
1 
 

Eliciting the Functional Taxonomy from protein annotations and taxa 

Marco Falda1§, Enrico Lavezzo 1§, Paolo Fontana2, Luca Bianco2, Michele Berselli1, Elide 

Formentin3 and Stefano Toppo1,* 

1 Department of Molecular Medicine, University of Padova, Padova, 35131, Italy 

2 Istituto Agrario San Michele all'Adige Research and Innovation Centre, Foundation Edmund 

Mach, Trento, 38010, Italy 

3 Department of Biology, University of Padova, Padova, 35131, Italy 

* To whom correspondence should be addressed. Tel: +39 049 8276958; Fax: +39 049 8073310; Email: 

stefano.toppo@unipd.it 

§ The authors wish it to be known that, in their opinion, the first two authors should be regarded as 

joint First Authors 

	 	



2 
 

SUPPORTING	MATERIAL	

Summary 

SUPPORTING MATERIAL ................................................................................................................................... 2 

S1.  Taxonomy partitioning .................................................................................................................... 3 

S2.  Fuzzy Logic and statistical tests.................................................................................................... 6 

S3.  Taxonomic propagation rules ........................................................................................................ 8 

S4.  Benchmarking ................................................................................................................................ 14 

S5.  Additional case studies of the application of taxon constraints in sequence similarity-based 
functional transfer .......................................................................................................................... 16 

S6.  The origin of taxon-incompatible GO terms .............................................................................. 21 

 

   



3 
 

S1. Taxonomy partitioning 

In Figure S1.1, the partitioning of the taxonomic tree is shown. The tree has been divided into 7 groups, 

represented by the petals: within each group, the general taxa with the highest number of unique GO terms 

are shown in bold (with the most characterized species inside parentheses). In Table S1.1 all the highly 

annotated general taxa (robust general taxa) are reported. 

 

 

Figure S1.1: Taxonomy partitioning. 
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Table S1.1: robust taxa. General taxa selected as “robust” are reported, together with the taxonomic group 

they belong to, the number of non-redundant GO terms for the MF ontology used to annotate their proteins, 

the number of non-redundant GO terms for the MF ontology used to annotate the proteins of the corresponding 

reference taxon, and their ratio in percentage. The general taxa containing the reference organisms for each 

group are in bold. 

Robust general taxon 
name 

Group 

N° of MF GO 
terms in the 

current general 
taxon 

N° of MF GO 
terms in 
group 

reference 
taxon 

% GO terms 
in current 
taxon vs. 
reference 

Archamoebae Amoebozoa 1190 1493 79.71% 
Discosea Amoebozoa 1154 1493 79.713% 

Euglenozoa Amoebozoa 1400 1493 93.77% 
Mycetozoa Amoebozoa 1493 1493 100% 

Archaea Archaea 1193 1552 76.87% 
Halobacteria Archaea 1552 1552 100% 

Methanomicrobia Archaea 1452 1552 93.56% 
Thaumarchaeota Archaea 13152 1552 84.73% 

Thermoprotei Archaea 1403 1552 90.40% 

Actinobacteria Bacteria 2281 2414 94.49% 
Alphaproteobacteria Bacteria 2242 2414 92.873% 

Bacilli Bacteria 22250 2414 92.17% 
Bacteria Bacteria 1864 2414 77.22% 

Betaproteobacteria Bacteria 2263 2414 93.74% 
Clostridia Bacteria 2103 2414 87.12% 

Cyanobacteria Bacteria 1982 2414 82.10% 
Deltaproteobacteria Bacteria 2080 2414 86.16% 

Flavobacteriia Bacteria 1863 2414 77.17% 
Gammaproteobacteria Bacteria 2414 2414 100% 

Spirochaetia Bacteria 1847 2414 76.51% 
unclassified Bacteria Bacteria 1924 2414 79.70% 

