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I. IMPLEMENTATION NOTES

Several strategies for computing ThisLayer suggest themselves; which strategy performs best may depend on how various data
structures are implemented in a given programming language. One choice is to sort V and D in ascending order by degree before
the main while loop for a cost of O(|V | log |V |); when neighbor degrees are decremented, they can be removed from these lists
and re-inserted using binary search for a cost of O(|N(v)| log |V |), which sums to another O(|E| log |V |). The minimum degree
of the remaining nodes is easily accessed in O(1) time as the first element of the list D. Another choice is to maintain the nodes
in a min-heap, keyed by their degree. Constructing this heap before the while loop takes time O(|V | log |V |), as before. Again,
when neighbor degrees are decremented they must be re-inserted to the heap, for a cost of O(|N(v)| log |V |), also as before.
The minimum degree is easily accessed in O(1) time by peeking at the minimum element of the heap. Again, we emphasize
that although the asymptotic run-times of these two methods are the same up to big-Oh (and even possibly to lower order terms),
which performs better may depend on the exact implementation of these algorithms and data structures, either by the user or in
a language-provided library.

It may also be advantageous to remove nodes in a single sweep over V each time, rather than to first compute ThisLayer and
then remove them all at once. For this, we suggest that the following notion of “effective degree” of a node in shell k is useful
for avoiding errors. The effective degree of a node in shell k is defined as its number of links leading to nodes in shells k′ ≥ k.
At each step of the algorithm, a layer is peeled by removing all nodes of effective degree equal to the minimal effective degree
in the network and diminish the effective degree of their neighbours only if it is higher than their own.

II. ADDITIONAL ANALYSIS OF TOY MODELS

Supplementary Figure 1 presents two of the toy networks studied in the main text. As it was mentioned, the perfect tree has
an exponentially decaying spectrum while that of the lattice is linear (both in its increasing and decreasing regimes). We now
demonstrate these conclusions analytically.

In the case of the Cayley tree, the network is created by starting with a node (constituting “ring 0”) connected to z neighbours
(ring 1) and repeating a branching factor z − 1 around the leaves for every additional ring r > 1. This results in a tree with
L(r) = z(z − 1)r−1 nodes in every ring r > 0 and with a total of

N(rmax) = 1 +

rmax∑
r=1

L(r) =
z(z − 1)rmax − 2

z − 2
(1)

nodes. The OD peels the network with the inverse procedure: First removing the z(z − 1)rmax−1 leaves in the final ring for
layer 1, then the z(z − 1)rmax−2 nodes in ring rmax − 1 for layer 2, and so on until the final node. Using the equivalence
` ≡ rmax − (r− 1) between rings (r) in the network creation and layers (`) in the OD, we can write the following ratio between
nodes contained in subsequent layers ` and `− 1 with 1 < ` ≤ rmax:

L(rmax − `+ 1)

L(rmax − `+ 2)
=

z(z − 1)rmax−`

z(z − 1)rmax−`+1
=

1

z − 1
. (2)

This constant decay as ` increases results in an exponential spectrum until the final layer, `max = rmax + 1, whose density is
1/z times the density of layer `max − 1. This spectrum is confirmed on Supp. Fig. 1. In the rewired network, all L(rmax) nodes
of degree 1 are given the same role and all N(rmax − 1) nodes of degree 3 are given the same role. By removing the strict
constraints of the perfect tree, chances are that this rewiring process will now produce loops. Those loops force the appearance
of 2− or 3−cores, thus removing nodes from the lower core and changing the purely exponential distribution of the perfect tree.

In the case of the square L× L lattice, the OD peels the network from the corners inward such that nodes located on a same
diagonal belong to the same layer (see Supp. Fig. 1). Consequently, the onion spectrum has the shape of a triangle with each
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layer having 4 more/less nodes than the previous one. More precisely, the number of nodes in each layer ` is given by

T (`) =

{
4` for 1 ≥ ` ≥ bL/2c
4(L− `) for bL/2c < ` < `max

(3)

T (`max) =

{
4 L even
1 L odd ,

(4)

where `max = 2b(L + 1)/2c − 1 the total number of layers. This is confirmed on Supp. Fig. 1 for a 500 × 500 lattice. Also
shown on Supp. Fig. 1, we see that rewiring links creates new cores and changes the unique shape of the OD: The rewired
network is much faster to decompose since the linear behavior of the OD is lost.

