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1.	Subjects,	Image	Acquisition,	and	Initial	Image	Preprocessing	
	
1.1	Subjects	
	

We	used	the	“HCP500”	dataset	(June,	2014	data	release)	of	adults	aged	22-35	drawn	
from	a	pool	of	twins	and	their	non-twin	siblings	((Van	Essen	et	al.,	2013);	
http://www.humanconnectome.org/documentation/S500/).			All	449	subjects	that	had	
complete	structural	(at	least	one	T1w	and	one	T2w	scan),	rfMRI	(4	runs	X	15	minutes),	and	
tfMRI	(7	tasks,	60	minutes	total)	datasets	were	included.		The	subjects	were	divided	into	
two	main	analysis	groups:	210	parcellation	subjects	(the	‘210P’	group)	and	210	validation	
subjects	(the	‘210V’	group).		Group	independence	was	preserved	by	ensuring	that	no	
families	were	split	between	the	210P	and	210V	groups	(210	subjects	per	group	was	the	
maximum	number	for	evenly	sized	complete	datasets	from	this	release	where	all	members	
of	each	family	were	assigned	to	either	one	group	or	the	other).		A	third	auxiliary	group	of	
29	subjects	(the	29T	group,	including	some	family	relationships	shared	with	the	210P	
group)	was	used	only	in	training	the	cortical	areal	classifier	as	the	initial	‘test’	dataset	to	
prevent	overfitting	of	random	noise	(see	#6.6).		Additionally,	27	of	the	449	subjects	were	
scanned	using	the	entire	HCP	MRI	acquisition	protocol	a	second	time,	reanalyzed,	and	used	
to	check	the	reproducibility	of	the	individual	subject	parcellations.		The	HCP	data	were	
acquired	using	protocols	approved	by	the	Washington	University	institutional	review	
board,	deidentified,	and	publicly	shared	on	the	ConnectomeDB	database	
(https://db.humanconnectome.org;	(Hodge	et	al.,	2015)).		
	
1.2	Image	Acquisition	
	

The	HCP	MRI	data	acquisition	has	previously	been	described	in	detail	((Glasser	et	
al.,	2013;	Smith	et	al.,	2013a;	Ugurbil	et	al.,	2013);	
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http://www.humanconnectome.org/documentation/S500/HCP_S500+MEG2_Release_App
endix_I.pdf).		Images	were	acquired	using	a	customized	3T	Siemens	‘Connectom’	Skyra	
having	a	100mT/m	SC72	gradient	insert	and	using	a	standard	Siemens	32-channel	RF-
receive	head	coil.		At	least	one	good	quality	3D	T1w	MPRAGE	image	(as	assessed	by	a	
trained	rater,	(Marcus	et	al.,	2013))	was	acquired	at	0.7	mm	isotropic	resolution.		At	least	
one	good	quality	3D	T2w	SPACE	image	was	also	acquired	at	0.7	mm	isotropic	resolution	in	
the	same	session	as	the	T1w	image.		Whole	brain	rfMRI	and	tfMRI	data	were	acquired	using	
identical	multi-band	EPI	sequence	parameters	of	2	mm	isotropic	resolution	with	a	TR=720	
ms.		Field	maps	were	acquired	during	both	the	structural	and	fMRI	scanning	sessions	to	
enable	accurate	cross-modal	registrations	of	the	T2w	and	fMRI	images	to	the	T1w	image	in	
each	subject.		Additionally,	the	spin	echo	phase	reversed	images	acquired	during	the	fMRI	
session	(with	matched	geometry	and	echo	spacing	to	the	gradient	echo	fMRI	data)	were	
used	to	compute	a	more	accurate	fMRI	bias	field	correction	and	to	segment	regions	of	
gradient	echo	signal	loss.			
	
1.3	Data	analysis	software		
	
	 Data	were	analyzed	using	the	publicly	released	HCP	pipelines	(Glasser	et	al.,	2013),	
plus	additional	pipelines	for	cross-subject	registration	and	individual	subject	parcellation	
that	have	been	or	will	soon	be	released.		The	software	packages	used	for	analysis	included	
Connectome	Workbench	commandline	tools,	FSL,	and	FreeSurfer	(Fischl,	2012;	Jenkinson	
et	al.,	2012).	Pipelines	were	written	in	Bash	shell	scripts	and	Matlab	
(https://github.com/Washington-University/Pipelines).			Connectome	Workbench	
‘wb_view’	GUI	(http://www.humanconnectome.org/software/connectome-
workbench.html)	was	used	for	all	visualization	and	for	some	interactive	data	analysis.		All	
neuroanatomical	(brain-related)	figures	for	this	study	were	generated	in	Connectome	
Workbench	using	the	Tile	Tabs	(to	make	multiple	figure	panels)	and	Annotations	(to	label	
panels,	areas,	and	features)	capabilities	and	were	directly	exported	as	PNG	image	files,	
bypassing	the	need	for	image	editing	software	(these	tools	are	available	in	Connectome	
Workbench	version	1.2.0	or	higher).		More	importantly,	these	figures	were	also	saved	as	
Connectome	Workbench	“scene”	files,	to	allow	anyone	who	downloads	the	scene	and	
associated	data	files	to	reproduce	an	interactive	version	of	each	figure	in	Connectome	
Workbench	for	further	exploration	of	the	data	and	comparison	to	their	own	data.		The	
scene	files	and	associated	data	files	are	available	in	the	BALSA	database	(Brain	Analysis	
Library	of	Spatial	maps	and	Atlases)	((Van	Essen	et	al.,	2016);	http://balsa.wustl.edu)	to	
facilitate	comparisons	across	studies	and	with	future	data,	and	they	are	directly	accessible	
via	URLs	in	the	relevant	figure	legends.			
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Figure	1	shows	the	overall	workflow	of	the	paper.			After	initial	spatial	and	temporal	preprocessing	and	
areal-feature-based	registration,	the	data	were	divided	into	groups,	and	group	average	datasets	were	
produced.		The	210P	group	dataset	was	used	for	semi-automated	multi-modal	gradient-based	parcellation.		
This	parcellation	was	cross-validated	using	the	210V	individual	subject	datasets.		The	210P	individual	
datasets	were	used	for	training	of	the	multi-modal	areal	fingerprint-based	individual	subject	areal	classifier,	
along	with	the	29T	test	dataset.		The	210P	and	210V	datasets	were	parcellated	by	applying	the	trained	
classifier	to	their	individual	subject	data,	and	group	maximum	probability	parcellations	were	generated.		In	
this	and	analogous	figures,	datasets	are	light	blue	and	processes	are	light	green.	
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1.4	Overview	of	data	analysis	methods	
	

Many	methods	were	developed	de	novo	or	were	improved	upon	to	produce	a	high	
quality	multi-modal	parcellation	at	the	group	level	and	to	use	this	parcellation	to	identify	
individual	subject	cortical	areas.		Methods	described	in	previous	HCP-related	publications	
are	only	summarized	briefly	here,	whereas	new	or	substantially	improved	methods	are	
described	in	more	detail.		Figure	1	provides	an	overview	of	the	major	processing	
steps/stages	that	are	described	in	subsequent	sections.		The	minimally	preprocessed	
(Glasser	et	al.,	2013)	data	were	downloaded	from	ConnectomeDB,	and	MSMAll	areal-
feature-based	surface	registration	was	performed	on	449	subjects.		The	multi-modal	data	
were	then	split	into	parcellation	and	validation	groups	of	210	subjects	each,	and	group	
averages	were	created.		The	210P	subjects’	group	average	data	were	used	to	generate	a	
multi-modal	gradient-based	parcellation,	and	their	individual	data	were	used	together	with	
29	additional	test	subjects	to	train	a	machine	learning	classifier	to	delineate	and	identify	
cortical	areas	in	individual	subjects	using	their	multi-modal	areal	fingerprints.			This	
trained	classifier	was	applied	to	the	210P	and	210V	datasets	to	generate	individual	subject	
parcellations	and	group	maximum	probability	maps.		The	210V	dataset	was	used	for	
statistical	cross-validation	of	the	210P-based	original	parcellation.			
	
1.5	Initial	Preprocessing:	Structural			
	

The	HCP	structural	preprocessing	pipelines	(Glasser	et	al.,	2013)	include	
PreFreeSurfer,	FreeSurfer,	and	PostFreeSurfer	components	and	were	run	inside	
ConnectomeDB	for	the	500-subject	HCP	release.		The	PreFreeSurfer	pipeline	includes:	(i)	
aligning	and	averaging	repeated	T1w	and	T2w	scans	of	good	or	excellent	quality	when	they	
exist;	(ii)	removing	gradient	nonlinearity	and	readout	distortion	(b0	distortion	in	3D	
images)	to	create	an	unbiased	“native”	volume	space	for	each	subject	that	is	rigidly	aligned	
to	the	MNI	template;	(iii)	cross-modal	alignment	between	the	T1w	and	T2w	images	with	
FreeSurfer’s	boundary	based	registration	(BBR)	method	(Greve	and	Fischl,	2009);	(iv)	bias	
field	correction	using	sqrt(T1w	X	T2w);	and	(v)	nonlinear	volume-based	registration	to	the	
MNI	template	using	FSL’s	FNIRT	algorithm.		A	customized	version	of	Freesurfer	version	
5.3’s	recon-all	was	used	to	generate	white	and	pial	cortical	surfaces	(using	both	T1w	and	
T2w	volumes	at	0.7	mm	resolution)	plus	a	subcortical	segmentation,	all	carried	out	in	the	
subjects’	native	volume	space.		PostFreeSurfer	converted	the	FreeSurfer	data	into	standard	
NIFTI,	GIFTI,	and	CIFTI	file	formats	and	also	brought	the	data	into	MNI	space.			
	 The	Multimodal	Surface	Matching	(MSM)	surface	registration	algorithm	(Robinson	
et	al.,	2014)	was	used	to	perform	an	initial	gentle	non-rigid	surface	registration	based	on	
folding	patterns	(MSMSulc).		This	supplanted	the	FreeSurfer	folding-based	registration	
previously	used	(Glasser	et	al.,	2013),	because	it	achieved	slightly	better	initial	alignment	of	
functionally	corresponding	regions	(e.g.,	task	fMRI)	than	Freesurfer’s	algorithm	while	
inducing	much	lower	local	distortions	(Robinson	et	al.,	2014).		This	registration,	together	
with	the	FNIRT	nonlinear	registration,	was	used	to	bring	an	initial	version	of	the	data	into	
standard	grayordinates	space	(32k	standard	mesh	for	each	hemisphere’s	cortical	surface	at	
2	mm	average	vertex	spacing	and	2	mm	isotropic	MNI-space	voxels	for	the	subcortical	
volume	data).		Myelin	maps	were	computed	using	the	ratio	of	T1w/T2w	images	and	
normalized	for	residual	transmit	field	inhomogeneity	(Glasser	et	al.,	2014a;	Glasser	et	al.,	
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2013;	Glasser	and	Van	Essen,	2011;	Robinson	et	al.,	2014).		Because	gyral	crowns	tend	to	
be	thicker	than	sulcal	fundi,	the	FreeSurfer-generated	measure	of	cortical	thickness	was	
corrected	for	folding-related	biases	by	regressing	out	the	FreeSurfer	mean	curvature	
measure	from	each	subjects’	thickness	data	(Glasser	and	Van	Essen,	2011).			
	
