
Supplementary	Methods	

	

Sequence	Data	and	Computational	Tools:	

Transcriptomic	data	from	17	species	of	Scleractinia	(stony	corals)	and	3	species	of	Actiniaria	

(anemones)	were	downloaded	from	the	web	(supplemental	table	S4,	Supplementary	Material	

online;	Schwarz	et	al.	2008;	Sunagawa	et	al.	2009;	Polato	et	al.	2011;	Shinzato	et	al.	2011;	Moya	

et	al.	2012;	Kenkel	et	al.	2013;	Lubinski	and	Granger	2013;	Sun	et	al.	2013;	Maor-Landaw	et	al.	

2014;	Nordberg	et	al.	2014;	Willette	et	al.	2014;	Kitchen	et	al.	2015;	Davies	et	al.	Forthcoming).	

Instructions,	scripts,	and	example	output	files	for	computational	methods	used	in	this	study	are	

available	on	GitHub	(https://github.com/grovesdixon/metaTranscriptomes).	Gene	Ontology	

and	KOG	annotations	were	applied	as	described	in	(Dixon	et	al.	2015).	Instructions	and	scripts	

for	the	gene	annotation	pipeline	are	available	on	GitHub	

(https://github.com/z0on/annotatingTranscriptomes).	Significance	for	enrichment	of	KOG	

terms	across	MBD-scores	was	tested	using	Mann-Whitney	U	tests	implemented	in	the	R	

package	KOGMWU	as	in	Dixon	et	al.	(2015).	

	

Ortholog	Identification	and	alignment	

Orthologs	were	identified	based	on	reciprocal	best	Blast	hits	between	extracted	protein	

sequences.	First,	coding	and	amino	acid	sequences	were	extracted	from	each	transcriptome	

based	on	alignments	(e-value	cutoff	=	1e-5)	to	a	reference	proteome	using	BlastX	(Altschul	et	al.	

1997)	and	a	custom	Perl	script	CDS_extractor_v2.pl	

(https://github.com/z0on/annotatingTranscriptomes),	which	identifies	and	corrects	frame	shift	



mutations	within	the	BlastX-aligned	sequences.	The	reference	proteome	was	a	concatenation	

of	the	Nematostella	vectensis	(Nordberg	et	al.	2014)	and	Acropora	digitifera	(Shinzato	et	al.	

2011)	reference	proteomes.	The	protein	sequences	for	all	pairs	of	species	were	reciprocally	

blasted	using	BlastP	(Altschul	et	al.	1990).	Because	our	MBD-seq	dataset	was	generated	from	A.	

millepora,	we	used	its	sequences	as	anchors	for	orthologous	groups.	First	an	initial	set	of	

candidate	orthologs	was	compiled	based	on	reciprocal	best	hits	between	A.	millepora	and	each	

other	species.	Only	hits	with	alignment	lengths	>75%	of	the	subject	sequence	and	an	e-value	<	

1e-5	were	retained.	This	initial	set	was	then	refined	to	include	only	sequences	that	were	

reciprocal	best	hits	with	>=	50%	of	other	candidate	orthologs	within	the	group	(supplementary	

fig.	S10,	Supplementary	Material	online).	Orthologous	groups	with	fewer	than	three	(15%)	

representative	species	were	excluded.	For	building	the	species	tree,	a	separate,	highly	

conserved	set	of	orthologs	was	assembled	with	percent	amino	acid	identity	>	75%.	These	were	

further	filtered	by	retaining	only	orthologs	with	representative	sequences	from	>	80%	of	

species.	As	a	final	filter,	we	used	cluster	analysis	of	dS	values	to	identify	likely	paralogs	and	

spurious	orthologs.	For	each	species	a	three	component	Gaussian	mixture	model	was	fit	to	the	

pairwise	dS	estimates	with	A.	millepora.	The	first	two	components	were	assumed	to	capture	

the	true	orthologs,	the	third	component	was	assumed	to	have	captured	false	positive	orthologs	

(supplemental	fig.	S11,	Supplemental	Material	online).	Mean	dS	for	the	third	component	was	

on	average	60	times	higher	than	the	second	highest	component.	On	average	10%	of	ortholog	

calls	were	flagged	as	false	positives	and	removed.	Amino	acid	sequences	for	each	ortholog	were	

aligned	with	MAFFT	(Katoh	and	Standley	2013)	using	the	‘localpair’	algorithm.	The	protein	



alignments	were	then	reverse	translated	into	codon	sequences	using	Pal2Nal	(Suyama	et	al.	

