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Web Appendix A: Additional simulation studies

We conduct an additional simulation study to evaluate the finite sample performances of the de-

rived and the direct estimates of covariates effects on the marginal mean when a second order

Taylor expansion of log{πi} is invoked. For this simulation, we continue to assume that the expo-

sure of interest is binary v1i and the confounder v2i is continuous. The data are generated from a

ZINB with dispersion parameter κ = 0.5, and the true models for µi and πi given by log{µi} =

1.5−0.5v1i−0.1v2i and logit{πi} = 1.5−0.5v1i−0.2v2i. The working regression models for µi and

πi are log{µi} = α0+α1v1i+α2v2i and logit{πi} = γ0+γ1v1i+γ2v2i. From these working models,

the MR estimate for the derived approach was computed assuming a second order Taylor expansion

of log{πi}. This expansion includes the terms v1i, v2i, v22i, and v1iv2i. We also used these terms to

fit the marginal log-logit model with mean log{E(Yi|Vi)} = β0+β1v1i+β2v2i+β3v
2
2i+β4v1iv2i.

Estimates of the true MR are exp{β̂1,der+0.5β̂2
3,der} and exp{β̂1,dir+0.5β̂2

3,dir} for the derived and

the direct methods. Finally, all simulations were replicated 500 times and for sample sizes 100,

400 and 1000.

Table W.1: Simulation results for the mean ratio (exposed vs unexposed), using the derived estima-
tions from a conditional (conventional) log-logit model, and the direct estimation from a marginal
log-logit working model, data generated from ZINB models, 500 resamples

Conditional log-logit working model Marginal log-logit working model

Derived marginal estimation Direct marginal estimation

True MR n∓ EMR % bias MSE CP(%) EMR % bias MSE CP(%)

0.543 100 0.569 4.800 0.021 96.7 0.584 7.473 0.025 94.1
400 0.546 0.541 0.004 >99.9 0.549 1.103 0.004 93.4

1000 0.542 -0.154 0.002 >99.9 0.544 0.102 0.002 92.4

∓n/2 is sample size per group; Data generated from ZINB model with a conditionally specified mean.
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Results in Table W.1 show that when higher order variables are added in the design matrix for

the marginal mean, we continue to have satisfactory results in that the bias on the mean ratio be-

tween the exposed and the unexposed groups is very negligible for the derived and direct estimates

of the true mean ratio. Moreover the average MSE also decreases with increasing sample sizes

leading to a conjecture that the invoked estimates are consistent. Most importantly, the direct esti-

mation approach based on β̂dir continue to have appropriate coverage probabilities at the nominal

95% level, despite the fact that additional variables are added in the model. However, the derived

estimation approach continues to exhibit 95% coverage probabilities higher than the nominal level.

Web Appendix B: Additional simulation studies

Finally, we conduct a simulation study to evaluate the accuracy of the Taylor approximation when

a first order Taylor expansion of log{πi} is assumed. More specifically, we compare the derived

marginal mean on the log scale β̂′
derXi with Xi = Vi = (1, v1i, v2i)

′ to the log of the fitted mean

πi(γ̂)µi(α̂) from the fitted latent class regression models for πi and µi, using Pearson and the

Spearman correlations. In this study, we assume the same setting as in the paper with the expo-

sure of interest being binary v1i and the confounder v2i continuous. Results in Table W.2 show

satisfactory results for the approximation with average Person and Spearman correlations between

log{πi(γ̂)µi(α̂)} and β̂′
derXi being above 97%.

Table W.2: Simulation results comparing log{πi(γ̂)µi(α̂)} and β̂′
derXi with Xi = Vi = (1, v1i, v2i)

′

from working latent class regression models for πi and µi, using Pearson and the Spearman corre-
lations with data were generated from ZINB models with marginally and conditionally specified
means

ZINB model with a ZINB model with a
conditionally specified mean marginally specified mean

n∓ Spearman Pearson Spearman Pearson

100 0.974 0.983 0.979 0.993

200 0.993 0.996 0.995 0.999

400 >0.999 >0.999 0.997 >0.999

1000 >0.999 >0.999 >0.999 >0.999

∓n/2 is sample size per group
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Web Appendix C: Additional analysis of the Detroit Caries in-
dices in primary dentition

Table W.3: Parameter estimates, standard errors (SE) and p-values for ZINB model under the
marginal log-logit models with higher order covariate terms, consistent with a 2nd order Taylor
expansion

Effects Estimate SE p-value
Mean

Intercept 1.4862 0.1432 <.0001
Age 0.8760 0.2035 <.0001
Unemployed 0.1989 0.1558 0.2020
PHP 0.006071 0.1020 0.9525
SI 0.3052 0.1635 0.0623
Age*SI -0.08310 0.2441 0.7336
Unemployed*SI -0.1546 0.1636 0.3451
PHP*SI -0.02824 0.1046 0.7873
SI*SI -0.07807 0.05136 0.1289
Age*SI*SI 0.05988 0.1240 0.6292
Age*Age -0.3505 0.1136 0.0021
Unemployed*Age 0.2170 0.1524 0.1549
PHP*Age 0.09972 0.07099 0.1605
Age*SI*Age -0.05587 0.1516 0.7125
PHP*Unemployed 0.1234 0.1076 0.2521
PHP*PHP -0.02395 0.03017 0.4276
PHP*SI*Unemployed 0.02207 0.1154 0.8484
Age*SI*Unemployed 0.07259 0.1576 0.6452
Age*SI*Age*SI -0.02124 0.08134 0.7940