1.6	Initial	Preprocessing:	Functional			
	

The	HCP	functional	preprocessing	pipelines	include	volumetric	(fMRIVolume)	and	
surface-based	(fMRISurface)	components	(Glasser	et	al.,	2013;	Smith	et	al.,	2013a)	applied	
to	both	rfMRI	and	tfMRI	data.		The	fMRIVolume	pipeline	includes	removing	image	
distortions	due	to	gradient	nonlinearity	and	b0	inhomogeneity;	motion	correction;	cross	
modal	alignment	to	the	T1w	image	with	BBR	(Greve	and	Fischl,	2009);	concatenation	of	all	
transforms,	including	the	nonlinear	volume	registration	to	MNI	space;	and	resampling	the	
original	timeseries	into	MNI	space	using	a	single	spline	interpolation.			Several	intensity	
normalization	steps	occur,	including	a	crude	fMRI	bias	field	correction	based	on	the	
structural	data	from	a	separate	imaging	session	(this	bias	field	correction	is	replaced	with	a	
better	one	in	later	processing	as	described	below,	which	has	also	been	incorporated	into	
the	latest	version	of	the	pipelines),	and	grand	4D	mean	normalization	to	10,000.		The	
fMRISurface	pipeline	was	then	used	to	map	grey	matter	timeseries	data	into	the	91282-
grayordinate	standard	space	(2	mm	average	cortical	vertex	spacing	and	2	mm	subcortical	
voxels)	using	a	2	mm	FWHM	smoothing	kernel	(constrained	to	the	cortical	surface	and	
subcortical	grey	matter	segmentation).		These	steps	produce	a	CIFTI	“dense	timeseries”	file	
for	each	rfMRI	and	tfMRI	run.		The	crude	bias	field	correction	map	was	also	mapped	into	
standard	CIFTI	space	so	that	it	could	be	replaced	with	the	better	one	(by	dividing	it	back	
out	and	multiplying	by	the	new	correction).			
	
1.7	Initial	Preprocessing:	Resting	State	fMRI	Temporal	Denoising			
	

For	rfMRI	runs,	the	ICA+FIX	pipeline	(Beckmann	et	al.,	2005;	Griffanti	et	al.,	2014;	
Salimi-Khorshidi	et	al.,	2014;	Smith	et	al.,	2013a)	was	used	to	remove	spatially	specific	
temporally	structured	artifacts.		ICA+FIX	includes	several	steps:	1)	highpass	temporal	
filtering	with	a	sigma	of	1,000	s	(run	length	=	864	s)	to	remove	linear	trends	in	the	data;	2)	
MELODIC	independent	component	analysis	(ICA)	with	auto	dimensionality	selection	up	to	
250	components,	producing	component	spatial	maps	and	timeseries;	3)	classification	of	
these	components	into	signal	and	noise	categories	by	the	FMRIB's	ICA-based	Xnoiseifier	
(FIX)	trained	ICA	component	classifier;	4)	regression	out	of	the	data	and	all	ICA	
components	of	24	motion	parameters	(which	were	also	temporal	highpass	filtered	with	
sigma	of	1,000	s).		Regression	coefficients	were	computed	using	all	ICA	component	
timeseries,	and	the	noise	component	timeseries	were	then	weighted	by	the	regression	
coefficients	and	subtracted	from	the	data	(a	“non-aggressive”	regression	approach).		The	
ICA+FIX	algorithms	were	run	on	the	volumetric	timeseries	data,	then	the	highpass	filter	
and	the	nuisance	regression	steps	were	also	applied	to	the	grayordinates	timeseries	data.		
The	ICA+FIX	cleanup	was	reapplied	to	the	rfMRI	dense	timeseries	data	after	the	original	
uncleaned	native	mesh	data	had	been	resampled	into	the	standard	grayordinates	space	
according	the	areal-feature-based	MSM	surface	registration	(see	below	#2.5).		Regression	
of	the	mean	gray	signal	(aka	‘global	signal’)	was	used	in	early	analyses,	but	it	was	
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discontinued	because	it	shifted	some	rfMRI	functional	connectivity	(FC)	gradient	locations	
in	ways	that	reduced	cross-modal	alignment.		No	additional	spatial	smoothing	or	temporal	
lowpass	filtering	was	performed,	as	these	types	of	“lossy”	preprocessing	steps	would	
reduce	the	accuracy	of	the	parcellations	and	proved	unnecessary	for	the	purposes	of	the	
current	study.	
	
1.8	Initial	Preprocessing:	Task	fMRI	Analysis			
	

For	task	fMRI	runs,	the	HCP’s	task	analysis	pipeline	was	run	to	generate	
grayordinate-based	task	analyses	(Barch	et	al.,	2013).		This	pipeline	is	an	adaption	of	FSL’s	
FEAT	analysis	pipeline	(Smith	et	al.,	2004)	to	CIFTI	grayordinate	space.		A	temporal	
highpass	filter	with	a	sigma	of	100	s	was	run	on	the	data	to	remove	low	frequency	
fluctuations	presumably	unrelated	to	the	task	design.		These	fluctuations	likely	include	
both	temporal	artifacts	and	the	spontaneous	intrinsic	BOLD	fluctuations	that	are	the	focus	
of	rfMRI	analyses.		As	with	the	rfMRI	preprocessing,	no	additional	spatial	smoothing	or	
temporal	lowpass	filtering	was	performed.		FSL’s	FILM	algorithm	was	used	to	compute	the	
first	level	(single	run)	task	fMRI	statistics	(including	temporal	autocorrelation	smoothing	
constrained	to	the	cortical	surface	and	subcortical	parcels),	and	FSL’s	FLAME	algorithm	
was	used	in	a	fixed	effects	analysis	to	combine	across	runs	within	subjects.		The	tfMRI	
analysis	pipeline	was	run	after	the	tfMRI	timeseries	data	had	been	resampled	into	the	
standard	grayordinates	space	using	areal-feature-based	MSM	surface	registration	(as	
explained	in	the	MSMAll	section	below,	see	also	Figure	10	and	sections	#3.2	and	#6.4	
below	for	a	full	description	of	the	task	fMRI	processing	used	in	this	paper).			
	
1.9	Initial	Preprocessing:	Artifact	Map	Generation			
	

Three	maps	were	generated	for	use	as	artifact	indicators:	a	large	vessel	effect	map,	a	
gradient	echo	fMRI	dropout	map,	and	a	curvature	map.		In	addition	to	generating	the	
myelin	maps,	the	T1w/T2w	ratio	images	were	also	used	to	estimate	the	effect	of	large	
blood	vessels	on	the	fMRI	data.		Blood	vessels	have	a	much	higher	T1w/T2w	ratio	than	
brain	tissue	and	were	segmented	via	thresholding	normalized	to	the	mean	and	standard	
deviation	of	the	T1w/T2w	image.		This	segmentation	was	regularized	(dilated	and	eroded	
equal	amounts,	and	above	threshold	values	not	near	the	boundary	of	the	brain	parenchyma	
were	removed),	slightly	dilated,	and	smoothed	using	a	2	mm	FWHM	volume	smoothing	
kernel	to	account	for	proximity	effects	of	blood	vessels.		The	gradient	echo	fMRI	dropout	
map	was	created	by	identifying	voxels	having	a	ratio	of	less	than	50%	signal	intensity	in	the	
single	band	reference	(SBRef)	gradient	echo	image	relative	to	the	spin	echo	image	after	
using	a	spatial	highpass	filter	of	sigma=5	mm	(smooth,	then	subtract	from	the	unsmoothed	
data)	to	reduce	residual	low	spatial	frequency	variation	in	the	ratio	image	(related	to	the	
differences	in	the	transmit	field	between	the	two	images).		This	dropout	segmentation	was	
dilated	one	0.7	mm	voxel	and	smoothed	at	2	mm	FWHM	in	the	volume.		After	removing	
transmit	field	effects	and	excluding	dropout	regions,	the	low	spatial	frequency	intensity	
variations	(sigma=5	mm)	within	grey	matter	were	used	to	compute	a	more	accurate,	
smoother	receive	bias	field	for	the	fMRI	data.		This	field	was	also	scaled	to	a	volume	mean	
of	10,000,	just	like	the	fMRI	timeseries	data	were	scaled	by	the	HCP	minimal	preprocessing	
pipelines.		The	scaled	field	was	used	as	a	reference	BOLD	intensity	image	when	computing	
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bias	free	beta	effect	size	maps	(after	having	reverted	the	previous	bias	field	correction).		
The	vascular	effect	maps,	dropout	maps,	and	the	reference	images	were	mapped	into	the	
standard	CIFTI	grayordinates	space.		The	curvature	maps	were	taken	directly	from	
FreeSurfer	and	mapped	into	the	standard	CIFTI	grayordinates	surface	space.			
	
2.	Multi-modal	Areal-feature-based	Surface	Registration	(“MSMAll”)	
	

Achieving	good	intersubject	cortical	alignment	was	critical	to	our	group	average	
gradient-based	parcellation	efforts.		This	entailed	major	refinements	to	the	recently	
published	MSM	approach	(Robinson	et	al.,	2014).		The	following	sections	describe	(i)	the	
motivation	for	areal	feature-based	cortical	surface	registration;	(ii)	a	novel	method	of	
weighted	regression	to	generate	more	individualized	and	refined	RSN	maps	in	individual	
subjects	by	upweighting	the	most	aligned	regions;	(iii)	details	on	the	implementation	of	the	
MSMAll	method;	(iv)	“de-drifting”	used	to	minimize	registration-induced	biases	in	group-
average	datasets;	and	(v)	the	final	one-step	resampling	of	the	data	from	the	subjects’	native	
meshes	to	their	standard	32k	meshes.		Our	overall	approach	to	surface	registration	is	
illustrated	in	Figure	2.	
	
2.1	Motivation			
	

The	boundaries	of	cortical	areas	are	correlated	with	cortical	folding	patterns,	but	
the	strength	of	this	correlation	is	variable	across	the	cerebral	cortex.		Early	areas	such	as	
V1	in	the	calcarine	sulcus	and	areas	4,	3a,	and	3b	in	the	central	sulcus	have	particularly	
high	correlations	with	folding	patterns	(Fischl	et	al.,	2008).		Association	areas	implicated	in	
‘higher’	levels	of	processing,	e.g.	areas	44	and	45	in	the	inferior	frontal	gyrus,	often	have	
substantially	lower	correlations	with	folding	patterns	(Fischl	et	al.,	2008).		Moreover,	the	
folding	patterns	themselves	do	not	necessarily	have	one-to-one	correspondence	across	
subjects	in	these	higher	association	regions	(Van	Essen,	2005;	Van	Essen	et	al.,	2012).		To	
improve	the	alignment	of	cortical	areas	across	subjects	and	thus	the	validity	of	our	group	
average	analyses,	we	used	MSM	(Robinson	et	al.,	2014)	to	perform	registration	based	on	
areal	features.		Registration	using	myelin	and	Resting	State	Network	(RSN)	maps	can	
improve	the	cross-subject	alignment	of	independent	tfMRI	datasets	(Robinson	et	al.,	2014),	
while	at	the	same	time	decreasing	the	cross-subject	alignment	of	cortical	folding	patterns	
that	do	not	correlate	with	cortical	areal	locations.			
	