2006).	

Substitution	rate	analyses	

To	estimate	substitution	rates	(dS	and	dN)	we	used	codeml	in	the	software	package	

PAML	(Yang	2007).	Substitution	rates	were	estimated	using	pair-wise	comparisons	between	A.	

millepora	and	each	other	species	that	had	representative	sequences	for	each	ortholog.	Example	

codeml	control	files	for	the	pair-wise	comparisons	and	the	branch-sites	models	are	available	on	

GitHub	(https://github.com/grovesdixon/metaTranscriptomes).		

Building	species	tree	

Based	on	a	highly	conserved	set	of	ortholog	sequences	we	constructed	species	tree	

using	RAxML	(Stamatakis	2014).	For	phylogenetic	construction	we	ran	RAxML	rapid	

bootstrapping	algorithm	using	the	GTRGAMMA	model	and	1000	iterations.	We	decided	to	use	

putative	orthologs	with	representative	sequences	in	>	80%	of	taxa	through	iterations	of	tree	

building.	The	best	trees	from	ortholog	sets	using	40%,	50%	and	60%	cutoffs	all	gave	the	same	

topology.	The	best	tree	using	the	80%	cutoff	was	chosen	for	because	it	had	highest	bipartition	

bootstrap	values.		

	

Library	preparation	for	MBD-seq		

To	quantify	gbM	in	Acropora	millepora	we	used	methyl-CpG	binding	domain	protein-

enriched	sequencing	(MBD-seq).	Enrichment	reactions	were	performed	using	the	MethylCap	kit	

(Diagenode	Cat.	No.	C02020010).	Seven	enrichment	reactions	were	performed.	Input	DNA	for	

all	reactions	was	isolated	from	a	single	colony	of	A.	millepora	sampled	from	the	Central	Great	



Barrier	Reef	(Great	Barrier	Reef	Marine	Park	Permit	G09/29894.1).	DNA	was	diluted	to	0.1	μg/μl	

then	sheared	with	a	Misonix	Sonicator	3000	for	nine	or	ten	minutes	using	15	second	cycles	at	

~30W.	Sheared	fragments	ranged	from	~100	to	800	bp	spanning	the	range	300	–	500	bp	

recommended	by	the	manufacturer.	The	manufacturer’s	protocol	recommended	an	input	of	12	

μl	of	sheared	DNA	diluted	in	130	μl	of	buffer.	We	found	that	our	yields	were	higher	when	we	

used	18,	24	or	48	μl	of	sheared	DNA	(1.5x,	2x	and	4x	concentrated).	As	the	kit	is	intended	for	

mammalian	DNA,	lower	genome	wide	methylation	levels	in	our	system	could	explain	why	

higher	input	concentrations	worked	better	in	our	case.		Flow-through	from	initial	capture	of	

methylated	DNA	was	retained	for	sequencing.	The	methylated	fraction	was	eluted	from	the	

capture	beads	in	a	single	step	using	High	Elution	Buffer.	Electrophoresis	gels	were	used	to	

assess	the	size	and	quality	of	each	elution.	For	sequencing,	product	from	enrichment	replicates	

1-4	and	5-7	were	pooled.	Final	concentrations	of	these	pooled	libraries	were	6	and	4	ng/μl	

measured	with	a	Nanodrop	Spectrophotometer.	Similarly,	the	flow-through	components	from	

the	same	replicates	were	pooled.	Concentrations	of	the	flow-through	pools	were	34	and	36	

ng/μl.	Adapter	ligation	using	a	NEBnext	kit	(New	England	Biolabs®),	library	quality	assessment	

using	a	Bioanalyzer	(Agilent	Technologies),	and	sequencing	on	a	HiSeq	2500	platform	

(Illumina®)	were	performed	by	the	University	of	Texas	Genome	Sequencing	and	Analysis	

Facility.	

