.165)

air.temp.mean.lag3 −0.379∗
(0.182)

air.temp.sd −0.282∗∗∗ −0.184 −0.288∗∗∗
(0.078) (0.091) (0.079)

air.temp.sd.lag3 −0.674∗∗∗ −0.684∗∗∗ −0.399∗∗ −0.573∗∗∗ −0.250
(0.154) (0.161) (0.112) (0.151) (0.131)

water.temp.mean −0.352∗∗ −0.363∗∗ −0.376∗∗
(0.108) (0.114) (0.114)

water.temp.mean.lag3 0.176
(0.090)

water.temp.sd 0.502∗∗ 0.484∗∗ 0.441∗∗ 0.358∗
(0.146) (0.154) (0.146) (0.140)

water.temp.sd.lag1 −0.626∗∗∗ −0.657∗∗∗ −0.552∗∗∗ −0.425∗∗
(0.146) (0.152) (0.140) (0.121)

water.temp.sd.lag3 0.275∗ 0.318∗
(0.116) (0.135)

R2 0.737 0.716 0.334 0.327 0.721 0.397 0.509
Adj. R2 0.656 0.628 0.297 0.289 0.635 0.345 0.448
Num. obs. 35 35 39 39 35 39 37
MSE 0.484 0.503 0.663 0.666 0.498 0.640 0.597
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Table S4: Regression coefficents of the 7 best SRM-ranked models of the ecology of Bulinus spp. in a temporary
pond. Legend as in S3.

model1 model2 model3 model4 model5 model6 model7

a 1.229∗∗ 1.026∗ 1.298∗∗ 1.340∗ 2.783 3.935 1.610
(0.361) (0.358) (0.371) (0.491) (2.453) (4.247) (0.734)

Nt −0.129∗∗∗ −0.132∗∗∗ −0.137∗∗∗ −0.122∗∗∗ −0.132∗∗∗ −0.133∗∗∗ −0.132∗∗∗
(0.020) (0.019) (0.021) (0.023) (0.021) (0.021) (0.021)

air.temp.mean.lag3 −0.110
(0.173)

air.temp.sd.lag1 −0.120
(0.200)

precip.30 0.003
(0.002)

precip.events.30 0.106
(0.115)

water.temp.mean.lag1 −0.049
(0.076)

water.temp.sd −0.501∗∗
(0.157)

water.temp.sd.lag1 −0.616∗∗ −0.554∗∗ −0.592∗∗ −0.587∗∗ −0.514∗ −0.555∗
(0.146) (0.141) (0.150) (0.157) (0.219) (0.182)

water.temp.sd.lag3 0.678∗∗∗ 0.603∗∗∗ 0.596∗∗ 0.466∗∗∗ 0.616∗∗ 0.644∗∗∗ 0.625∗∗
(0.111) (0.113) (0.144) (0.092) (0.150) (0.126) (0.145)

R2 0.856 0.886 0.867 0.804 0.861 0.861 0.861
Adj. R2 0.816 0.841 0.813 0.750 0.806 0.806 0.805
Num. obs. 15 15 15 15 15 15 15
MSE 0.247 0.229 0.248 0.287 0.254 0.254 0.254
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Table S5: Regression coefficents of the 7 best SRM-ranked models of the ecology of Bulinus spp. in an
ephemeral stream. Legend as in S3.
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model1 model2 model3 model4 model5 model6 model7

a 1.013 1.410 1.499 1.448 2.738 1.257 2.807
(1.913) (2.026) (1.986) (2.069) (2.230) (2.002) (2.654)

Lt −0.911∗∗∗ −1.045∗∗∗ −1.036∗∗∗ −0.939∗∗∗ −0.993∗∗∗ −0.900∗∗∗ −1.060∗∗∗
(0.137) (0.144) (0.141) (0.137) (0.147) (0.141) (0.150)

air.temp.mean 0.227
(0.143)

air.temp.sd.lag3 0.385∗∗ 0.360∗∗ 0.412∗∗∗ 0.300∗∗ 0.288∗ 0.386∗∗ 0.470∗∗∗
(0.110) (0.102) (0.105) (0.097) (0.114) (0.114) (0.101)

conductivity.mean.lag2 0.068∗∗∗ 0.053∗∗∗ 0.059∗∗∗ 0.044∗∗ 0.058∗∗∗ 0.064∗∗∗ 0.060∗∗∗
(0.013) (0.013) (0.013) (0.012) (0.013) (0.014) (0.013)

conductivity.mean.lag3 −0.039∗∗ −0.017 −0.020
(0.013) (0.012) (0.012)

conductivity.sd.lag3 0.279∗∗∗ 0.250∗∗∗ 0.282∗∗∗ 0.251∗∗∗ 0.248∗∗∗ 0.271∗∗∗ 0.279∗∗∗
(0.063) (0.063) (0.065) (0.064) (0.062) (0.065) (0.065)

precip.14 0.019∗∗∗ 0.016∗∗∗ 0.017∗∗∗ 0.015∗∗∗ 0.017∗∗∗ 0.017∗∗∗
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

precip.events.14 0.599∗∗∗
(0.141)

water.level.mean.lag1 −0.006∗∗∗ −0.006∗∗∗ −0.006∗∗ −0.007∗∗∗ −0.005∗∗ −0.006∗∗∗
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

water.level.sd.lag1 −0.019∗∗∗
(0.005)

water.temp.mean −0.198∗∗∗ −0.123 −0.222∗∗∗ −0.528∗
(0.055) (0.076) (0.058) (0.205)

water.temp.mean.lag2 −0.225∗∗∗ −0.142 −0.194∗∗ −0.225∗∗∗
(0.059) (0.077) (0.059) (0.059)