Supplementary Figure 2 presents a different toy model not discussed in the main text: The Ravasz-Barabási hierarchical
network model [1], which allows us to investigate the impact of self-similar hierarchy on the OD. This hierarchical network
is initiated with a fully connected clique of arbitrary size s (in this case a 5-clique) in which a central node is chosen. The
network is then created by replicating the current network s− 1 times and connecting all “leaves” (which, in the n− th iteration
corresponds to the non-central node of the cliques that were created at the (n− 1)-th iteration) to the central node of the original
clique. An illustration with s = 5 and two iterations of the multiplicative process is given in Supp. Fig. 2.

In some ways, the Cayley tree is also hierarchical in the sense that the role of a node is perfectly defined by the layer in which
it is found. In the case of the Ravasz-Barabási hierarchical network, nodes also have a well-defined structural role but their
distance to the central node is no longer a good indicator of that role. This hierarchical network is self-similar in the sense that a
base unit is repeated to obtain the full network, which is very different from simple branching. This implies that nodes of lower
centrality are found everywhere in the network, including in the neighborhood of very central nodes. Hence, the network breaks
down very quickly under the OD as we change the degrees of many nodes at every pass. Moreover, the self-similarity of the
network appears reflected in the similarity between the internal onion spectrum of the different cores.

As with the previous toy models, the OD of a Ravasz-Barabási produced by repeating the initial motifs n times can be
calculated analytically. However, there is not much value to the calculation other than realizing how the calculation of layer
density at a given coreness is re-used to calculate the density of layers in the next coreness value, again reflecting the self-similar
structure of the graph. In the rewired network, we lose both the fast break down of the network and the self-similarity between
cores.

Supplementary Figure 3 presents the spectrum of a realization of the stochastic block model as a final toy network. In this
realization, we used four groups of different densities to illustrate how those 4 different subgraphs are captured by the OD as 4
different cores. The layer at which those cores are found inform us on the density of the groups, and their density reflect their
sizes. Of course, if two of these 4 groups had the same density, they would be merged in one core containing the nodes of both
groups.

III. ADDITIONAL REAL COMPLEX NETWORKS

We now present the onion spectra of a few more real-world complex networks, most of them had their coreness (but not
layers) distribution briefly studied in Ref. [2]. First, diverse social networks that were not shown in the main text are presented
in Supp. Fig. 4. These are networks of co-authorship on a scientific pre-print archive (arXiv), “friendships” between users of a
news aggregator and message board website (Digg), connections on a peer-to-peer file sharing network (Gnutella), and an old
subset of Facebook from the University of Michigan.

In all cases, we see obvious signatures of clustering between active users in the sub-exponential density decay of central cores.
However, we here want to focus on the positive degree correlations (assortativity). In the main text, we hinted toward the fact that
assortativity tends to raise the expected number of cores in a network by joining high-degree nodes together. This is confirmed
here in all cases but Gnutella (see Supp. Table I). Gnutella is an interesting case because of the very different behaviour that
can be observed in the lower and higher cores. In fact, the degree distribution of the network is bimodal (not shown); already
hinting at very different behaviour between central and peripheral nodes. The lower cores show signs of disassortativity in the
varying decay rate between the layer of a given core (compared to the very tree-like decay of the rewired Gnutella). As seen with
the Myspace network (see see Supp. Fig. 5).), this can be explained through negative degree correlations: A significant number
of nodes removed in a layer of the first core are connected with hubs part of higher cores and do not contribute to the density
of the next layer. Contrariwise, the higher cores of the Gnutella network show clear sign of clustering which is correlated with
assortativity. In fact, most hubs are connected to each other and the 7-core is an almost fully connected clique of hubs. Those
different behaviour between central and periphery nodes is reflected in the OD, but of course not captured by simply looking at
a degree-degree correlation coefficient.