2.2	General	approach	to	MSMAll	
	

The	MSMSulc	folding-based	surface	registration	from	the	HCP	minimal	
preprocessing	pipelines	(in	PostFreeSurfer,	see	above	#1.5)	was	used	to	initialize	the	areal	
feature-based	registration	(MSMAll).		MSMAll	used	myelin	maps,	RSN	maps,	and	rfMRI	
visuotopic	maps	(see	below	#4.4)	in	a	joint	multi-modal	registration	to	drive	cross-subject	
alignment.		Because	there	is	no	temporal	correspondence	across	subjects	in	the	rfMRI	
timeseries,	the	only	corresponding	rfMRI	subject-wise	dataset	(i.e.	without	reference	to	
group	data)	is	the	rfMRI	FC	“dense	connectome”	(91,282	X	91,282	X	4	bytes	=	32.5GB).		
This	dense	connectome	is	not	suitable	for	driving	the	registration	process,	however,	
because	of	its	sheer	size	and	the	fact	that	it	contains	an	enormous	amount	of	redundant	
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information	plus	unstructured	noise,	neither	of	which	are	useful	for	registration1.		What	is	
needed	instead	is	a	dimensionality	reduction	of	the	dense	connectome	across	individual	
subjects	in	which	the	data	remains	matched	across	subjects.		We	used	Group	ICA	along	with	
spatial	multiple	regression	to	produce	RSN	template	maps	and	their	corresponding	
individual	subject	maps	for	this	purpose.			

To	generate	the	RSN	template	maps	needed	to	initiate	the	process,	melodic	group	
ICA	(Beckmann	et	al.,	2005;	Beckmann	and	Smith,	2004;	Smith	et	al.,	2014)	was	performed	
in	CIFTI	grayordinates	space	(Smith	et	al.,	2013a;	Smith	et	al.,	2013b)	using	resting	state	
data	from	the	210P	group	that	had	previously	been	registered	with	MSMRSN	(Robinson	et	
al.,	2014)	across	a	range	of	ICA	dimensionalities	(d	=	22	to	100,	sparsely	sampled,	and	then	
searched	using	binary	search	to	identify	the	optimal	dimensionality).		Thus	the	RSN	
templates	that	served	as	the	input	to	this	process	were	generated	from	the	data	presented	
in	(Robinson	et	al.,	2014)	after	removing	the	group	average	registration	drift	(see	below	
#2.5	and	(Abdollahi	et	al.,	2014).		We	used	two	metrics	to	estimate	the	optimal	group	ICA	
dimensionality	in	a	28-subject	“registration	optimization”	subset	of	the	210P+29T	subject	
groups.		(i)	An	analysis	of	tfMRI	z-statistic	cluster	mass	(thresholded	at	+/-z=2.32)	using	a	
group	mixed	effects	analysis	(Robinson	et	al.,	2014)	yielded	a	broad	peak	of	similar	tfMRI	
cluster	mass	values	over	the	range	of	33-42	components.		(ii)	An	analysis	of	average	
cortical	surface	vertex-associated	areal	distortion	showed	a	monotonic	decrease	in	surface	
areal	distortion	(averaged	across	the	hemisphere)	when	registering	using	higher	numbers	
of	components.		Consequently,	a	group	ICA	dimensionality	of	41	was	used	for	the	MSMAll	
registration,	as	this	dimensionality	was	the	local	maximum	in	cluster	mass	that	had	the	
least	areal	distortion.2		This	included	three	artifactual	components	and	four	predominantly	
subcortical	components,	which	were	excluded	from	the	cortical	surface	registration	but	
were	included	in	the	multiple	regression	model	that	was	used	to	generate	the	individual	
subject	RSN	component	maps	(see	below	#2.4).		
	
	

	

																																																								
1Though	see	below	(#3.3-3.4)	for	a	method	that	downweights	the	effects	of	unstructured	noise	in	dense	
connectomes	without	spatial	or	temporal	smoothing	
2In	the	ConnectomeDB	version	of	the	MSMAll	Pipeline	that	was	used	for	the	900	subject	HCP	data	release,	this	
process	was	reapplied	using	the	registration	templates	generated	from	this	study’s	data,	and	a	dimensionality	
of	40	was	found	to	be	optimal.	
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Figure	2,	above,	shows	the	overall	approach	to	surface	registration	used	in	this	study.		First,	MSMSulc	was	
used	to	perform	an	initial	gentle	non-rigid	folding-based	registration	of	the	native	mesh	data.		Then	myelin	
maps	and	resting	state	network	maps	(using	weighted	regression,	see	below	#2.3)	were	generated.		The	first	
round	of	MSMAll	used	these	maps	in	a	joint	multi-modal	registration	for	only	the	lowest	mesh	resolution	in	
order	to	get	both	hemispheres	roughly	aligned	based	on	areal	features.		Then	myelin	maps,	resting	state	
network	maps	(using	weighted	regression	based	on	the	rough	alignment)	and	topographic	maps	were	
generated	based	on	this	alignment.		The	second	round	of	MSMAll	uses	these	maps	in	a	joint	multi-modal	
registration	for	all	three	mesh	resolutions	(see	below	#2.4)	to	get	each	hemisphere	finely	aligned	by	areal	
features.		Registration	drift	is	computed	by	averaging	all	of	the	individual	subject	registrations	relative	to	
MSMSulc—any	group	average	registration	effect	is	considered	drift.	The	combined	registration,	
MSMAll_DeDrift,	is	used	to	resample	all	datasets	from	the	native	mesh	into	the	standard	grayordinates	space	
with	a	single	interpolation	step,	and	then	the	ICA+FIX	cleanup	is	reapplied	to	the	resampled	dense	timeseries	
(TS).			
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	3,	below,	shows	the	steps	of	the	Weighted	Regression	method	used	in	this	study	and	compares	it	to	
the	standard	dual	regression	steps	(shown	in	BOLD).		In	the	weighted	regression	method,	the	vertex	area	
weighting	maps	are	always	used	to	weight	the	spatial	multiple	regressions.		An	alignment	weighting	map	is	
derived	from	low	dimensional	ICA	maps	(d=7-21)	by	correlating	the	individual	subject	maps	with	the	group	
maps,	averaging	across	dimensionalities,	and	spatial	highpass	filtering	(medium	grey	box).		The	first	round	of	
weighted	regression	uses	both	the	vertex	area	map	and	the	alignment	map	together	to	weight	the	spatial	
multiple	regression	of	the	high	dimensional	group	ICA	spatial	maps	to	produce	initial	subject	specific	spatial	
maps	(lightest	grey	box).		The	second	round	uses	only	the	vertex	area	map	to	weight	the	first	round	initial	
individual	subject	spatial	maps	to	produce	the	refined	individual	subject	spatial	maps	(darkest	grey	box).		
These	spatial	maps	can	then	be	used	for	registration	or	areal	classification.		Note	that	to	produce	the	
visuotopic	maps	(not	shown	in	diagram),	a	single	round	of	weighted	regression	equivalent	to	the	second	
round	is	used	(where	the	subject	specific	V1-only	spatial	regressors	take	the	place	of	the	subject	specific	ICA	
spatial	maps	from	the	first	round).			
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2.3	Weighted	Regression	for	Generating	Refined	Individual	Subject	RSN	Maps	from	Group	
Maps			
	

To	generate	refined	individual	subject	RSN	component	maps	for	registration	and	
areal	classification,	we	implemented	a	Weighted	spatial	multiple	Regression	(WR)	
technique,	see	Figure	3.		The	technique	is	adapted	from	standard	dual	regression	(DR)	
(Filippini	et	al.,	2009)	which	seeks	to	use	spatial	overlap	between	the	group	and	individual	
to	find	individualized	versions	of	the	group	maps	and	has	two	main	stages	(see	BOLD	
portions	of	Figure	3):		(i)	subject-specific	component	timecourses	are	generated	by	spatial	
regression	of	the	group	component	spatial	maps	onto	the	individual	dense	timeseries,	
equation	(2)	below,	then	(ii)	subject-specific	component	spatial	maps	are	generated	by	a	
temporal	regression	of	these	timecourses	onto	the	individual	dense	timeseries,	equation	
(4).		Mathematically,	we	can	consider	the	variables:	Y	=	data	(grayordinates	X	timepoints),	
X	=	group	model	(grayordinates	X	maps),	T	=	parameter	estimates	(maps	X	timepoints),	
and	x	=	individual	maps	(grayordinates	X	maps).	To	find	the	subject	specific	component	
timeseries,	one	can	use	the	following	equations:	
	
Y	=	XT		 	 	 	 	 	 	 	 	 	 	 (1)	
	
T=pinv(X)Y	 	 	 	 	 	 	 	 	 	 	 (2)	
	
Where	‘pinv’	is	the	pseudoinverse.	 To	find	the	subject	specific	component	spatial	maps,	
one	can	use	the	following	equations:	
	
Y'	=	T'	x'	 	 	 	 	 	 	 	 	 	 	 (3)	
	
x'	=	pinv(T')Y'	 	 	 	 	 	 	 	 	 	 (4)	
	
Where	the	prime	(‘)	represents	the	transpose.	
	

However,	we	improved	this	procedure	substantially	by	incorporating	a	spatial	
weighting	map	in	the	spatial	regression	and	by	running	a	second	round	of	spatial	and	
temporal	regression	based	on	the	results	of	the	first	round	(i.e.,	2	spatial	and	2	temporal	
regressions	total).		The	individual	subject	dense	timeseries	used	for	the	weighted	
regression	were	first	demeaned	(removing	the	mean	of	each	grayordinate’s	timeseries)	and	
variance	normalized	to	equalize	unstructured	noise	variance	(see	below	#3.3	for	the	
method	of	computing	the	unstructured	noise	variance	map),	and	then	concatenated	across	
all	four	runs	(4800	timepoints/subject).			

The	spatial	weighting	map	used	in	WR	is	the	elementwise	product	of	two	separate	
maps:	1)	a	“Vertex	Area	Map”	map,	and	2)	an	“Alignment	Map.”		The	vertex	area	map	
represents	the	vertex	areas	of	the	individual	subject’s	midthickness	surface	resampled	onto	
the	standard	32k	mesh	in	native	volume	space.		It	compensates	for	three	sources	of	
distortion	in	surface	vertex	area	between	the	native	midthickness	surface	in	the	subject’s	
physical	space	and	the	32k	standard	MNI	space	midthickness	surface.		These	arise	from	(i)	
the	non-rigid	volume	registration	to	MNI	space,	(ii)	projection	of	the	anatomical	surface	to	



	 12	

a	sphere,	and	(iii)	registration	of	the	individual	spherical	surface	to	the	atlas	spherical	
surface.		Correcting	for	these	distortions	is	important	because	vertex	areas	(which	are	
homogeneous	on	standard	spherical	surfaces)	vary	over	a	two-fold	range	(~3±1	mm2)	
when	measured	on	each	subject’s	32k	standard	mesh	cortical	midthickness.			