Actinopteri Chordata 1729 1942 89.03% 
Amphibia Chordata 1688 1942 86.92% 

Ascidiacea Chordata 1468 1942  
Aves Chordata 1774 1942 91.35% 

Cephalochordata Chordata 1536 1942  
Mammalia Chordata 1942 1942 100% 

Testudines + 
Archosauria group 

Chordata 1686 1942 86.82% 

Agaricomycetes Fungi 1496 1797 83.25% 

Chytridiomycetes Fungi 1397 1797 77.74% 
Dothideomycetes Fungi 1718 1797 95.60% 
Eurotiomycetes Fungi 1905 1797 106.01% 
Leotiomycetes Fungi 1656 1797 92.15% 
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Pezizomycetes Fungi 1379 1797 76.74% 
Pucciniomycotina Fungi 1589 1797 88.43% 

Saccharomycetes Fungi 1797 1797 100% 
Schizosaccharomycetes Fungi 1542 1797 85.81% 

Sordariomycetes Fungi 1999 1797 111.24% 

Tremellomycetes Fungi 1493 1797 83.08% 
Ustilaginomycetes Fungi 1430 1797 79.58% 

Arachnida 
Metazoa excluding 

Chordata 
1696 1970 86.09% 

Chromadorea 
Metazoa excluding 

Chordata 
1698 1970 86.19% 

Insecta 
Metazoa excluding 

Chordata 
1970 190 100% 

Bryopsida Viridiplantae 1543 2008 76.84% 
Chlorophyceae Viridiplantae 1679 2008 83.62% 

Eudicotyledons Viridiplantae 2008 2008 100% 
Liliopsida Viridiplantae 1735 2008 86.40% 
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S2. Fuzzy Logic and statistical tests 

Relative probabilities have been defined to decide whether to consider a GO term g enough studied in a 

general taxon t, not enough represented or uncertain. Two thresholds  and , set to 0.1 and 1 respectively, 

seem to be enough discriminative, however, to lessen the precision on empirical values a smoothing around 

those thresholds using a trapezoidal preference function has been added. Besides the two thresholds  and 

 two uncertainty intervals  and and two confidence intervals h1 and h2 around the estimated thresholds 

have been introduced. The resulting preference function can be designed as (see Figure S2.1): 

,ݔሺݎ݄ݐ_ݕݖݖݑ݂ ,ଵߴ ,ଶߴ ,ଵߜ ,ଶߜ ݄ଵ, ݄ଶሻ ൌ
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Figure S2.1: fuzzy threshold, in blue, and its generating trapezoid. 
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Fuzzy thresholds have been designed to obtain a more robust management of the uncertainty inherent the 

relative probabilities; moreover, by “abstracting” over the precise meanings of the relative probabilities 

thresholds, their precise semantics can be relaxed. Fuzzy thresholds likely improve the performances of the 

tool or, better, they improve the overall trade-off between performance and robustness. The current fuzzy 

thresholds are fairly stable: we run a Nelder-Mead optimization over the three preference function parameters 

(h1 = h2 = 1), that is the thresholds 1, 2, and 1 = 2; a 25-fold cross-validation has been performed over 

63,965 initial GOC constraints, fitting vectors of 2,558 elements and obtaining the following optimized 

parameters: 

• 1 = 0.11 +/‐ 0.002 (standard deviation) 

• 2 = 0.919 +/‐ 0.189 

• 1 = 2 = 0.490 +/‐ 0.089 

 

In order to assess the statistical significance and assign a p-value to the taxonomic constraints, a bootstrap 

approach has been used since the data cannot be properly modeled with any known distribution. A one-sided 

t-hypothesis test has been adopted, and ‘in taxon’ constraints have been tested against the ‘never in taxon’ 

constraints distribution and vice versa. The test has been repeated for each constraint against 10,000 

resampled distributions and the t scores obtained have been used to calculate the p-value considering a 

significance level of 5% (alpha <= 0.05).  The p-values have finally been adjusted for multiple testing using the 

Bonferroni correction method. 
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S3. Taxonomic propagation rules 

S3.1 Rules application 

The frequency distribution of the taxonomic propagation rules is reported in Figure S3.1. The majority of 

constraints comes from propagations from children, which is expected since the algorithm follows a bottom-up 

strategy. Bottom-up propagations are almost equally shared among positive, negative and dubious children. 

