Supplementary Material

Figure S1: Fitting of Gaussian mixture components to distribution of MBD-scores. (A) Plot of Bayesian Information Criteria for models of the distribution of MBD-scores using different numbers of Gaussian components. (B) Traces of the two-component model overlaid on the distribution.

Figure S2: Relationship between gene functional categories and MBD-score. (A) Mean MBD-score for a selected set of Gene Ontology (GO) terms for biological processes. Error bars indicate standard error. (B) Enrichment of KOG terms based on Mann-Whitney U tests implemented in the R package KOGMWU as in Dixon et al. (2015).

Figure S3: Relationships between transcript abundance and MBD-score. Figures are paired to illustrate interrelationship with gene length. Left panels show relationships for all coding sequences, right panels for coding sequences longer than 800 bp. (A-B) Correlation between MBD-score and normalized transcript abundance. Correlation is given as Spearman's Rho (r). Asterisks denote significance based on Spearman's rank tests. Red line traces least squared linear regression. (C-D) Highly expressed genes tend to be strongly methylated. Mean MBD-score was plotted for 12 quantiles of genes ranked by transcript abundance. Error bars indicate standard error. (E-F) MBD-score generally predicts higher expression, but the most strongly methylated genes show lower expression. This effect is especially true for shorter genes, an effect also described in *Arabidopsis* (Zilberman et al. 2007). Significance notation: ns > 0.05; * < 0.05; ** < 0.01; ***<0.001; **** < 0.001.

Figure S4: Relationship between MBD-score and pairwise dN between *A. millepora* and other *Acropora* species. Genes were divided into 20 quantiles based on MBD-score. Error bars show mean and standard error for the weakly methylated and strongly methylated genes. The number of orthologs (n) is given at the top of each panel. Asterisks indicate significance based on Spearman's rho (r). Red lines are smoothed traces of the relationship across all points.

Figure S5: Relationship between nonsynonymous substitution rate (dN) and MBDscore across all species outside of *Acropora*. The two error bars in each panel display mean dN and standard error for the strongly methylated (MBD-score >= 0) and weakly methylated (MBD-score < 0) genes. Correlations are given as Spearman's Rho. All p values for Spearman's rank correlation test were < 0.0001. Red lines are smoothed traces with a span of 0.8.

Figure S6: Relationship between synonymous substitution rate (dS) and MBD-score across all species outside of *Acropora*. The two error bars in each figure display mean dS and standard error for the strongly methylated (MBD-score >= 0) and weakly methylated (MBD-score < 0) genes. Correlation is given as Spearman's Rho. All p values for Spearman's rank correlation test were < 0.0001. Red lines are smoothed traces with a span of 0.8.

Figure S7: Correlation between codon adaptation index (CAI) and MBD-score with and without amino acids coded for by codons with CpG dinucleotides (Serine, Proline, Threonine, Alanine and Arginine). (A) Correlation between CAI and MBDscore with all amino acids included. (B) Calculating CAI with Serine, Proline, Threonine, Alanine and Arginine severely reduces correlation. (C) Calculating CAI based solely on Serine, Proline, Threonine, Alanine and Arginine increases strengthens correlation. Asterisks indicate significance based on Spearman's rank tests. Red lines trace least squared regression.

Figure S8: Codons bearing CpG dinucleotides are underrepresented in highly expressed genes. A) Comparison of mean Relative Synonymous Codon Usage for CG bearing codons compared to all other codons bearing GC, GG, or CC dinucleotides in ribosomal genes. Error bars show standard error. A value of 1 for this metric indicates no bias. B) Comparison of Δ RSCU for codons bearing CG, GC, GG or CC dinucleotides in *A. millepora*. Δ RSCU is the difference in RSCU between the top 5% most highly expressed genes and bottom 5%. Negative values indicate underrepresentation in highly expressed genes. C) Comparison of RSCU for CG, GC, GG, or CC codons in ribosomal genes from *A. millepora*. Values less than one indicate underrepresentation in ribosomal genes. D) Comparison of relative adaptiveness (*W*) for CG, GC, GG, or CC codons in *A. millepora*. Here a value of 1 indicates that the codon is optimal for its amino acid. No CpG codons were optimal, and were all less than half as frequent as the optimal codon.