The	“Alignment	Map”	map	upweights	regions	likely	to	be	already	well	aligned	to	the	
group	in	the	individual	subject	and	downweights	misaligned	regions.		This	is	important	
because	misalignments	contribute	adversely	to	the	individual	subject	component	
timeseries	and	spatial	maps	that	are	generated	by	DR,	insofar	as	they	cause	mixing	among	
different	resting	state	networks	(and	cortical	areas).		This	can	cause	the	resultant	DR	
individual	subject	spatial	maps	to	be	less	“individualized”	than	the	true	individual	subject	
spatial	maps	(i.e.	more	like	the	group	maps	than	they	should	be).		The	problem	gets	worse	
as	the	dimensionality	of	the	ICA	being	used	in	the	DR	increases	because	there	is	less	
information	available	to	estimate	each	unique	component	timeseries	and	spatial	map.	

To	generate	the	Alignment	Map	(Figure	3,	left	column),	we	used	weighted	dual	
regressions	(weighted	only	by	the	Vertex	Area	Map)	of	low	ICA	dimensionalities.		
Grayordinates	that	are	already	well	aligned	between	the	individual	and	group	will,	by	
definition,	have	individual	subject	component	spatial	map	values	that	are	strongly	
correlated	to	the	group	map	values,	whereas	misaligned	regions	will	have	weaker	
correlations.		Hence,	to	measure	alignment	quality	we	correlated	the	values	of	the	group	
component	maps	to	the	values	of	the	individual	subject	component	maps,	generating	a	
spatial	map	of	Fisher-transformed	group	versus	individual	component	correlations	for	
each	low	ICA	dimensionality.		Dimensionalities	between	7	to	21	components	yielded	the	
most	consistent	results	when	tested	in	a	pilot	analysis,	so	we	averaged	the	correlation	
maps	across	these	dimensionalities.		Undesirable	low	spatial	frequency	SNR	differences	
were	removed	by	applying	a	spatial	highpass	filter	with	sigma=14mm.			

After	generation	of	the	Alignment	Map,	the	WR	algorithm	includes	two	rounds	of	
weighted	regression,	as	follows	(Figure	3,	right	column):		Round	1a)	individual	subject	
timecourses	for	each	component	were	generated	by	spatial	multiple	regression	of	the	
group	component	maps	into	the	individual	subject	dense	timeseries,	weighted	according	to	
the	element-wise	product	of	the	Vertex	Area	Map	and	the	Alignment	Map.		Round	1b)	these	
individual	subject	component	timecourses	were	then	temporally	multiple	regressed	into	
the	individual	subject	dense	timeseries	to	produce	the	initial	individual	subject	component	
spatial	maps.		Round	2a)	these	inital	individual	subject	component	spatial	maps	were	
spatially	multiple	regressed	into	the	individual	subject	dense	timeseries,	weighted	this	time	
only	by	the	Vertex	Area	Map,	to	produce	a	refined	set	individual	subject	component	
timecourses.		Round	2b)	these	refined	individual	subject	component	timecourses	were	
temporally	multiple	regressed	into	the	individual	subject	dense	timeseries	to	generate	a	
refined	set	of	individual	subject	component	spatial	maps.		The	weighted	form	of	the	spatial	
regression	looks	like	equation	(5).		(W=spatial	weights,	grayordinates	X	1,		.*	is	the	
elementwise	product	repeated	to	match	the	dimensions	of	X	and	Y,	the	square	root	is	
elementwise).	
	
T=pinv(X.*√W)(Y.*√W)	 	 	 	 	 	 	 	 	 (5)	

	
This	second	round	of	regressions	helped	to	refine	the	resultant	spatial	maps	so	that	

they	more	closely	reflect	the	individual	spatial	variation	of	the	subject’s	resting	state	data,	
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and	allowed	the	entire	individual	subject’s	dataset	(i.e.	without	the	Alignment	Map	
weighting)	to	contribute	to	the	spatial	regression	when	producing	the	final	refined	
individual	subject	component	spatial	maps.		The	resulting	individual	subject	component	
spatial	maps	were	then	used	in	the	MSMAll	registration	or	areal	classification.		In	practice	
we	found	that	this	WR	approach	substantially	improved	the	ability	of	our	classifier	to	
delineate	and	identify	misaligned	cortical	areas	(see	#6.3).		It	also	had	the	benefit	of	
increasing	the	optimal	MSM	ICA	dimensionality	(41	vs	the	original	26)	and	requiring	fewer	
registration	iterations	to	reach	convergence	(2	iterations	of	MSM	and	WR	vs	the	original	6	
iterations	of	MSM	and	DR	(Robinson	et	al.,	2014)).			

	
2.4	Implementation	of	Multi-modal	Areal	Feature-based	Surface	Registration	Using	MSM			
	

Of	the	41	component	maps,	four	were	excluded	because	they	were	predominantly	
subcortical,	and	an	additional	three	were	excluded	because	they	were	dominated	by	
obvious	spatial	artifacts,	leaving	34	well-defined	cortical	surface	RSN	component	maps.			
The	following	44	maps	were	jointly	used	in	the	final	iteration	of	MSMAll:	34	RSNs,	the	
subject’s	myelin	map,	eight	V1-based	rfMRI	visotopic	regressor	maps	(see	below	#4.4),	and	
a	binary	non-cortical	medial	wall	ROI	(i.e.	the	region	of	the	surface	mesh	that	does	not	
contain	neocortical	grey	matter).		Group	versions	of	all	these	maps	served	as	the	multi-
modal	registration	target.		tfMRI	contrast	maps	were	not	used	because	(i)	it	was	useful	to	
preserve	an	independent	dataset	with	which	to	evaluate	whether	the	registration	was	
objectively	improving	areal	feature	alignment	(e.g.	to	check	the	aforementioned	optimal	
RSN	dimensionality	for	registration)	and	(ii)	the	individual	subject	task	contrast	maps	have	
less	useful	contrast	to	noise	(CNR)	per	map	than	the	individual	subject	maps	of	the	other	
modalities	as	determined	by	the	classifier	(see	Supplementary	Figure	12	in	the	SRD)3.	
	 For	surface-based	registration	of	spherical	surfaces,	we	used	a	modified	version	of	
the	MSM	algorithm	reported	in	(Robinson	et	al.,	2014).		This	achieves	smoother	
deformations	by	penalizing	the	warps	of	each	face	of	the	spherical	mesh	(rather	than	pairs	
of	points).		As	the	method	uses	discrete	optimization,	it	utilizes	a	method	for	incorporating	
higher	order	terms,	called	Higher-order	Clique	reduction	(HOCR)	(Glocker	et	al.,	2010;	
Ishikawa,	2009,	2014).		An	exponent	of	3	was	also	used	on	the	regularizer	function	to	
nonlinearly	penalize	larger	distortions.		We	found	that	this	approach	achieved	comparable	
alignment	of	areal	features	while	significantly	reducing	distortions	of	the	surface	mesh.		
Registration	was	performed	in	a	multi-resolution	setting	in	which	registration	used	a	series	
of	low-resolution	control	point	meshes.		These	were	placed	over	the	original	mesh	and	
constrained	the	deformations	so	that	coarse	(low	frequency)	features	of	the	data	are	
aligned	first,	and	iteratively	improves	alignment	until	the	fine	details	are	brought	into	
correspondence.		We	used	three	resolution	levels	with	control	point	spacings	of	30.0	mm,	
15.1	mm,	and	7.6	mm.	Correlation	was	used	as	a	similarity	metric	to	drive	alignment	of	the	
myelin,	resting	state	network	maps,	and	resting	state	visuotopic	maps	in	a	joint	multi-
modal	registration.	

																																																								
3Thus,	if	a	substantial	amount	of	rfMRI	data	were	not	available,	tfMRI	data	would	likely	be	better	treated	as	
rfMRI	data	in	MSMAll	registration	or	areal	classification,	because	with	a	similar	number	of	timepoints	tfMRI	
data	closely	resembles	rfMRI	data	(Cole,	M.W.,	Bassett,	D.S.,	Power,	J.D.,	Braver,	T.S.,	Petersen,	S.E.,	2014.	
Intrinsic	and	task-evoked	network	architectures	of	the	human	brain.	Neuron	83,	238-251.).			



	 14	

Two	iterations	of	MSM	and	weighted	regression	were	used,	with	the	first	iteration	
performing	only	the	lowest	control	point	resolution	level	to	achieve	a	coarse	alignment.		
The	V1-based	rfMRI	visuotopic	regressors	(see	below	#4.4)	were	included	only	in	the	
second	iteration	to	align	the	fine	visuotopic	patterns.		(V1,	where	the	visuotopic	pattern	is	
defined,	is	highly	correlated	with	folding	(Fischl	et	al.,	2008)	and	should	be	well	aligned	
across	subjects	at	this	stage	of	the	registration.)		Each	map	was	normalized	to	have	a	spatial	
mean	of	zero	and	a	spatial	standard	deviation	of	1.		Other	registration	parameters	at	each	
resolution	level	included	regularization	multiplier	lambdas	of	0.01,	0.05,	0.1;	number	of	
internal	MSM	iterations	of	10,	10,	5;	and	internal	smoothing	sigmas	of	2,	2,	1	mm.		Sampling	
meshes	were	7.6	mm	spacing,	3.8	mm	spacing,	and	1.9	mm	spacing.		Data	meshes	were	3.8	
mm	spacing	and	1.9	mm	spacing.		The	final	output	of	the	registration	was	a	deformed	
native	mesh	sphere—“registered	sphere”	for	each	individual	hemisphere.		This	sphere	
contains	the	same	number	of	vertices	as	the	original	individual	subject	native	sphere	
produced	by	FreeSurfer,	but	its	vertices	have	been	moved	across	the	surface	nonlinearly	to	
maximize	alignment	with	the	multi-modal	registration	target,	so	that	like	areal	features	are	
aligned	across	subjects.			
	
2.5	DeDrifting	and	Final	Resampling		
	

The	final	registration	stage	involves	removal	of	the	group	average	registration	
“drift”,	which	is	an	undesirable	byproduct	of	repeated	registration	during	a	template	
generation	process	(Abdollahi	et	al.,	2014).		Unless	corrected,	this	drift	can	cause	
registration	template	features	to	drift	away	from	the	typical	subject	in	the	group.		As	a	
particularly	sobering	example,	while	volumetric	non-rigid	registration	to	MNI	space	greatly	
reduces	the	variability	in	individual	brain	volumes	(desirable),	it	also	induces	a	large	
expansional	drift	in	brain	volume	(undesirable)	so	that	the	group	average	brain	volume	is	
37%	larger	than	the	typical	subject’s	native	space	brain	volume	(Van	Essen	et	al.,	2012).		
For	surface	registration,	the	problem	is	not	one	of	anatomical	expansion	(because	the	
spherical	coordinates	used	in	registration	are	not	tied	to	anatomical	coordinates),	but	of	
local	drifts	in	cortical	areal	size,	shape,	and	position	that	differ	across	different	registration	
templates	and	hence	can	lead	to	inaccuracies	in	cross-study	spatial	comparisons.			