R2 0.644 0.606 0.631 0.589 0.624 0.623 0.623
Adj. R2 0.570 0.535 0.553 0.515 0.545 0.544 0.543
Num. obs. 47 47 47 47 47 47 47
MSE 0.657 0.683 0.670 0.698 0.676 0.677 0.677
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Table S6: Regression coefficents of the 7 best SRM-ranked models of the ecology of Biomphalaria pfeifferi in a
perennial stream. Legend as in S3.
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model1 model2 model3 model4 model5 model6 model7 model8

a 1.178 0.105 3.567∗ 1.599 1.323 0.889 0.184 2.394
(0.948) (0.855) (1.492) (0.999) (1.008) (0.975) (0.404) (1.429)

Lt −0.871∗∗∗ −0.836∗∗∗ −0.895∗∗∗ −0.845∗∗∗ −0.815∗∗∗ −0.871∗∗∗ −0.741∗∗∗ −0.903∗∗∗
(0.115) (0.124) (0.114) (0.116) (0.121) (0.115) (0.118) (0.118)

air.temp.sd.lag2 0.305∗∗∗ 0.222∗∗ 0.281∗∗∗ 0.274∗∗∗ 0.300∗∗∗ 0.308∗∗∗ 0.272∗∗
(0.071) (0.078) (0.073) (0.075) (0.071) (0.066) (0.077)

air.temp.sd.lag3 0.334∗∗∗
(0.067)

conductivity.mean −0.019∗ −0.020∗ −0.009
(0.008) (0.010) (0.008)

conductivity.mean.lag3 −0.020∗ −0.029∗∗ −0.020∗ −0.027∗∗ −0.019∗ −0.023∗
(0.009) (0.010) (0.009) (0.010) (0.009) (0.010)

conductivity.sd 0.094
(0.046)

conductivity.sd.lag1 −0.111∗
(0.043)

conductivity.sd.lag3 −0.123∗ −0.133∗∗ −0.149∗∗ −0.135∗∗ −0.141∗∗ −0.114∗
(0.049) (0.048) (0.052) (0.049) (0.052) (0.049)

water.level.mean.lag1 0.009∗∗∗
(0.002)

water.level.mean.lag2 −0.005
(0.004)

water.level.mean.lag3 0.005∗∗ 0.005∗∗ 0.008∗∗ 0.005∗∗ 0.005∗∗ 0.005∗∗
(0.002) (0.001) (0.003) (0.002) (0.002) (0.002)

water.level.sd.lag2 0.014∗∗ 0.016∗∗ 0.020∗∗ 0.011∗ 0.015∗∗ 0.023∗∗∗ 0.015∗∗
(0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.005)

water.temp.sd 0.248
(0.212)

R2 0.628 0.556 0.676 0.643 0.567 0.641 0.518 0.640
Adj. R2 0.571 0.502 0.606 0.577 0.513 0.575 0.471 0.574
Num. obs. 46 47 46 46 46 46 46 46
MSE 0.541 0.577 0.519 0.537 0.577 0.539 0.601 0.539
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05

Table S7: Regression coefficents of the 8 best SRM-ranked models of the ecology of Bulinus spp. in a perennial
stream. Legend as in S3.
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Table S8: Proposition of remote-sensing data sources for upscaling hydro-ecological forecasting

Data type Purpose Data source Resolution Web

space time

Water bodies Habitat identification by
extracting of water
surfaces from satellite
imagery

Landsat a 30m 16 days http://earthexplorer.usgs.gov/

NASA
MODIS b 250m 8 days https://lpdaac.usgs.gov/dataset_

discovery/modis/modis_products_
table/mod09q1

Evapo-
transpiration

Quantification of habitat
ephemerality

NASA
MODIS b 1km 8 days ftp://ftp.ntsg.umt.edu/pub/

MODIS/NTSG_Products/MOD16/

River network Habitat identification Hydro-
SHEDS c 100m - http://hydrosheds.cr.usgs.gov/

dataavail.php

Land surface
temperature

Environmental covariate
for demographics
modelling

NASA
MODIS b 1km 1day https://lpdaac.usgs.gov/dataset_

discovery/modis/modis_products_
table/mod11a1

Precipitation Precipitation estimates NASA
TRMM d 25km 3 hours http://gcmd.nasa.gov/records/