	

Analysis	of	gene	body	methylation	

Raw	reads	from	the	MBD-sequencing	libraries	were	trimmed	using	cutadapt	(Martin	

2011)	and	quality	filtered	using	Fastx	toolkit	



(http://cancan.cshl.edu/labmembers/gordon/fastx_toolkit/).	Reads	were	then	aligned	to	coding	

sequences	extracted	from	the	A.	millepora	reference	transcriptome	(Moya	et	al.	2012),	as	

described	above.	DESeq2	(Love	et	al.	2014)	was	used	to	calculate	the	log2	fold	difference	

between	the	MBD-enriched	and	flow-through	libraries.	We	used	this	log2	fold	difference,	which	

we	refer	to	as	MBD-score,	as	our	quantification	of	the	strength	of	gbM	for	each	gene.	Negative	

values	indicate	weak	methylation	and	positive	values	indicate	strong	methylation.	To	examine	

the	distribution	of	MBD-scores	we	used	the	R	package	Mclust	(Fraley	and	Raftery	2007).	We	

first	assessed	the	optimal	mixture	model	and	number	of	components	based	on	Bayesian	

Information	Criterion	(BIC).	The	optimal	number	of	components	was	greater	than	one	with	little	

change	in	BIC	beyond	two	components	(supplemental	fig.	S1A,	Supplemental	Material	online).	

Based	on	this	result	we	fitted	a	two-component	mixture	model	to	the	MBD-scores	

(supplemental	fig.	S1B,	Supplemental	Material	online).		

Because	of	the	hypermutability	of	5mC,	genes	that	are	strongly	methylated	in	the	

germline	become	deficient	in	CpG	dinucleotides	over	evolutionary	time	(Sved	and	Bird	1990).	

As	a	result,	normalized	CpG	content	(CpGo/e)	can	be	used	to	estimate	historical	germline	

methylation.	This	metric	has	been	shown	to	correlate	closely	with	direct	measures	of	gbM	

(Zemach	et	al.	2010;	Sarda	et	al.	2012).	To	corroborate	that	our	measure	of	gbM	also	correlated	

with	CpGo/e	we	calculated	it	for	the	A.	millepora	coding	regions	as	described	in	Dixon	et	al.	

(2014).	To	control	for	effects	on	gene	length,	CpGo/e	was	calculated	based	on	the	first	1000	

bases	of	each	sequence.	

	

Gene	expression	datasets	



To	test	for	correlations	between	MBD-score	and	transcriptional	variation	we	used	gene	

expression	data	from	two	previous	experiments.	Both	datasets	were	generated	using	Tag-based	

RNA-seq	(Meyer	et	al.	2011)	from	samples	of	A.	millepora	taken	from	the	central	Great	Barrier	

Reef,	Australia.	The	current	laboratory	and	bioinformatics	protocols	for	analysis	of	Tag-based	

RNA-seq	are	available	on	GitHub	(https://github.com/z0on/tag-based_RNAseq).	The	first	

dataset	was	a	subset	of	that	described	in	(Dixon	et	al.	2015),	including	12	adult	samples	

(triplicate	samples	from	2	genotypes	from	Princess	Charlotte	Bay	and	2	from	Orpheus	Island:	

Great	Barrier	Reef	Marine	Park	Authority	permit	G38062.1	exposed	to	28°C)	and	30	samples	of	

their	larval	offspring	(10	genetic	families,	reared	for	five	days	at	28°C	in	triplicate).	Variation	in	

gene	expression	between	adults	and	larvae	was	analyzed	using	DESeq2	(Love	et	al.	2014).	

Comparisons	between	MBD-score	and	transcript	abundance	were	based	on	counts	from	adult	

samples	transformed	to	a	log2	scale	using	the	rlogTransformation	function.	Mean	expression	

levels	from	this	dataset	were	also	used	to	calculate	indices	of	codon	bias	described	below.	The	

second	dataset	described	in	(Dixon	et	al.	2014)	included	56	colony	fragments	reciprocally	

transplanted	between	two	environmentally	distinct	reefs:	Keppel	and	Orpheus	Island	(Keppel:	

23°09S	150°54E	and	Orpheus	18°37S	146°29E:	Great	Barrier	Reef	Marine	Park	Authority	permit	

G09/29894.1).	Expression	profiles	from	these	samples	were	analyzed	with	respect	to	the	

transplantation	site	to	examine	variation	in	gene	expression	due	to	environmental	conditions.	