Surface-based	atlases	are	fundamentally	linked	to	standard	spheres	in	which	large	
and	consistent	brain	landmarks	(i.e.	major	cross-subject	consistent	sulci	and	gyri)	have	
particular	latitudes	and	longitudes	in	spherical	mesh	coordinates	(Drury	et	al.,	1998;	Fischl	
et	al.,	1999a;	Fischl	et	al.,	1999b;	Van	Essen,	2005).		We	used	a	coordinate	system	based	on	
the	FreeSurfer	‘fsaverage’	template	(Desikan	et	al.,	2006)	after	registration	to	a	standard	
mesh	sphere	that	accurately	aligns	geographically	corresponding	features	in	the	left	and	
right	hemispheres	(Van	Essen	et	al.,	2012).		The	high-resolution	version	of	this	mesh	has	
163,842	vertices	and	is	referred	to	as	the	‘164k_fs_LR’	mesh.		For	most	analyses	we	used	a	
lower-resolution	mesh	(32,492	vertices;	the	‘32k_fs_LR’	mesh,	with	a	2	mm	average	vertex	
spacing	on	the	midthickness	surface)	matched	to	the	2	mm	volume	resolution	of	the	HCP	
fMRI	data	(Glasser	et	al.,	2013).		Although	there	is	inherently	some	arbitrariness	in	how	
this	geographic	coordinate	system	was	initialized,	it	is	important	to	avoid	drifts	away	from	
this	geographic	convention	to	enable	the	most	precise	cross-study	spatial	localization,	even	
when	differing	areal	feature-based	registration	modalities	and	templates	are	used.		We	
used	the	following	approach	to	remove	drifts	from	our	MSMAll	registered	data.		Spheres	
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whose	coordinate	locations	represent	the	MSMAll	registration	warp	relative	to	the	gentle	
MSMSulc	folding-based	surface	alignment	were	resampled	to	the	32k_fs_LR	standard	mesh	
for	each	hemisphere	and	averaged	across	subjects.		These	average	registered	spheres	
represent	the	group	average	warp	from	the	MSMAll	registration	across	all	449	subjects.		
The	inverse	of	this	average	spherical	warp	was	applied	to	each	individual’s	registered	
sphere,	eliminating	the	group-average	drift	while	maintaining	the	subject-specific	
alignment	improvements.		Each	subjects’	registration	features	were	then	resampled	to	the	
atlas	sphere	and	averaged,	creating	the	dedrifted	registration	template	for	use	by	other	
studies.		Each	subject’s	final	registered	spheres	(one	for	each	hemisphere,	on	the	native	
mesh)	represent	the	MSMAll_DeDrift	surface	registration	(referred	to	as	the	‘MSMAll’	
registration	in	this	study’s	other	documents	and	in	the	HCP	900	subject	public	release).			

Using	the	MSMAll_DeDrift	registration,	all	data	used	for	the	parcellation	analysis	
(myelin	maps,	thickness	maps,	artifact	localization	maps,	resting	state	timeseries,	and	task	
fMRI	timeseries)	from	all	subjects	were	resampled	from	the	subjects’	original	native	
meshes	into	the	91,282	standard	grayordinates	space	using	a	single	step	of	adaptive	
barycentric	resampling	(Glasser	et	al.,	2013).		This	avoids	unnecessary	blurring	that	can	
occur	with	multiple	resampling	steps.	The	adaptive	barycentric	resampling	algorithm	
insures	that	all	native	mesh	data	contribute	when	downsampling	to	a	lower	mesh	
resolution	(~136k	native	meshes	to	32k	standard	meshes).		Additionally,	all	individual	
subject	surfaces	(e.g.,	midthickness,	white,	pial)	were	resampled	using	regular	barycentric	
interpolation,	and	Connectome	Workbench	specification	(‘spec’)	files	were	generated	for	
the	MSMAll_DeDrift	resampled	datasets.		These	resampled	datasets	were	used	for	all	
further	analyses,	including	the	following	remaining	individual	subject	preprocessing	and	
analysis	steps:	(i)	the	task	analysis	pipeline	described	above	(#1.8)	was	run;	(ii)	
reapplication	of	the	ICA+FIX	resting	state	structured	noise	removal	on	the	MSMAll_DeDrift	
registered	and	resampled	CIFTI	dense	timeseries;	and	(iii)	recalculation	of	the	myelin	map	
normalization	(see	above	#1.5),	which	relies	on	finding	very	low	spatial	frequency	
differences	between	the	individual	and	group	myelin	maps	using	surface	registration	
(Glasser	et	al.,	2013).			
	
3.	Creation	of	Group	Average	Multi-modal	Datasets	for	Parcellation	
	
3.1	Group	Average	Structural		
	

Structural	data	from	the	210-subject	parcellation	(210P)	and	validation	(210V)	
groups	was	processed	separately	as	follows.		MSMAll_DeDrift-resampled	unsmoothed	
myelin	maps	plus	thickness	maps	corrected	for	curvature	were	averaged	vertex-wise	
across	subjects	while	excluding	outliers	greater	than	3	standard	deviations	above	or	below	
the	group	mean.		Though	not	used	in	the	semi-automated	multi-modal	parcellation,	
average	maps	of	folding	patterns	(FreeSurfer	sulc	and	curv)	were	also	produced	from	
individual	subject	maps	resampled	according	to	MSMAll_DeDrift.		Group	averages	of	the	
individual	MSMAll_DeDrift-resampled	surfaces	(i.e.,	averages	of	coordinate	positions	for	
corresponding	vertices)	were	used	to	display	group	results.		

For	some	analyses	(e.g.	gradient	computation,	see	below	#4.2-4.3),	it	is	important	to	
have	reliable	group	average	measures	of	the	surface	area	associated	with	each	vertex	
derived	from	the	individual	midthickness	surfaces	(via	the	tiles	associated	with	each	
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vertex,	see	also	above	#2.3).	Vertex	areas	computed	directly	from	group	average	surfaces	
are	inherently	inaccurate	owing	to	the	blurring	effects	caused	by	averaging	folding	patterns	
that	differ	across	individuals	(see	Supplementary	Figure	1	in	the	SRD).		This	issue	arises	for	
folding-based	registration	because	there	is	not	1	to	1	correspondence	of	many	folds	across	
subjects,	and	it	is	exacerbated	when	using	alignment	based	on	areal	features,	because	areal	
features	are	imperfectly	related	to	folding	patterns	across	much	of	the	cerebral	cortex.		
Group	average	vertex	area	maps	were	computed	by	averaging	the	vertex	area	maps	of	
individual	subjects’	native	volume	space	MSMAll_DeDrift-resampled	midthickness	surfaces,	
and	were	used	in	group	computations	that	required	accurate	vertex	areas	such	as	gradients	
(see	below	#4.2-4.3).			
	
3.2	Group	Average	Task	fMRI			
	

For	the	86	task	contrasts	from	the	seven	HCP	tasks	(47	unique,	39	sign	reversed),	
cross-subject	mixed	effects	analyses	were	computed	using	FSL’s	FLAME	algorithm	
(FLAME1)	applied	to	the	individual	subject	cross-run	results.		The	excellent	intersubject	
alignment	provided	by	MSMAll	and	a	large	number	of	subjects	yields	high	z-statistic	values	
without	the	need	for	conventional	spatial	smoothing.		The	cross-subject	alignment	of	areal	
features	and	lack	of	smoothing	preserves	fine	spatial	details	in	the	group-average	maps	
(see	Supplementary	Figure	2	in	the	SRD)	and	produces	high	reproducibility	across	all	non-
outlier	contrasts	(see	Supplementary	Figure	3	in	the	SRD).		For	the	parcellation	and	areal	
classifier	we	used	the	effect	size	maps	(betas,	after	reverting	the	minimal	preprocessing	
pipelines’	bias	field	correction	and	applying	the	improved	correction	by	dividing	the	beta	
map	by	the	aforementioned	BOLD	reference	image).		We	used	effect	size	maps	because	
they	are	a	measure	of	the	task	induced	effect	itself,	rather	than	the	significance/precision	of	
the	measured	task	induced	effect.		Thus,	the	effect	size	maps	area	more	analogous	to	the	
other	maps	used	for	parcellation	(e.g.,	myelin	maps).		
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Figure	4,	above,	shows	the	resting	state	processing	and	analysis	stages	used	in	this	study	separated	into	3	
main	groups.		The	inputs	include:	the	bias	field,	the	MSMAll_DeDrift	resampled	dense	timeseries	(TCS),	the	
24-parameter	motion	timeseries,	the	ICA+FIX	noise	component	timeseries,	and	the	ICA+FIX	signal	
component	timeseries	(all	timeseries	have	been	temporally	filtered	with	a	sigma	of	1,000	s).		The	most	
important	outputs	are	identified	by	BOLD	font.		Datasets	are	in	light	blue	boxes	and	processes	are	in	light	
green	boxes.		The	first	group	(lightest	gray	background)	includes	reverting	the	bias	field	correction,	repeating	
the	ICA+FIX	cleanup	stages	(since	the	MSMAll_DeDrift	dense	timeseries	was	resampled	from	native	mesh	
timeseries	that	had	not	yet	been	cleaned),	subtracting	the	mean	of	each	grayordinate’s	timecourse,	and	
computation	of	the	first	order	variance	normalization	map	from	the	square	root	of	the	variance	of	the	
unstructured	noise	timeseries	(all	cleanup	done	and	all	RSNs	regressed	out)	and	then	division	of	the	dense	
timeseries	by	this	map,	producing	the	final	single	run	dense	timeseries.		At	this	point,	the	second	group	
(darkest	gray	background)	breaks	off	to	continue	individual	subject	processing.		The	subject’s	resting	state	
runs	are	concatenated,	and	these	data	were	used	to	produce	the	individual	subject	visuotopic	regression	
maps,	the	individual	subject	RSN	maps	(from	the	group	RSN	maps	and	weighted	regression),	and,	with	PCA	
and	Wishart	RollOff,	a	high	CNR	individual	subject	dense	functional	connectome.		Also	breaking	off	at	this	
point	is	the	third	group	(medium	gray	background),	which	enables	computationally	efficient	processing	of	the	
210P	and	210V	group	average	rfMRI	datasets.		This	module	starts	with	the	final	single	run	dense	timeseries	
and	uses	the	MIGP	PCA	algorithm	(d=4500)	to	combine	and	dimensionality	reduce	the	resting	state	data	
across	subjects.		The	output	PCA	Series	of	this	algorithm	has	residual	spatial	variation	unstructured	noise	
variance	and	requires	second	order	variance	normalization	(computed	from	the	square	root	of	the	difference	
of	the	variance	before	and	after	a	Wishart	RollOff,	see	below).		Then	PCA	is	run	again	without	dimensionality	
reduction	to	incorporate	the	spatial	reweighting	(d=4500).		Group	ICA	(d=137	for	210P;	d=130	for	210V)	is	
run	on	the	output	PCA	series	to	identify	group	level	RSNs	and	artifacts	(3	for	210P	and	1	for	210V).		The	
artifacts	are	regressed	out	of	the	data,	and	the	result	can	be	used	for	the	group	visuotopic	regression	maps.		
Finally	a	second	Wishart	RollOff	is	performed	prior	to	group	dense	functional	connectivity	matrix	generation	
(whole	brain	full	correlation	FC	and	gradients)	to	improve	the	CNR	of	the	functional	connectivity	maps	and	to	
eliminate	ringing	artifacts.			
	