The rarest are the dubious ones generated from a conflictual parent and a conflictual child. Figure S3.2 reports 

one example for each type of rule (see main text and Figure 2 therein); for example, in the case of rule I-p 

Opisthokonta acquire their polarity from Echinoidea, in rule II-p Actinopteri acquire the polarity indirectly from 

Chondrichthyes through Craniata. Dubious rules can originate from two general scenarios: Either when the 

polarity of the parent is discordant with respect to the polarity of a sibling (example IV; note that “Eukaryota” 

means “other Eukaryota”, that are uncharacterized Eukaryota, see the web site), or when the polarities of two 

siblings are discordant (example III). Once a doubt appears, it taints all its neutral neighbors by propagating 

both upwards and downwards.  

 

Figure S3.1: frequency distribution of the taxonomic propagation rules. 
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Figure S3.2: instances of taxonomic propagation rules. 

 

S3.2 Arbitrariness and Robustness 

To have an idea on how much arbitrary our taxonomic propagation rules are, two additional alternative 

propagation criteria have been designed: one based on an open world hypothesis and the other based on a 

closed world hypothesis (Figure S3.3). These rule sets have been then used to propagate the initial constraints 

over the Taxonomy tree and the results have been compared with the manual rules proposed by the GO 

Consortium (GOC in the following); results are shown in Figure S3.4 (the lower the better).  
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Another interesting point concerns the robustness of the generated rules; robustness can be defined as the 

resilience of the system when the input data, that is the protein annotations, are perturbed. Since a robust 

system far from optimality is not useful, first of all it has been established that the steady state deviation ss has 

to be measured with respect to the fraction of the common constraints between the FunTaxIS set ࣠ and the 

GOC set ࣡ whose resulting discretized polarity pset is not the same 

ݏݏ ൌ
∑ ߯ሼ࣠ሺሻୀ࣡ሺሻሽሺݎሻ∈࣠∩࣡

∑ ߯࣠∩࣡ሺݎሻ∈࣠∩࣡
 

where ߯ௌሺݔሻ is the characteristic function of a set ܵ. In the case of a GOC constraint g, its polarity ࣡ሺ݃ሻ has 

been defined as 

ሺ݃ሻ࣡ ൌ ൜
െ1, ݃ ൌ "݊݅_ݎ݁ݒ݁݊"
1, ݃ ൌ "݊݅_ݕ݈݊"  

The simulation is performed by applying the function ߨఋ:Գା → Գ to an increasingly wide random subsets ߙ of 

annotations ࣛ by adding or subtracting a fixed amount ߜ of annotations according to a uniform Boolean 

random variable ߷ 

ሻݔఋሺߨ ൌ ൜
ݔ െ ,ߜ ߷ ൌ False
ݔ  ,ߜ ߷ ൌ True

 

Four random replicates have been produced in order to obtain also an approximate standard deviation. In 

Figure S3.5 the relative increments  

Δ௦௦ഀ,ഃ ൌ
ሻߙఋሺݏݏ ∪ ሻߙ\ሺࣛݏݏ

ݏݏ
 

of the steady state deviations produced by varying ߙ ⊆ ࣛ and ߜ, where ࣛ is the unperturbed set of 

annotations, have been plotted. It can be noticed that the wrong constraints increase along both axes and that 

the system tends to worsen for increasing numbers of perturbed annotations and for increasing amounts of 

noise annotations. 
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Figure S3.3: two additional alternative taxonomic propagation rules sets; on the left a set built from an open 

world hypothesis, while on the right a set built on a closed world hypothesis. 