	

Codon	bias	

We	tested	for	relationships	between	MBD-score	and	synonymous	codon	usage	using	four	

metrics:	relative	synonymous	codon	usage	(RSCU),	frequency	of	optimal	codons	(Fop),	codon	



adaptation	index	(CAI),	and	the	effective	number	of	codons	(Nc).	RSCU	was	calculated	as	the	

ratio	of	the	observed	number	of	occurrences	of	a	particular	codon	to	the	excepted	number	of	

occurrences	if	codon	usage	was	neutral	(Sharp	et	al.	1986):	

𝑅𝑆𝐶𝑈%& =
𝑥%&

1 𝑛% 𝑥%&
+,
&-.

	

Where	Xij	is	the	number	of	occurrences	of	the	jth	codon	for	the	ith	amino	acid	and	ni	is	the	

number	of	synonymous	codons	for	the	ith	amino	acid.	This	measure	quantifies	relative	codon	

usage	while	controlling	for	variation	in	amino	acid	composition	between	proteins.	Fop	is	

intended	to	measure	the	degree	of	selection	for	optimal	codon	usage	in	a	particular	coding	

sequence.	It	was	originally	defined	as	the	ratio	of	optimal	codons	to	the	total	number	of	codons	

in	a	gene,	with	optimal	codons	identified	based	on	the	cellular	content	of	isoaccepting	tRNAs	

and	the	nature	of	codon-anticodon	interactions	(Ikemura	1981).	Optimal	codons	are	also	

inferred	based	on	relative	usage	in	a	set	of	highly	expressed	genes	such	as	ribosomal	proteins	

(Behura	and	Severson	2013).	To	estimate	Fop	for	A.	millepora	coding	regions	we	used	the	

software	package	CodonW	(Peden	1999)(	http://codonw.sourceforge.net/).	CodonW	uses	

correspondence	analysis	of	codon	usage	to	derive	a	set	of	optimal	codons	and	then	estimates	

their	usage	for	each	sequence.	CAI	is	similar	to	Fop,	and	is	intended	to	quantify	the	strength	of	

selection	on	codon	usage.	For	a	given	gene,	CAI	is	equal	to	the	geometric	mean	of	the	relative	

adaptiveness	(W)	of	all	codons	within	that	gene.	The	relative	adaptiveness	Wij	of	codon	i	that	

codes	for	amino	acid	j	is	equal	to	the	ratio	its	relative	synonymous	codon	usage	to	that	of	the	

most	abundant	synonymous	codon	in	a	set	of	highly	expressed	genes	(Sharp	and	Li	1987a):	

𝑊%& = 𝑅𝑆𝐶𝑈%& 𝑅𝑆𝐶𝑈%012	



Relative	adaptiveness	(based	on	the	top	5%	most	highly	expressed	genes)	and	CAI	were	

calculated	using	custom	python	scripts.	Unlike	CAI	and	Fop,	Nc	does	not	depend	on	a	set	of	

preferred	codons,	and	provides	an	estimate	of	a	gene’s	departure	from	random	use	of	

synonymous	codons	based	solely	on	codon	usage.	The	measure	is	analogous	to	the	‘effective	

number	of	alleles’	in	population	genetics	(treating	amino	acids	as	loci	and	codons	as	alleles)	

summed	the	values	across	the	20	amino	acids.	It	and	is	bounded	between	20	(completely	

biased)	to	61	(neutral)(Wright	1990).	Nc	was	calculated	using	CodonW	(Peden	

1999)(http://codonw.sourceforge.net//culong.html).	

	

Statistical	Analyses	

Statistical	analyses	of	the	relationship	between	MBD-score	and	other	gene	characteristics	were	

performed	in	R	(R	Core	Team	2015).	Significance	for	correlations	was	established	using	

Spearman’s	rank-order	correlation	test.		Significance	tests	for	differences	in	counts	between	

the	strongly	methylated	and	weakly	methylated	classes	were	performed	using	Fisher’s	exact	

tests	(Fisher	1922).	Principal	component	analysis	was	performed	using	prcomp	function	in	R.	
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