In all other networks, comparing the number of cores found in a real network to the number found in a rewired version appears
to be a robust signature of potential degree-degree correlations. Comparing the myspace online social network spectrum with a
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rewired scheme preserving those correlations confirms this conclusion (see Supp. Fig. 5). The spectrum of the myspace network
also confirms that diminishing decay rate within a single core are a signature of disassortativity as suggested in the main text
using the structure of a web domain.

We also use another co-authorship network, here as extracted on MathSciNet [3], to identify subgraphs of authors similar to
the one highlighted in the main text using the cond-mat arXiv. Results are shown in Supp. Fig. 6. We also illustrate a similar
but smaller subgraph on the arXiv network in Supp. Fig. 7.

Second, we present a few snapshots of the Internet structure in Supp. Fig. 8. All networks reflect the Internet structure at
the level of autonomous systems. However, they use data from different time periods (all from routeviews.org). Similarly
to the Word-Wide-Web studied in the main text, these technological networks provide great examples of negative degree-degree
correlations as shown in Supp. Table I. Perhaps more importantly, they provide a great example of how the OD could be used
as a method to characterize the nature of networks. In all cases, the overall patterns observed on the OD appear very robust
through time: An overall tree-like structure with a very clear core of central nodes whose organisations clash with the global
structure. While it was known that the k-core decomposition provided a good model for the growth of the Internet structure [4],
the OD provides the first evidence for how the structure of central nodes differ from the rest. Looking for these robust patterns
could guide future efforts in network characterization. Supplementary Figure 9 provides another example of this robustness by
comparing the onion spectrum of the American power grid discussed in the main text to that of a Polish power grid.

Third, we revisit World-Wide-Web domains: notredame.edu and stanford.edu in Supp. Fig. 10. Again, as in our
discussion of stanford.edu in the main text we find very unexpected subgraphs: e.g. long chains of nodes with the same
structural role in lower cores and very dense cores in higher cores (e.g. around layer 600 of notredame.edu). In between
these two behaviours, we find a mixture of communities coupled to a long chain of central webpages, as shown in Supp. Fig. 11.

Supplementary Table I. Comparing degree-degree correlation coefficient (r) to the ratio between the number of cores over the expected
number of cores in the rewired network (cmax/〈cmax〉rewired). Based on our previous results, we expect the sign of r to be correlated with
whether cmax/〈cmax〉rewired is greater or smaller than one. Only Gnutella does not follow our intuition (for reasons covered in the text).

Network cmax/〈cmax〉rewired r

arXiv 1.895 0.147

Digg 1.000 0.004

MathSci 3.833 0.123

Gnutella 1.167 −0.103
Facebook 1.349 0.115

Myspace 0.220 −0.112
American power grid 2.5 0.003

Polish power grid 2.00 0.050

Pennsylvania roads 1.333 0.123

notredame.edu 0.621 −0.053
stanford.edu 0.300 −0.112

Internet (2005) 0.4237 −0.198
Internet (1997-2000) 0.400 −0.170
Internet (2004-2007) 0.660 −0.195

Internet (2001) 0.338 −0.164

IV. THE ONION NETWORK ENSEMBLE (ONE)

In the main text, we showed how the ONE could be useful to model a few selected networks. It is important to note that
we verified the rules of construction of the ONE on all considered networks. We thus created randomized networks respecting
a given onion spectrum and degree distribution, then re-ran the OD on the obtained networks to verify that the spectrum was
indeed conserved by our rewiring procedure. Two of these tests, on two different non-trivial spectrum, are presented in Supp.
Fig. 12.