Susceptibility probability
Intercept 0.2423 0.1903 0.2031
Age 1.7107 0.2147 <.0001
Unemployed 0.4928 0.2193 0.0249
SI 0.2117 0.1506 0.1601
Age*SI -0.2673 0.1901 0.1600

Dispersion log(κ)
Intercept -0.1059 0.1110 0.3404

Summary statistics
Max logL -1864.4
AIC 3778.8
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Web Appendix D: Sample SAS codes

ods output CovMatParmEst=CoV_Mat_marg;
title ’Method 1: Direct Marginal approach’;
proc nlmixed data=data_temps1 GCONV=1e-20 fCONV=1e-20
ABSFCONV=1e-20 ABSGCONV=1e-20 cov;

parms beta0-beta5=0 gamma0-gamma4 = 0 log_k1 = 0;

k1=exp(log_k1);
response= d1mfs ; /*d1s d2s d1mfs d2mfs dfs1 dfs2*/
eta_marg = beta0

+ beta1*age1
+ beta2*employ_no
+ beta3*oh2
+ beta4*sugar_intake
+ beta5*age1*sugar_intake ;

eta_inf = gamma0
+ gamma1*age1
+ gamma2*employ_no
+ gamma3*sugar_intake
+ gamma4*age1*sugar_intake ;

p=exp(eta_inf)/(1+exp(eta_inf));
mu_marg = exp(eta_marg);
mu_cond =mu_marg/p;
if response=0 then loglik= log((1-p)+(p)*exp(-(1/k1)*log(1+mu_cond*k1)));
else loglik=log(p)+lgamma(response+(1/k1))-lgamma(1/k1)-lgamma(response+1)

-(response+(1/k1))*log(1+mu_cond*k1)+response*log(mu_cond*k1);
ll=loglik;
f0=exp(-(1/k1)*log(1+mu_cond*k1));
if response=0 then p_updated=p*f0/(p*f0+1-p); else p_updated=1;
predict p_updated out=p_updated_marg;
exp_cond=log(mu_cond);
predict exp_cond out=predict_cond_mean1;
model response ˜ general(ll);
run;

ods output CovMatParmEst=CoV_Mat;

title ’Method 2: Indirect Marginal approach, computing the marginal
parameter from the conditional ones’;

proc nlmixed data=data_temps1 GCONV=1e-20 fCONV=1e-20 ABSFCONV=1e-20
ABSGCONV=1e-20 cov;

parms alpha0-alpha5=0 gamma0-gamma4 = 0 log_k1 = 0;

k1=exp(log_k1);
response= d1mfs; /*d1s d2s d1mfs d2mfs dfs1 dfs2*/
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eta_cond = alpha0
+ alpha1*age1
+ alpha2*employ_no
+ alpha3*oh2
+ alpha4*sugar_intake
+ alpha5*age1*sugar_intake;

eta_inf = gamma0
+ gamma1*age1
+ gamma2*employ_no
+ gamma3*sugar_intake
+ gamma4*age1*sugar_intake;

p=exp(eta_inf)/(1+exp(eta_inf));
mu_cond = exp(eta_cond);

/* NB model */

if response=0 then
loglik= log( (1-p) + (p)*exp(-(1/k1)*log(1+mu_cond*k1))) ;

else loglik= log(p) + lgamma(response+(1/k1)) - lgamma(1/k1) -
lgamma(response+1) - (response+(1/k1))*log(1+mu_cond*k1)
+ response*log(mu_cond*k1);

mu_marg=p*mu_cond;
ll=loglik;
f0=exp(-(1/k1)*log(1+mu_cond*k1));
if response=0 then p_updated=p*f0/(p*f0+1-p); else p_updated=1;
model response ˜ general(ll);
predict p_updated out=p_updated_cond;
predict eta_cond out=predict_cond_mean2;
predict mu_marg out=marginal_mean;
predict p out=mixing_weight;
run;

proc IML;

use marginal_mean;
read all var {age1 employ_no oh2 sugar_intake} into x_temp;

read all var {age1 employ_no sugar_intake} into z_temp;
read all var {pred} into marg_mean;

use mixing_weight;
read all var {pred} into p;

use Cov_Mat;
read all into cov_estimates;

cov_estimates=cov_estimates[, 2:nrow(cov_estimates)];
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n= nrow(x_temp);

X=j(n,1)||x_temp||(x_temp[,1]#x_temp[,4]);
log_marg_mean=log(marg_mean);
beta_hat=inv(X‘*X)*X‘*log_marg_mean;
print beta_hat;

var_alpha_gamma=cov_estimates[1:11,1:11];
print var_alpha_gamma;

z=j(n,1)||z_temp||(z_temp[,1]#z_temp[,3]);

delta_Cov=j(n,n,0);

do i=1 to n;
do j=1 to n;
delta_Cov[i,j]=((X[i,])||((1-p[i,])*Z[i,]))*var_alpha_gamma

*((X[j,])||((1-p[j,])*Z[j,]))‘;
end;

end;

Var_Cov_beta_hat=(inv(X‘*X)*X‘)*delta_Cov*(inv(X‘*X)*X‘)‘;

print Var_Cov_beta_hat;

variances_temp=diag(Var_Cov_beta_hat);
variances=variances_temp(|,+|);
Std_err=sqrt(variances);
Z_value=beta_hat/std_err;
P_value=1-probchi(z_value#z_value,1);
Estimate=beta_hat;
Parameter={"Intercept" "age1" "employ_no" "oh2" "sugar_intake"

"age1*sugar_intake"}‘;

print Parameter Estimate Std_Err Z_value p_value;

quit;
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