3.3	Group	Average	Resting	State	fMRI	
	

A	variety	of	novel	and	advanced	methods	were	used	to	maximize	the	information	
gained	from	the	resting	state	fMRI	data,	while	minimizing	computational	requirements	and	
reducing	the	impact	of	structured	and	unstructured	noise.		Figure	4	shows	an	overview	of	
the	resting	state	processing	used	in	this	study	after	resampling	from	the	native	mesh	dense	
timeseries	into	standard	grayordinates	space	according	to	the	MSMAll_DeDrift	surface	
registration.		First,	the	bias	field	correction	is	reverted	(see	below	#4.4),	the	ICA+FIX	
temporal	cleanup	is	reapplied,	and	the	variance	normalization	described	below	is	applied	
to	make	the	cleaned,	variance	normalized	individual	run	dense	rfMRI	timeseries	(lightest	
grey	box	in	Figure	4).			

In	rfMRI	studies	involving	modest	numbers	of	subjects,	group	analyses	are	typically	
carried	out	by	temporally	concatenating	the	individual	subject	dense	timeseries	data	after	
subtracting	the	mean	of	each	grayordinate’s	timecourse	(and	perhaps	after	performing	
variance	normalization).		In	the	present	study,	a	concatenated	dense	timeseries	would	be	
prohibitively	large	(~342GB,	based	on	210	subjects	X	4800	timepoints	=	1,008,000	total	
timepoints	X	91282	grayordinates	X	4	floating	point	bytes).		For	a	computationally	
tractable	group	rfMRI	dense	“timeseries”	dataset	that	closely	approximates	a	full	
concatenation,	we	applied	the	parallelizable	and	distributable	Melodic’s	Incremental	Group	
PCA	(MIGP)	algorithm	(Smith	et	al.,	2014)	to	generate	a	4500	component	group	dense	PCA	
series.		The	dimensionality	reduction	from	1,008,000	to	4500	removes	a	large	amount	of	
unstructured	noise	variance	while	retaining	the	strongly	structured	resting	state	BOLD	
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signals	that	are	consistent	across	subjects.		The	dense	PCA	series	from	MIGP,	while	being	
much	more	compact	than	the	full	concatenated	dense	timeseries,	is	analogous	to	a	
timeseries	in	many	respects;	however,	we	will	invoke	the	term	PCASeries	when	a	PCA	
series	is	being	used	in	an	algorithm,	reserving	the	term	timeseries	for	genuine	timeseries	
data.			

We	found	that	MIGP	performance	was	improved	(i)	by	reverting	the	fMRI	bias	field	
correction	incorporated	in	the	version	of	the	HCP	minimal	preprocessing	pipelines	used	in	
the	500	subject	HCP	data	release	and	(ii)	by	applying	variance	normalization	based	on	the	
amount	of	unstructured	temporal	noise	in	the	dense	timeseries	of	each	rfMRI	run.		This	
normalization	ensures	that	each	grayordinate	in	each	run	of	each	subject	has	a	comparable	
amount	of	unstructured	noise	variance	prior	to	MIGP	PCA	(Beckmann	and	Smith,	2004).		
The	result	is	an	equal	likelihood	of	detecting	false	positives	across	the	grayordinates	space	
and	improvement	in	the	performance	of	subsequent	algorithms	(e.g.	ICA,	multiple	
regression).		The	unstructured	noise	variance	normalization	map	was	computed	as	the	
square	root	of	variance	remaining	after	performing	all	ICA+FIX	cleanup	steps	(high	pass	
filter,	24	movement	parameter	regression,	and	structured	noise	component	timeseries	
regression)	and	additionally	after	regressing	out	the	structured	RSN	signals	identified	by	
ICA+FIX	(see	Figure	4,	top	&	right	group).			

The	large	dimensionality	reduction	by	the	MIGP	algorithm	from	1,008,000	to	4500	
PCA	components	results	in	spatial	differences	in	the	residual	unstructured	noise	in	the	data	
and	can	yield	undesirable	ringing	artifacts	when	visualizing	seed-based	functional	
connectivity	(http://www.humanconnectome.org/documentation/mound-and-moat-
effect.html).		A	multi-step	process	was	used	to	avoid	this	problem	(Figure	4,	right	&	bottom	
module).		Emulating	an	approach	introduced	by	Beckman	and	Smith	(2004),	we	fit	a	
Wishart	eigenspectrum	distribution	function	(Beckmann	and	Smith,	2004;	Wishart,	1928)	
to	the	tail	of	the	eigenspectrum	of	the	dense	PCA	series	(whose	eigenvectors	represent	
mostly	unstructured	noise	and	which	have	the	lowest	eigenvalues)	to	estimate	the	profile	
of	unstructured	noise	in	the	data	in	PCA	space.		This	distribution	was	subtracted	from	the	
eigenvalues,	thereby	downweighting	(‘rolling	off’)	the	‘temporal’	effects	of	unstructured	
noise	in	the	data.		The	difference	in	the	variances	between	the	original	PCA	Series	and	the	
Wishart	rolled	off	PCA	Series	represents	the	residual	pattern	of	spatial	variation	in	
unstructured	noise	in	the	data.		The	square	root	of	this	map	was	used	as	a	second	order	
variance	normalization	map.		The	spatial	variation	in	this	map’s	values	were	inversely	
related	(i)	to	the	vertex	areas	of	the	surface	grayordinates	(smaller	vertex	areas	had	larger	
amounts	of	residual	unstructured	noise;	larger	vertex	areas	had	lower	amounts)	and	(ii)	to	
the	CNR	of	the	subcortical	voxels	(lower	CNR	voxels	like	those	in	the	iron	rich	globus	
pallidus	had	higher	values	relative	to	other	voxels).		After	second	order	variance	
normalization,	PCA	was	run	again	without	dimensionality	reduction	(i.e.	PCA	d=4500)	to	
incorporate	the	changes	in	spatial	weighting	across	the	grayordinates	space.		The	resulting	
PCA	series	was	now	appropriate	for	group	ICA.	

Group	ICA	was	performed	on	the	210P	data	to	identify	cross-subject	consistent	
RSNs	as	well	as	artifactual	components	that	slipped	through	the	ICA+FIX	cleanup.		An	ICA	
dimensionality	of	d=137	was	chosen	because	when	a	find-the-biggest	operation	across	
components	was	performed,	it	described	the	data	using	the	smallest	number	of	spatially	
contiguous	pieces	(whose	size	exceeded	a	surface	area	of	25	mm2	or	a	volume	of	125	mm3)	
relative	to	a	wide	range	of	dimensionalities	(d=95	to	150	in	unit	steps	and	150	to	300	in	
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5’s).		Also	it	was	the	largest	local	minimum	before	the	number	of	subcortical	pieces	began	
to	increase	monotonically	(around	d=140),	suggesting	that	further	splitting	was	due	to	the	
ICA	beginning	to	incorporate	more	unstructured	noise	into	the	subcortical	components	
whose	voxels	have	the	lowest	CNR	and	therefore	are	most	vulnerable.		Visually,	the	d=137	
decomposition	exhibited	a	striking	degree	of	left/right	symmetry,	with	RSN	components	
either	being	bilaterally	symmetrical	or	having	a	symmetrical	pair	of	unilateral	components	
(e.g.	see	the	RSNs	shown	in	the	top	four	rows	of	Supplementary	Figure	4	in	the	SRD).		This	
strong	bilateral	symmetry	may	explain	why	d=137	was	a	local	minimum	in	the	spatially	
contiguous	pieces	measure.		Three	consistent	artifactual	components	were	identified	in	the	
d=137	decomposition	of	the	210P	dense	PCA	series:	the	tranverse	venous	sinus;	a	fronto-
polar,	orbitofrontal,	and	anterior	temporal	component	likely	attributable	to	motion	and/or	
motion’s	interaction	with	susceptibility	artifacts;	and	an	anterior	and	middle	cerebral	
artery	pulsation	artifact.		These	artifactual	components	were	regressed	out	of	the	dense	
PCA	Series	to	produce	a	cleaned	dense	PCA	Series	appropriate	for	the	group	visuotopic	
regression	(see	below	#4.4)	and	further	processing.		To	produce	the	cleaned	dense	
connectome	for	the	210V	validation	group	in	Supplementary	Figures	4	and	5	in	the	SRD,	
group	ICA	was	also	performed	separately	on	the	210V	data,	identifying	a	d=130	local	
minimum	and	only	one	artifactual	component	(the	tranverse	venous	sinus).			

Although	the	second	order	variance	normalization	reduces	spatial	inhomogeneities	
in	unstructured	noise	variance	in	the	MIGP	dense	PCASeries,	it	does	not	address	the	
temporal	effects	of	this	noise	on	dense	functional	connectivity	matrices	(CNR	reduction	and	
ringing).		To	address	these	temporal	issues,	a	Wishart	function	was	fit	to	the	second	order	
variance	normalized	and	cleaned	PCA	series	eigenspectrum.		For	this	stage,	the	desired	
output	was	the	Wishart	rolled	off	PCA	series	and	dense	connectome	(the	eigenvalues	were	
reduced	by	the	fitted	Wishart	null-eigenvalue	distribution,	remultiplied	by	the	
eigenvectors,	and	the	dense	connectome	formed	via	the	outer-product	of	the	weighted	
eigenvectors).		The	Wishart	roll	off	has	several	benefits:	1)	It	eliminates	ringing	induced	by	
the	hard	cutoff	of	the	PCA	series	at	4500	components	and	2)	it	addresses	the	same	goal	of	
CNR	improvement	by	unstructured	noise	reduction	as	do	spatial	and	temporal	smoothing.		
However,	instead	of	smoothing	all	signals	equally	(whether	they	are	of	interest	or	not),	the	
Wishart	roll	off	procedure	downweights	less	structured	signals	while	preserving	the	
sharpness	of	the	structured	resting	state	signals	of	interest.		Highly	structured	RSN	signals	
(represented	by	PCA	components	with	high	eigenvalues	above	the	Wishart	noise	
eigenvalue	distribution)	are	not	downweighted,	whereas	less	structured	signals	
(represented	by	PCA	components	with	low	eigenvalues	along	the	Wishart	noise	eigenvalue	
distribution)	are	downweighted.		Thus,	the	Wishart	roll	off	acts	as	an	edge-preserving	
spatial	and	temporal	filter.			