The information required to create the ONE is the joint degree-layer distribution (which scales as the maximum degree times
the number of layers), a list describing to which k-shell or coreness nodes in a given layer belong (scaling as the number of layers)
and the layer-layer link correlation matrix (scaling as the square of the number of layers). The joint degree-layer distribution
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being the biggest contribution to the weight of the model, the ONE can be said to scale as kmax`max. On Supp. Fig. 13 we show
that the number of layers consistently scales with the square root of the maximum degree kmax. Consequently, we can say that
the information needed for the ONE roughly scales as k3/2

max .
In Fig. 14 we show the full distribution of path lengths in real networks (when small enough to compute it), and compare it

to their rewired CM, CCM and HRN versions and their respective ONEs. In all cases, networks sampled from the ONE better
control for the distribution of shortest paths. In two cases, both power grids, the gain is very small since the rewiring destroys
the very strict correlated tree structure. In other cases, as the most recent snapshot of the Internet structure, the ONE proves to
be an incredibly accurate model.
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Supplementary Figure 1. Comparing the onion spectra of toy models and their rewired version (part 1). Illustrations of two toy networks
(straight links) and their rewired versions (curved links) along with their onion spectra: (left column) Cayley tree and (right column) square
lattice.
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Supplementary Figure 2. Comparing the onion spectra of toy models and their rewired version (part 2). Illustration of the Ravasz-
Barabási hierarchical network model initiated with a 5-clique and iterating the multiplicative process twice. Its rewired version is again shown
with curved links. The corresponding spectra (for larger realization of those network) are shown under the illustrations.
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Supplementary Figure 3. Comparing the onion spectra of toy models and their rewired version (part 3). (left) Spectrum of a stochastic
block model with 4 groups of different densities and sizes. (right) Spectrum of the rewired version.
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Supplementary Figure 4. Comparing the onion spectra of social networks (left) and their rewired version (right).
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Supplementary Figure 5. The onion spectra of the Myspace online network and of two randomized versions. Randomizing a network
for comparison can highlight some of its properties. In this case, the total number of cores and the density of their secondary layers in the
Myspace network (bottom) are a sign of its negative degree correlations. This is confirmed by comparing the spectrum of Myspace to that of
randomized version which removes (top left) or preserves (top right) the degree correlations. These plots only show the spectra up to the 150th
layer to highlight the initial behaviour.
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Supplementary Figure 6. The MathSciNet co-autorship onion spectrum and two selected subgraphs. While the overall structure of this
sparse network is tree-like, some unique subsets can be identified in the spectrum, two of which are shown (shaded layers, the one from the
7-shell is shown on top and the more central community is shown at the bottom right).

Supplementary Figure 7. An additional subgraph from layers 125 to 135 of the arXiv. Similarly to the subgraph shown in the main text,
this one corresponds to connected communities of nodes with similar centrality.
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Supplementary Figure 8. Comparing the onion spectra of snapshots of the Internet structure [5, 6] (left) and their rewired version
(right).
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Supplementary Figure 9. Comparing the onion spectra of two power grids from (left) North Western America and (right) Poland.

0 100 200 300 400 500 600
Layer

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
ac

tio
n

of
no

de
s

notredame.edu

0 50 100 150 200 250 300 350
Layer

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
ac

tio
n

of
no

de
s

Rewired notredame.edu

0 500 1000 1500 2000
Layer

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
ac

tio
n

of
no

de
s

stanford.edu

0 100 200 300 400 500 600
Layer

10−6

10−5

10−4

10−3

10−2

10−1

100

Fr
ac

tio
n

of
no

de
s

Rewired stanford.edu

Supplementary Figure 10. Comparing the onion spectra of domains of the World Wide Web (left) and their rewired version (right).
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Supplementary Figure 11. An additional subgraph from layers 1200 to 1300 (in the 6-shell) of stanford.edu. This one corresponds to
a mixture of communities coupled to a long chain of central webpages.
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Supplementary Figure 12. Validating the onion network model (right) with two datasets (left).
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Supplementary Figure 14. Distribution of shortest path lengths in real complex networks and in two rewired versions. Real data is shown
in red, a network sampled from the ONE is shown in orange and a rewiring conserving degree distribution is shown in blue.