GCMD_GES_DISC_TRMM_3B42_daily_
V6.html

a http://landsat.usgs.gov//landsat_level_1_standard_data_products.php
b http://modis.gsfc.nasa.gov/data/dataprod/mod16.php
c [23]; Information: http://www.worldwildlife.org/hydrosheds
d NASA Tropical Rainfall Measurement Mission Project; [24]
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Figure S1: A: Map of the South-North climatic gradient in Burkina Faso, highlihted by values of Normalized
Difference Vegetation Index and average decadal precipitation isolines. The field sites chosen for the present
study are marked with red dots. The state capital, Ouagadougou, is also shown. B-D: The right panels show
measured cumulative weekly precipitation (blue bars) and average daily air temperatures (red lines) in the
experimental sites of Tougou (B), Lioulgou (C) and Panamasso (D). Note the different starting measurement
dates in each experimental site.
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Figure S2: Density feedback detection in snail population dynamics. Model structures selected by the SRM
criterion are shown by row for Bulinus spp. in the irrigation canal in Tougou (A), the temporary pond (B) and
the ephemeral stream (C) in Lioulgou, and in the perennial stream in Panamasso (E), B. pfeifferi is only present
in the latter (D). Each column represents a model structure, ranked in descending SRM criterion order (first
from the left being the best). Density feedback is associated to model type: Malthusian (yellow) correspond
to no feedback, Gompertz (green) to mild, anRicker (blue) to strong feedback, and random walk models are
indicated in brown. Relative model predictive power is illustrated by the ratio of the smallest cross-validation
mean squared error, min(MSEcv), to the model MSEcv, 1 (red) indicating best relative predictive power among
candidate models for a given habitat an species. The inset to the right gives the indicative location of the
sampling sites in Burkina Faso.
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Figure S3: Environmental covariates and snail population dynamics. The importance of measured environ-
mental covariate features is given in terms of the frequency of appearance in the 500 best selected models,
summarized by decile (decile 10 corresponds to top 10% model rankings). Results are shown by columns for
Bulinus spp. in the irrigation canal (A-K), in the temporary pond (B-L), in the ephemeral stream (C-M), and
for B. pfeifferi (D-N) and Bulinus spp. (E-O) in the perennial stream. Results are partitioned by row by the
type of covariate feature, including cumulative sums for precipitation (row A-E), and weekly average (F-J)
and standard deviation (K-O) for air temperature and water conductivity, level and temperature.
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Figure S4: SRM criterion rank and predictive capacity. Cross-validation error boxplots are given for each
decile for the top 100 models selected by the SRM criterion. Results are partitioned by species and habitat.
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Figure S5: Model identification and cross-validation error with the AICc and BIC criteria. Results are given in
the same order and using the same colorcoding as Fig. S2, for Bulinus spp. in the irrigation canal in Tougou
(A), in the ephemeral pond (B) and stream (C) of Lioulgou, and in the perennial stream of Panamasso for B.
pfeifferi (D) and Bulinus spp. (E).
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Figure S6: Lags in the effects of exogenous forcing and density dependence on snail population dynamics.
Data is given by column for Bulinus spp. in the irrigation canal (column A), in the temporary pond (B), in the
ephemeral stream (C), and for B. pfeifferi and Bulinus spp. in the perennial stream (D, E). Data is partitioned
by row in terms of lags: no lag (rows 1,5), 1 week lag (2,6), 2 weeks lag (3,7) and 3 weeks lag (4,8). Note
that all environmental covariates are measured during the week preceding sampling, thus meaning that the
3 week lagged value of mean water temperature corresponds to the weekly average of water temperature on
4 weeks before collection. Environmental covariates and density feedback mechanisms are given in the color
legend.
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Figure S7: Jackknife model averaging weights. Model average weights are given for each species and habitat,
weights sum 1 over the rows.
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Figure S8: Historical Bulinus spp. abundance and covariate data in Burkina Faso. Data were collected by
Poda and collaborators during three years (1990, 1991 and 1992, indicated by full, dotted and dashed lines).
A) biweekly precipitation, B) Bulinus spp. abundance, C) water temperature, D) conductivity, and E) pH.
Colours indicate data collected in a small reservoir (brown) and a temporary pond (turquoise), both located
in the same area (see the Historical data section in this SI). Note that the precipitation data are the same for
both habitats. The interruption of the temporary pond time-series indicate the drying of the pond. Data from
[2, 25, 3].
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Figure S9: Ecological modeling results of historical snail sampling in Burkina Faso. Results are shown for
model selection (using SRM in panel A and AICc and BIC in panel B, legend as Fig. S2), population dynam-
ics prediction (C, legend as Fig. 3), overall covariate occurrence (D, legend as Fig. 2), and lagged covariate
occurrence (E, legend as Fig. S6), for B. senegalensis in a temporary pond (top rows in panels A, B and C, left
columns in panels D and E) and B. truncatus in a small reservoir (bottom rows in panels A , B and C, right
columns in panels D and E). Environmental covariates correspond to the ones in Fig. S8. In panel C models
with predictions larger than 350 snails/man/30min were removed for plotting purposes, all removed models
were in the bottom 500 models selected by the SRM criterion.
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