Empirically,	the	Wishart	roll	off	improved	the	CNR	of	grayordinatewise	rfMRI	FC	
dense	connectivity	matrices,	which	otherwise	have	low	CNR	because	there	is	no	averaging	
across	space,	as	in	a	parcellated	connectivity	analysis,	an	ICA	analysis,	or	a	multiple	
regression	analysis,	without	blurring	the	signals	of	interest.		Grayordinatewise	rfMRI	FC	
was	performed	using	Pearson	correlation	(when	computed	on	the	PCA	Series,	the	data	are	
not	spatially	demeaned),	generating	a	dense	functional	connectivity	matrix.		Also,	the	
Fisher	Z	transform	was	not	used	because	it	shifted	connectivity	gradient	peaks	slightly.		
The	decision	not	to	use	the	Fisher	Z	transform	was	empirically	based	(not	using	it	resulted	
in	better	alignment	of	resting	state	gradients	with	those	of	other	modalities)	and	there	is	
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not	a	principled	reason	for	doing	it	one	way	or	the	other.		In	practice,	the	difference	in	
gradient	peak	location	was	relatively	small,	however.		Despite	being	processed	completely	
separately	through	the	process	shown	in	Figure	4,	the	210P	and	210V	dense	functional	
connectivity	datasets	show	remarkable	reproducibility	(see	Supplementary	Figures	4	and	5	
in	the	SRD).		Thus,	the	approach	used	here	for	computationally	efficient	processing	of	
group	resting	state	data	objectively	shows	good	performance.		An	additional	benefit	of	this	
approach	is	that	the	use	of	a	Wishart	rolloff	reduces	the	non-specific	“seed	bloom”	of	high	
correlation	near	the	seeded	grayordinate,	which	arises	from	spatial	autocorrelation	in	the	
noise	induced	by	various	image	reconstruction	(e.g.	multi-band)	and	preprocessing	steps	
(e.g.	resampling	or	smoothing).		The	remaining	local	connectivity	around	the	seed	tends	to	
follow	the	same	areal	feature	boundaries	as	more	distant	functional	connectivity	does,	
along	with	boundaries	found	in	other	modalities,	making	it	useful	to	the	neuroanatomist.			
	
3.4	Individual	Resting	State	fMRI	
	

The	left-middle	group	of	Figure	4	(darkest	gray	background)	shows	the	processing	
steps	after	temporal	concatenation	of	the	final	dense	timeseries	across	rfMRI	runs	in	each	
subject.		Visuotopic	regression	was	done		using	this	concatenated	dense	timeseries	(see	
below	#4.4).		Also,	the	individual	subject	RSN	maps	were	computed	using	the	concatenated	
dense	timeseries	and	the	group	RSN	map	with	the	weighted	regression	algorithm	(see	
above	#2.3).		The	PCA	decomposition	(d=4800)	and	Wishart	roll	off	technique	can	
additionally	be	used	for	generating	high	CNR	individual-subject	rfMRI	FC	dense	
connectivity	matrices	without	the	need	for	spatial	or	temporal	smoothing.		The	process	is	
similar	to	that	for	the	group	analyses,	except	that	no	dimensionality	reduction	is	performed	
and	therefore	there	is	no	need	for	second	variance	normalization	and	a	second	PCA.		These	
dense	functional	connectivity	matrices,	which	do	not	make	use	of	any	group	information,	
could	provide	a	useful	reference	to	compare	with	the	individual	subject	RSN	maps	
generated	using	group	ICA	components	and	weighted	regression.	
	
4.	Objective,	Observer	Independent	Assessment	of	Multi-modal	Differences	Across	
the	Cerebral	Cortex:	The	Gradient-based	Approach		
	
4.1	Motivation	
	

Classical	neuroanatomists	used	visual	inspection	to	delineate	areal	boundaries	
based	on	regional	differences	in	cytoarchitecture	or	myeloarchitecture,	often	resulting	in	
divergent	opinions	and	controversies	as	to	where	boundaries	were	located.		A	major	
advance	was	the	advent	of	observer	independent,	objective	approaches	that	could	be	
applied	to	postmortem	histological	sections	(Caspers	et	al.,	2013;	Schleicher	et	al.,	1999;	
Schleicher	et	al.,	2009;	Zilles	and	Amunts,	2010).		The	Zilles	and	Amunts	group	used	
cytoarchitectonic	feature	vectors	to	characterize	each	location	along	a	histological	section	
contour	and	focused	on	peaks	in	a	vector	difference	measure	(the	Mahalanobis	distance)	to	
identify	abrupt	changes	that	represent	candidate	areal	boundaries.		These	transitions	could	
then	be	tested	statistically	for	significance	and	interpreted	by	neuroanatomists	to	ensure	
that	they	were	not	artifactual	(e.g.	from	folding,	veins,	etc.).		Here	we	apply	a	spatial-
gradient-based	approach	that	is	similar	in	spirit	to	the	histological	Mahalanobis	distance	
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approach	but	is	customized	for	multi-modal	MRI	data	on	2D	cortical	midthickness	surfaces	
rather	than	histological	sections.		We	compute	the	magnitude	of	the	first	spatial	derivative	
(gradient)	of	each	modality,	which	indicates	the	rate	of	change	in	the	modality	at	each	
spatial	location.		Locations	of	sharp	change	in	a	modality	represent	candidate	areal	borders.		
These	spatial	gradients	also	provide	a	common	medium	in	which	to	compare	changes	
across	multiple	modalities.		As	discussed	below	(#5),	locations	with	transitions	(gradients)	
in	multiple	modalities	make	particularly	strong	candidates	for	areal	boundaries.			
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Figure	5,	above,	shows	the	four	feature	categories	and	their	gradients.		Rows	1	and	2	show	inflated	and	flat	
map	views	of	cortical	myelin	maps	and	gradients.		Rows	3	and	4	show	cortical	thickness	maps	with	curvature	
regressed	out	and	their	gradients.		Rows	5	and	6	show	an	example	task	contrast	effect	size	map	(scaled	to	
beta	=	+/-0.8)	and	its	gradient	from	the	LANGUAGE	Story	vs	Baseline	contrast.		Task	fMRI	effect	size	maps	can	
be	treated	similarly	to	the	architectural	myelin	and	thickness	measures	as	far	as	gradient	computation	is	
concerned.		Rows	7,	8,	and	9	show	three	functional	connectivity	maps	from	the	white	spheres	representing	
seed	locations	in	FEF,	55b,	and	PEF	(Row	7	is	the	most	dorsal,	Row	8	is	the	middle,	and	Row	9	is	the	most	
ventral).		Row	10	shows	the	mean	functional	connectivity	gradient	map.		Note	that	as	one	crosses	the	strong	
gradients	surrounding	area	55b	from	FEF	to	55b	to	PEF,	the	functional	connectivity	pattern	changes	
dramatically.		This	is	correlated	with	smaller	changes	in	myelin	density	(moderate	to	light	to	moderate,	See	
Main	Results).		Also,	note	that	the	functional	connectivity	map	from	the	55b	seed	(Row	8)	strongly	resembles	
the	LANGUAGE	Story	task	activation	map	(Row	5).		Data	at	http://balsa.wustl.edu/W1GV.	
	
4.2	Calculation	of	Surface	Gradients	on	Modality	Spatial	Maps	
	

Gradients	of	myelin,	thickness,	tfMRI	contrast	effect	size	maps,	and	visuotopic	
regression	maps	were	computed	using	the	following	approach	(see	Figures	5	and	8	for	
example	modality	gradients):	For	each	vertex	of	the	cortical	midthickness	surface	on	the	
32k	standard	mesh,	average	the	normals	of	the	vertex’s	associated	mesh	triangles	to	obtain	
the	vertex	normal	vector.		Then,	“unroll”	the	vertex	and	its	neighbors	(within	the	cerebral	
cortex	ROI)	onto	a	plane	orthogonal	to	the	vertex	normal	that	passes	through	the	vertex	as	
follows	(see	Figure	6):	(i)	between	the	center	vertex	and	a	neighboring	vertex,	draw	a	
circular	arc	that	is	tangent	to	the	plane	at	the	center	vertex;		(ii)	compute	the	length	(Lunroll)	
of	this	arc	using	the	formula	Lunroll	=	LEuclid	*	sin-1(Lopposite	/	LEuclid)	*	LEuclid	/	Lopposite,	where	
Lopposite	is	the	dot	product	of	the	vector	representing	the	edge	and	the	normal	vector	of	the	
vertex,	noting	that	for	small	angles	this	calculation	may	be	unstable	due	to	the	large	radius,	
and	should	be	skipped	for	such	cases	as	the	correction	is	negligible;	(iii)	project	the	
neighboring	vertex	onto	the	plane,	then	modify	the	projected	position	to	keep	the	projected	
direction	from	the	center	vertex,	but	maintain	a	distance	from	the	center	vertex	equal	to	
the	circular	arc	length.		Fit	a	linear	function	within	the	plane	(f(t,	u)	=	at	+	bu	+	c,	where	t	
and	u	are	distances	along	orthogonal	axes	within	the	plane)	to	the	values	and	positions	of	
the	center	vertex	and	the	unrolled	neighboring	vertices	neighbors,	via	regression.		The	
gradient	vector	is	the	spatial	coefficients,	projected	into	3D	space	by	the	unit	vectors	of	the	
plane's	coordinate	system.		If	the	regression	is	undefined,	for	instance	if	there	is	only	one	
neighbor	because	the	vertex	is	along	the	medial	wall,	instead	average	the	gradient	vectors	
obtained	by	taking	each	within-roi	unrolled	neighbor	and	using	the	relative	position	and	
difference	in	value.			
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Figure	6	schematizes	the	geometry	associated	with	the	‘unrolling’	process	involved	in	computing	gradients	
along	the	surface.		𝑑𝑑	is	the	vector	from	the	center	vertex	to	the	neighboring	vertex	being	unrolled.		The	circle	
defining	the	arc	that	gets	unrolled	is	drawn,	and	radii	are	drawn	to	both	ends	of	𝑑𝑑.		θ	is	defined	as	half	the	
angle	of	the	arc,	so	that	the	identical	right	triangles	formed	from	cutting	the	triangle	of	𝑑𝑑	and	the	two	radii	in	
half,	each	have	the	angle	θ	at	the	center	of	the	circle.		Hence,	the	radius	of	the	circle	is	half	the	length	of	𝑑𝑑,	
divided	by	the	sine	of	θ.		To	determine	the	angle	θ,	consider	the	right	triangle	formed	from	a	line	drawn	
perpendicular	to	the	tangent	placed	at	the	center	vertex,	connecting	to	the	neighbor	vertex	being	unrolled	
(the	head	of	𝑑𝑑).		The	length	of	this	segment	is	(for	situations	where	the	circle	curves	away	from	the	normal	
vector,	as	in	the	figure)	the	negative	of	the	dot	product	of	𝑑𝑑	and	the	unit	normal	vector	at	the	center	vertex,	
denoted	as	ĉ.		θ	is	therefore	the	inverse	sine	of	this	negative	dot	product	divided	by	the	length	of	𝑑𝑑.		The	
length	of	an	arc	is	the	angle	of	the	arc	in	radians	times	the	radius	of	the	circle,	and	we	now	have	both,	giving	
the	final	value	as	|𝑑𝑑|	*	sin-1((-𝑑𝑑	!	ĉ)/|𝑑𝑑|)	*	(|𝑑𝑑|/(-𝑑𝑑	!	ĉ)),	simplifying	the	sine	θ	expression	as	θ	is	defined	by	an	
inverse	sine.		Due	to	the	properties	of	sine,	the	negatives	can	be	dropped	from	both	dot	products,	giving	the	
simplified	formula	|𝑑𝑑|	*	sin-1((𝑑𝑑	!	ĉ)/|𝑑𝑑|)	*	(|𝑑𝑑|/(𝑑𝑑	!	ĉ)).		Whether	the	curvature	is	towards	or	away	from	the	
normal	vector,	both	dot	products	have	the	same	sign,	and	therefore	the	result	is	positive,	meaning	that	this	
formula	generalizes	to	both	directions	of	curvature.	
	