Figure S9: Loss of CpG bearing codons occurs through silent C>T substitution on the antisense stand. Methylated cytosines tend to be substituted for thymine (Shen et al. 1994). (A) On the sense strand, 5mC>T substitutions result in amino acid changes, whereas 5mC>T substitutions on the antisense strand are silent. (B) MBD-score shows little correlation with amino acid content, indicating that purifying selection counteracts most nonsynonymous 5mC>T substitutions. Although the correlation is weak, arginine content shows a stronger negative correlation than of the other amino acid. This is consistent with the fact for CGN codons, 5mC>T substitutions on either strand will replace the arginine.

Table S1: Optimal codons identified based on correspondence analysis of codon usage implemented in CodonW. *X*² indicates the chi-square statistic describing the enrichment of the synonymous codons (see supplemental methods below). All NCA codons were identified as optimal and tended toward higher *X*². No NCG codons were optimal.

codon	amino acid	X ²		
AGA	Arg	562.906		
UUU	Phe	389.064		
ACA	Thr	309.689		
GCA	Ala	286.519		
AGG	Arg	277.184		
UCA	Ser	188.606		
AAU	Asn	143.76		
AGU	Ser	132.991		
CCA	Pro	132.423		
UAU	Tyr	111.065		
AUA	lle	95.299		
GAU	Asp	91.223		
CAU	His	85.921		
UGU	Cys	59.489		
UUA	Leu	49.41		
GGA	Gly	48.125		
AUU	lle	37.656		
GUG	Val	31.472		
CUA	Leu	27.806		
CUG	Leu	19.063		
GGG	Gly	18.105		
GUA	Val	17.354		
AAG	Lys	8.718		
GAA	Glu	4.369		

Table S2: Relative adaptiveness of codons in *Acropora millepora* (see supplemental methods below). NCA codons are highlighted in green and tend to have values equal to close to the maximum of 1.00. NCG codons are highlighted in red and always have the lowest relative adaptiveness value for their respective amino acids.

codon	amino acid	wi	rscu	codon	amino acid	wi	rscu
GCU	Ala	1.00	1.39	UUG	Leu	1.00	1.45
<mark>GCA</mark>	Ala	0.96	1.33	CUU	Leu	0.97	1.40
GCC	Ala	0.58	0.80	CUG	Leu	0.79	1.15
GCG	Ala	0.34	0.47	UUA	Leu	0.57	0.82
AGA	Arg	1.00	1.98	CUC	Leu	0.48	0.69
AGG	Arg	0.57	1.13	CUA	Leu	0.34	0.50
CGA	Arg	0.48	0.96	AAA	Lys	1.00	1.09
CGU	Arg	0.41	0.82	AAG	Lys	0.83	0.91
CGC	Arg	0.34	0.67	AUG	Met	1.00	1.00
CGG	Arg	0.22	0.44	υυυ	Phe	1.00	1.22
AAU	Asn	1.00	1.09	UUC	Phe	0.64	0.78
AAC	Asn	0.83	0.91	<mark>CCA</mark>	Pro	1.00	1.63
GAU	Asp	1.00	1.21	CCU	Pro	0.78	1.27
GAC	Asp	0.65	0.79	ссс	Pro	0.39	0.64
UGU	Cys	1.00	1.14	CCG	Pro	0.28	0.46
UGC	Cys	0.75	0.86	UCA	Ser	1.00	1.36
CAA	Gln	1.00	1.06	AGU	Ser	0.88	1.20
CAG	Gln	0.89	0.94	UCU	Ser	0.88	1.20
GAA	Glu	1.00	1.21	AGC	Ser	0.70	0.95
GAG	Glu	0.65	0.79	UCC	Ser	0.56	0.76
GGA	Gly	1.00	1.56	UCG	Ser	0.39	0.53
GGU	Gly	0.71	1.11	ACA	Thr	1.00	1.53
GGC	Gly	0.52	0.81	ACU	Thr	0.78	1.19
GGG	Gly	0.34	0.53	ACC	Thr	0.49	0.75
CAU	His	1.00	1.14	ACG	Thr	0.35	0.53
CAC	His	0.75	0.86	UGG	Trp	1.00	1.00
AUU	lle	1.00	1.4	UAU	Tyr	1.00	1.02
AUC	lle	0.67	0.94	UAC	Tyr	0.96	0.98
AUA	lle	0.48	0.67	GUU	Val	1.00	1.37
				GUG	Val	0.89	1.22
				GUC	Val	0.57	0.78
				GUA	Val	0.47	0.64

Table S3: Spearman's rank correlations between gene characteristics: Codon adaptation index (CAI), Effective number of codons (Nc), Frequency of optimal codons (Fop), log2 fold difference between methylation binding domain captured and flow-through fractions (MBD-score), transcript abundance (mRNA), length of the coding region (length), normalized CpG content (CpGo/e), and GC content (GC).