 

Figure S3.4: the number of wrong constraints, with respect to the GO Consortium, inferred by replacing the 

default taxonomic propagation rules (OUR) with one of the two alternative sets shown in Figure S3.3. 
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Figure S3.5: the relative variation of wrong constraints with respect to the percentage of wrong constraints 

estimated from the “true” GO Consortium dataset; this plot has been built by perturbing an increasing 

percentage of annotations (% perturb.) by a fixed increasing amount of noise annotations (delta). The grey 

grid over the surface gives an idea of the standard deviation coming from four random replicates. For “delta” 

equal 0, by increasing “% perturb” there is obviously no difference (“% diff constr.” is 0) and the same happens 

for “% perturb” equal 0 and increasing “delta” as shown in the plot. 

 

S3.3 Rules application and world hypotheses 

The open or closed world hypotheses must be considered also when the constraints are to be applied to a set 

of GO terms. More precisely, a concrete decision on neutrality of terms must be taken, i.e. uncertain/neutral 

terms must be either accepted or rejected for the taxon. To simplify the reasoning, a sort of ternary logic setting 

can be adopted, where in addition to the canonical true, T, and false, ٣, symbols there is a novel neutral symbol 

⊣. The differences between the open and closed world hypotheses reduce to the intrepretation of the neutral 

symbol: tendentially true in the open world and tendentially false in the closed world. In dealing with two 
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possibly contradictory information sources, a fusion criterion has to be established. By giving a more 

authoritative role to the GOC source (G) with respect to FunTaxIS source (F), two slightly different truth tables 

(Table S3.1 and Table S3.2) can be devised for the open and closed world hypotheses respectively. 

Table S3.1: truth table for the fusion of the GOC and FunTaxIS information sources in the hypotheses of 

open world and preferential bias towards the former source. 

FunTaxIS 
decision (ࡲ) 

GOC decision 
(ࡳ) 

Final decision 

٣ ٣ ٣ 
٣ ⊢ ٣ 
٣ T T 
⊣ ٣ ٣ 
⊣ ⊣ T 
⊣ T T 
T ٣ ٣ 
T ⊣ T 
T T T 

 

Table S3.2: truth table for the fusion of the GOC and FunTaxIS information sources in the hypotheses of 

closed world and preferential bias towards the former source. 

FunTaxIS decision  
(۴) 

GOC decision  
(۵) 

Final decision 

٣ ٣ ٣ 
٣ ⊢ ٣ 
٣ T T 
⊣ ٣ ٣ 
⊣ ⊣ ٣ 
⊣ T T 
T ٣ ٣ 
T ⊣ T 
T T T 

 

 

From those truth tables it is possible to synthesize the following formulas for the two world hypotheses: 

ሺΣீ ൌ Tሻ ∨ ሺΣீ ൌ⊣∧ Σி ്٣ሻ 

ሺΣீ ൌ Tሻ ∨ ሺΣீ ൌ⊣∧ Σி ൌ Tሻ  
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S4.  Benchmarking 

S4.1 Taxon constraints comparison between FunTaxIS and GOC 

The Venn diagram in Figure S4.1 shows that taxon constraints provided by GOC largely overlap those 

generated by FunTaxIS, while numerical details are presented in Table S4.1. Only non-neutral constraints are 

represented, while there are additional 10,887 constraints (0.1% of the total) that are discordant between the 

two methods and are not reported in the chart. 

 

Figure S4.1: Overlap between GOC and FunTaxIS constraints. 

 

Table S4.1: total number of non-neutral constraints in GOC and FunTaxIS. 

