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In our approach we wish to consider a learning rule that depends on the intrinsic dynamics
of a postsynaptic neuron, such that synaptic weights are modified based on actual generated
output spikes. This contrasts with the theoretically derived, gradient ascent learning rule of
Eq. (12, main text), which is restated below for convenience:

∆wref
ij =

η

∆u

∫ T

0

[
Yref

i (t)− ρi(t|x, yrefi )
] ∑
tfj ∈xj

ε(t− tfj ) dt , (S1)

where the stochastic intensity ρi(t|x, yrefi ) signifies that the neuron’s firing activity has been
artificially clamped to its target response. We instead desire synaptic weight modifications
informed by the neuron’s intrinsic firing activity, as given by Eq. (13, main text), which is
also restated below:

∆wij =
η

∆u

∫ T

0

[
Yref

i (t)− ρi(t|x, yi)
] ∑
tfj ∈xj

ε(t− tfj ) dt , (S2)

where we have substituted ρi(t|x, yrefi ) with ρi(t|x, yi), such that the stochastic intensity of
the postsynaptic neuron depends on its actual sequence of emitted output spikes yi rather
than its target output yrefi . In this supplementary text, we show that Eq. (S2) yields similar
weight updates to Eq. (S1) if the actual postsynaptic spike train is already close to its target.

To demonstrate this, we start by considering the absolute difference between weight
updates applied using Eqs. (S2) and (S1):

∣∣∆wij −∆wref
ij

∣∣ =
η

∆u

∣∣∣∣ ∫ T

0

[
ρi(t|x, yi)− ρi(t|x, yrefi )

] ∑
tfj ∈xj

ε(t− tfj ) dt

∣∣∣∣ , (S3)

leading to the following inequality for an absolute integrand:

|∆wij −∆wref
ij | ≤

η

∆u

∫ T

0

∣∣ρi(t|x, yi)− ρi(t|x, yrefi )
∣∣ ∑
tfj ∈xj

ε(t− tfj ) dt . (S4)
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Now, for simplicity, if we assume one of the presynaptic neurons, denoted j, contributes a
single input spike at time tj = 0 ms, and a single target and actual output spike occur at
times trefi and ti for a postsynaptic neuron i, respectively, then the above equation simplifies
to

|∆wij −∆wref
ij | ≤

η

∆u

∫ T

0

∣∣ρi(t|x, ti)− ρi(t|x, trefi )
∣∣ ε(t) dt . (S5)

Here, ρi(t|x, ti) denotes a dependence of the postsynaptic neuron’s stochastic intensity at
time t on the entire set of presynaptic spikes x, including from neuron j, and its actual
output firing time ti.

According to the definition of the PSP kernel in Eq. (4, main text) the kernel assumes a
maximum value, denoted εpeak. Hence, an upper bound of Eq. (S5) can be given by

|∆wij −∆wref
ij | ≤

η εpeak

∆u

∫ T

0

∣∣ρi(t|x, ti)− ρi(t|x, trefi )
∣∣ dt . (S6)

We emphasise here that although we consider just a single input spike, the above would
equally be valid for multiple input spikes by simply multiplying the upper bound on the PSP,
εpeak, by the number of spikes contributed from neuron j.

As defined by Eq. (7, main text), the stochastic intensity has an exponential dependence
on the postsynaptic neuron’s membrane potential, and the only difference between ρi and
ρrefi arises from their reset term κ, hence Eq. (S6) can be written as

|∆wij −∆wref
ij | ≤

η εpeak

∆u

∫ T

0

ρi(t|x, trefi )

∣∣∣∣exp

(
κ(t− ti)− κ(t− trefi )

∆u

)
− 1

∣∣∣∣ dt . (S7)

For a given finite set of inputs (all predecessor neurons of i) on the finite interval [0, T ], ui
is smaller than a constant, irrespective of where the target and actual output spikes fall
(consider the maximum of ui in Eq. (1, main text) for yi the empty set). Therefore, ρi is also
bounded by a constant ρmax

i , and hence

|∆wij −∆wref
ij | ≤

η εpeak ρmax
i

∆u

∫ T

0

∣∣∣∣exp

(
κ(t− ti)− κ(t− trefi )

∆u

)
− 1

∣∣∣∣ dt . (S8)

We now show in the following that the integral on the right-hand side of the above equation,
and by extension the difference in the weight change, becomes small if ti and trefi are close
together. If we assume δt := ti − trefi > 0 (an analogous argument applies also for δt < 0),
then the difference between the reset kernels can be expressed as

K(t) := κ(t− ti)− κ(t− trefi ) , (S9)

and the absolute difference

|K(t)| = |κ0|
∣∣∣∣exp

(
−t− ti

τm

)
Θ(t− ti)− exp

(
−t− t

ref
i

τm

)
Θ(t− trefi )

∣∣∣∣
≤ |κ0|

∣∣∣∣exp

(
−t− ti

τm

)
− exp

(
−t− t

ref
i

τm

)∣∣∣∣Θ(t− ti)

+ |κ0| exp

(
−t− t

ref
i

τm

)
1A(t) , (S10)
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where 1A(t) is the indicator function on the interval A = [trefi , ti], such that 1A(t) = 1 if
t ∈ A, and 1A(t) = 0 otherwise. Furthermore, the following inequality applies:

|K(t)| ≤ |κ0| exp

(
−t− ti

τm

) ∣∣∣∣1− exp

(
− δt
τm

)∣∣∣∣Θ(t− ti) + |κ0|1A(t) . (S11)

Hence, |K(t)| tends to zero point-wise in t for δt→ 0 and is bounded by |κ0|. By continuity,
the integrand in Eq. (S8), | exp(K(t))− 1|, also goes to zero pointwise and is bounded. Hence
by dominated convergence, the integral in (S8), tends to zero for δt → 0. In other words,
it is continuous in δt, and we can find for each ε a δt such that weight changes based on ti
do not differ by more than ε from those based on trefi if target and actual output spikes are
closer than δt.

The proof above shows that the intrinsic weight update rule of Eq. (S2) yields comparable
weight changes to the rule in Eq. (S1) if the actual output spike is already close to its target.
However, in the form given above it is not constructive, i.e. does not give us an explicit
estimate of δt in terms of ε and other parameters. As for all learning rules, their practical
feasibility has to be demonstrated in simulations.
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