Variable	CAI	Nc	Fop	MBD-score	mRNA	length	CpGo/e	GC
CAI	1.00	-0.52	0.33	0.38	0.16	0.05	-0.71	-0.61
Nc		1.00	-0.24	-0.31	-0.02	0.17	0.44	0.34
Fop			1.00	0.17	0.18	0.09	-0.33	-0.01
MBD-score				1.00	0.08	0.05	-0.51	-0.22
mRNA					1.00	0.36	-0.12	0.00
length						1.00	-0.08	0.11
CpGo/e							1.00	0.33
GC								1.00

Order	Family	Genus	Species	Citation	URL
Actiniaria	Actiniidae	Anthopleura	elegantissima	Kitchen et al. 2015	http://people.oregonstate.edu/~meyere/data.html
Actiniaria	Aiptasiidae	Aiptasia	pallida	Sunagawa et al. 2009	http://pringlelab.stanford.edu/projects.html
Actiniaria	Edwardsiidae	Nematostella	vectensis	Nordberg et al. 2014	http://genome.jgi-psf.org/Nemve1/Nemve1.download.ftp.html
Scleractinia	Acroporidae	Acropora	palmata	Polato <i>et al.</i> 2011	http://www.personal.psu.edu/ibb3/Research.htm#Data
Scleractinia	Acroporidae	Acropora	hyacinthus	Willette et al. 2014	http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
Scleractinia	Acroporidae	Acropora	tenuis	none	http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
Scleractinia	Acroporidae	Acropora	millepora	Moya et al. 2012	http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
Scleractinia	Acroporidae	Acropora	digitifera	Shinzato et al. 2011	http://marinegenomics.oist.jp/genomes/downloads?project_id=3
Scleractinia	Astocoeniidae	Madracis	auretenra	none	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Montastraeidae	Montastraea	cavernosa	Kitchen et al. 2015	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Faviidae	Platygyra	carnosus	Sun et al. 2013	http://www.comp.hkbu.edu.hk/~db/PcarnBase/
Scleractinia	Faviidae	Platygyra	daedalea	none	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Fungiidae	Fungia	scutaria	Kitchen et al. 2015	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Merulinidae	Orbicella	faveolata	Schwarz et al. 2008	http://www.compagen.org/
Scleractinia	Mussidae	Pseudodiploria	strigosa	none	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Pocilloporidae	Pocillopora	damicornis	Lubinski & Granger 2013	http://cnidarians.bu.edu/PocilloporaBase/cgi-bin/pdamdata.cgi
Scleractinia	Pocilloporidae	Seriatopora	hystrix	Kitchen et al. 2015	http://people.oregonstate.edu/~meyere/data.html
Scleractinia	Pocilloporidae	Stylophora	pistillata	Maor-Landaw et al. 2014	http://data.centrescientifique.mc/Data/
Scleractinia	Poritidae	Porites	astreoides	Kenkel et al. 2013	http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
Scleractinia	Siderastreidae	Siderastrea	siderea	Davies et al. 2015	https://sarahwdavies.wordpress.com/data/

Table S4: Anthozoan species with publicly available reference transcriptomes used in this study.

*See main text for full citations

Figure S10: Schematic representation of ortholog assignment method. Sequences from *A. millepora* were used as anchors. For each sequence, reciprocal best hits from each other species were assembled as candidate orthologs. This group of candidates was then subset by iteratively removing sequences that were reciprocal best its with < 50% of other sequences within the group.

Figure S11: Identification and removal of false-positive ortholog calls. A three component Gaussian mixture model was fitted to the pairwise dS estimates with *A. millepora* for each species. The third component (blue above) was assumed to represent false positives. These orthologs (to the right of the black triangle) were removed from further analysis. The number and percentage of false positives removed is given in the title for each figure. The three anemone species, (*A. elegantissima*, *A. pallida*, and *N. vectensis*) displayed much greater rates of false positives.