Ontology Constraint type N° GOC constraints 
N° FunTaxIS 
constraints 

BP 

Positive 162,459 1,389,199 

Negative 1,998,097 6,195,981 

Total 2,160,556 7,585,180 

MF 

Positive 4,147 776,112 

Negative 17,328 906,386 

Total 21,475 1,682,498 

CC 

Positive 62,809 252,985 

Negative 328,202 642,889 

Total 391,011 895,874 

Total  2,573,042 10,163,552 
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S4.2  FunTaxIS vs CroGO 

In a paper published in 2013 (1), the authors presented a tool able to estimate the similarity of GO terms from 

different ontologies. Together with the tool, they provided two species-specific lists (one for S. cerevisiae and 

one for H. sapiens) of coupled GO terms from the Molecular Function and the Biological Process ontologies 

characterized by high similarity. Since these terms are functions present in yeast and/or human, we exploited 

these data to perform an independent benchmark to assess the correctness of the constraints generated by 

FunTaxIS for those species (see results in Figure S4.2). In particular, the GO terms with a positive or neutral 

constraint in FunTaxIS were considered to be in agreement with CroGO (since we adopt the open world 

assumption), while those with a negative constraint were considered discordant (percentages are reported on 

top of the bars). The two datasets are largely in agreement, although being obtained with two completely 

different methods. 

 

 

Figure S4.2: histogram reporting the percentage of agreement with CroGO dataset of true GO hits for human 

and yeast after been filtered by FunTaxIS constraints.  
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S5. Additional case studies of the application of taxon constraints in 

sequence similarity-based functional transfer  

The effectiveness of taxonomic constraints has been tested in simulated cases of functional annotation based 

on sequence similarity. In addition to S. cerevisiae and A. thaliana, which are reported in the main text, we 

analysed D. rerio, D. melanogaster, H.sapiens and E. coli.  

In the following figures, panels A are histograms of the frequencies of non redundant GO terms retrieved by 

BLAST hits and grouped by the e-value of the alignment. The lower bright portion of columns represents true 

positives, that are the GO terms associated in GOA to at least one protein belonging to the target species; the 

upper dark fraction represents false positives (GO terms never associated to the target species proteins). 

“Open” and “closed” world refer to the treatment of GO terms without an explicit constraint: such terms have 

been either discarded (closed) or retained (open). Panels B are word clouds of the most frequent terms 

contained in GO definitions of false positive annotations: turquois and purple words come from GO terms with 

no defined constraints from GOC and FunTaxIS, respectively. The size of terms is proportional to their 

frequency. 
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Figure S5.1: GO-centric evaluation of the impact of taxon constraints on D. rerio annotation by sequence-

based functional transfer.  
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Figure S5.2: GO-centric evaluation of the impact of taxon constraints on D. melanogaster annotation by 

sequence-based functional transfer.  
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Figure S5.3: GO-centric evaluation of the impact of taxon constraints on E. coli annotation by sequence-

based functional transfer.  
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Figure S5.4: GO-centric evaluation of the impact of taxon constraints on H. sapiens annotation by sequence-

based functional transfer. 
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S6. The origin of taxon-incompatible GO terms 

S6.1 Functional taxonomic consistency vs. alignment significance 

To investigate the potential presence of a dependency between the probability for a GO term of being 

discarded due to the application of a taxon constraint and the significance of the BLAST hit from which it is 

derived, we plotted the amount of GO terms surviving or not surviving the taxon constraints filtering and their 

corresponding e-values. The histograms (Figure S6.1) show, for the yeast proteome, the amounts of GO terms 

coming from BLAST hits that survive (kept) and do not survive (discarded) the filtering step based on taxon 

constraints. They are divided in bins of log-transformed e-values, which represent the significance of the hit. 

The bin “<= 300” contains e-values equal to zero. The results show that there is no difference in the e-value 

distributions of filtered vs. not filtered GO terms, suggesting that the significance of pairwise alignments is not 

a reliable indicator of taxon compatibility of annotations. 
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Figure S6.1: GO terms coming from BLAST hits of yeast proteins that survive (kept) and do not survive 

(discarded) the filtering step based on taxon constraints.  
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