When	taking	the	gradient	of	group-averaged	data,	a	group-average	surface	is	used,	
along	with	a	group	average	of	the	surface	areas	associated	with	each	surface	vertex	
(referred	to	as	the	“corrected	vertex	areas”).		These	surface	areas	enable	an	approximate	
correction	for	the	reduction	in	distance	caused	by	the	increased	smoothness	of	the	group-
average	surface.		The	length	of	each	edge	on	the	group	average	surface	is	assumed	to	be	
split	into	two	parts,	each	part	residing	entirely	within	the	area	associated	with	the	vertex	at	
its	end.		Furthermore,	the	ratio	between	the	lengths	of	these	parts	is	assumed	to	be	equal	to	
the	ratio	of	the	square	roots	of	the	surface	areas	of	the	vertices,	as	given	by	just	the	group	
average	surface,	without	using	the	corrected	vertex	areas.		To	find	the	corrected	length	of	
this	edge,	scale	each	of	these	parts	by	the	ratio	between	the	square	roots	of	the	vertex	areas	
from	the	group-average	surface	and	the	corrected	vertex	areas.		This	works	out	to	the	
formula:	Lcorrected	=	Lsurface	*	(√Areacorrected(A)	+	√Areacorrected(B))	/	(√Areasurface(A)	+	
√Areasurface(B)),	where	A	and	B	are	the	vertices	that	the	edge	being	corrected	joins,	and	the	
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subscript	“surface”	denotes	lengths	and	vertex	areas	derived	only	from	the	group	surface	
without	correction.		The	result	of	the	gradient	algorithm	that	is	used	for	parcellation	is	the	
magnitude	of	the	gradient	vector	at	each	vertex	for	each	map.				
	

	
	
Figure	7	shows	the	steps	used	for	computation	of	whole	brain	full	correlation	gradients.		The	process	begins	
with	the	cleaned,	Wishart	rolled	off	dense	PCA	series	(or	individual	subject	timeseries),	and	includes	
generation	of	the	dense	connectome,	a	second	correlation	of	functional	connectivity	patterns	between	
grayordinates	of	each	major	structure	(e.g.	Left	Cerebral	Cortex	or	Right	Thalamus),	computation	of	the	
gradient	map	on	each	column	of	the	second	order	correlation	matrix,	averaging	along	the	rows	the	resultant	
gradient	matrix,	and	spatially	concatenating	the	mean	gradients	of	all	of	the	major	structures	back	into	an	all	
grayordinates	X	1	mean	gradient	map.		
	
4.3	Calculation	of	Whole	Brain	Full	Correlation	rfMRI	Functional	Connectivity	Gradients	
	

For	resting	state	fMRI,	the	2D	matrix-based	nature	of	functional	connectivity	data	
required	a	more	complicated	approach	to	computing	a	final	gradient	map	(see	Figure	7).		
For	all	vertices	in	either	the	left	or	right	hemisphere,	the	grayordinatewise	FC	maps	were	
correlated	to	determine	the	similarity	between	each	vertex’s	FC	map	and	all	others	from	
the	same	structure.		This	produced	a	vertices	X	vertices	2nd	order	correlation	matrix	(as	we	
want	gradients	in	the	similarity	of	functional	connectivity	maps—integrating	information	
across	the	whole	brain—rather	than	gradients	in	the	similarity	of	rfMRI	timecourses).		
Then	the	spatial	gradient	was	taken	of	each	of	these	2nd	order	correlation	maps,	forming	a	
vertices	X	vertices	gradient	magnitude	matrix.		The	mean	was	then	taken	across	this	matrix	
to	produce	a	mean	gradient	map,	referred	to	as	an	rfMRI	FC	gradient	map.		This	gradient	
map	represents	the	average	rate	of	change	in	functional	connectivity	pattern	as	one	moves	
across	the	surface.	Subcortical	gradients	were	computed	similarly,	except	the	voxels	of	
each	subcortical	structure	were	used	instead.		This	method	is	similar	in	spirit	to	that	
proposed	in	(Cohen	et	al.,	2008),	except	that	here	gradients	were	computed	on	the	group	
average	midthickness	surface	instead	of	resampling	to	a	Cartesian	grid	overlaid	on	a	
flattened	surface,	edge	detection	was	not	used,	and	the	second	similarity	matrix	is	
correlation	instead	of	eta2.			
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Figure	8,	above,	shows	the	V1-constrained	spatial	regressors	and	their	corresponding	whole	brain	spatial	
maps	(along	with	icons	representing	the	portions	of	the	visual	field	being	contrasted).		Panels	A	and	B	show	
the	foveal	vs	peripheral	contrast.		Panels	C	and	D	show	the	upper	vs	lower	vertical	meridian	contrast.		Panels	
E	and	F	show	the	left	vs	right	horizontal	meridian	contrast.		Panels	G	and	H	show	the	horizontal	vs	vertical	
meridian	contrast,	which	is	the	most	useful	for	visual	area	parcellation.		Panel	I	shows	the	gradient	magnitude	
of	Panel	H,	where	local	gradient	minima	represent	the	locations	of	polar	angle	reversal.		Panel	J	shows	the	dot	
product	of	the	gradient	vector	of	Panel	H	with	a	reference	vector	that	points	towards	V1.		The	early	visual	
areas	alternate	between	positive	and	negative	with	the	zero	point	lying	on	their	borders	(this	measure	is	
undefined	inside	of	V1,	see	#6.5).	Data	at	http://balsa.wustl.edu/J5k3.	
	
4.4	Extraction	of	Topographic	Information	from	Resting	State	fMRI	Data	
	

The	above	gradient-based	methods	enable	objective	delineation	of	areal	boundaries	
based	on	rapid	changes	in	spatial	maps	for	one	or	more	of	four	feature	categories.		
Information	useful	for	parcellation	also	came	from	continuous,	topographically	organized	
gradients	in	rfMRI	FC	within	cortical	areas.		For	example,	antero-posterior	gradients	
related	to	eccentricity	in	the	visual	field	have	previously	been	reported	for	the	functional	
connectivity	of	early	visual	cortex	(Yeo	et	al.,	2011).		Similarly,	we	previously	described	
continuous	topographic	gradients	associated	with	polar	angle	in	the	early	visual	cortex	
(Glasser	et	al.,	2014b).		Here,	we	analyzed	continuous	visuotopic	rfMRI	FC	gradients	using	
an	improved,	multiple	regression-based	method	applicable	to	both	group	data	(high	CNR)	
and	individual	subjects	(low	CNR):	

We	first	defined	the	full	extent	of	area	V1	using	a	combination	of	Lateral	Geniculate	
Nucleus	(LGN)	rfMRI	FC	maps,	myelin	gradients,	and	thickness	gradients	(see	NSR	#1).		
Then,	based	on	published	maps	(e.g.	(Sereno	et	al.,	1995))	of	eccentricity	and	polar	angle	in	
V1,	a	set	of	nine	spatial	regressors	based	on	continuous	linear	gradients	were	defined	
across	V1	(see	Figure	8),	including	1)	a	spatial	contrast	between	upper	and	lower	vertical	
meridians	(Panel	C,	varying	from	1	to	-1);	2)	a	spatial	contrast	between	left	and	right	
horizontal	meridians	(Panel	E,	varying	from	1	to	-1);	3)	a	spatial	contrast	between	the	full	
(upper	+	lower)	vertical	meridian	and	the	full	(left	+	right)	horizontal	meridian	(Panel	G,	
varying	from	1	to	-1);	4)	the	third	contrast	shifted	by	45	degrees	(to	complete	the	
harmonic);	5)	Foveal	vs	peripheral	(Panel	A,	varying	from	1	to	-1);	6)	the	foveal	vs	
peripheral	gradient	squared;	7)	the	foveal	vs	peripheral	gradient	cubed;	8)	bilateral	entire	
V1	(all	ones);	and	9)	All	grayordinates	as	ones.		Outside	of	V1	the	first	8	spatial	regressors	
were	all	zeros.		These	regressors	were	defined	using	linear	intensity	gradients,	which	were	
computed	algorithmically	from	a	standard	set	of	surface	borders	by	dilation,	using	either	
the	group	average	midthickness	surface	for	the	group	maps	or	the	individual	subject	
midthickness	surface	for	the	individual	maps	(i.e.,	borders	representing	the	horizontal	
meridian	known	to	run	down	the	center	of	V1	in	the	fundus	of	the	calcarine	sulcus,	the	
vertical	meridians	known	to	run	along	the	superior	and	inferior	borders	of	V1,	and	the	
eccentricity	arrangement	known	to	run	from	foveal	posteriorly	to	peripheral	anteriorly).		
More	specifically,	generation	of	linear	gradients	involved	a	customized	form	of	dilation	on	
the	surface,	starting	with	a	spatial	map	having	a	set	of	desired	values	along	isoeccentricity	
or	isopolar	lines	within	V1	or	along	its	border.		For	each	V1	vertex	that	did	not	already	have	
a	value,	the	vertices	within	a	specified	distance	whose	straightest	surface-based	path	to	the	
chosen	V1	vertex	did	not	cross	another	vertex	that	already	had	a	value	were	
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selected.		From	this	set,	the	pair	of	vertices	that	had	the	largest	value	for	the	difference	in	
their	input	values	divided	by	the	sum	of	their	distances	from	the	chosen	vertex	was	
selected.	This	was	used	to	linearly	interpolate	the	output	value	based	on	the	pair's	
distances	and	input	values.	

These	nine	V1	regressors	were	multiple-regressed	into	the	group	average	dense	
PCASeries	(or	individual	subject	dense	timeseries)	using	a	variant	of	the	WR	process	
described	above	(#2.3,	see	Figure	9).		Specifically,	the	V1	regressors	were	first	spatially	
regressed	into	the	group	dense	PCASeries	(or	individual	subject	dense	timeseries)	using	
only	the	Vertex	Area	spatial	weighting	map	to	generate	V1	regressor-specific	PCACourses	
(or	timecourses).		These	PCACourses	(or	timecourses)	were	then	temporally	regressed	into	
the	group	dense	PCASeries	(or	individual	subject	dense	timeseries)	to	generate	a	set	of	
whole	brain	spatial	maps	(Panels	B,	D,	F,	H),	one	associated	with	each	of	the	originally	V1	
restricted	spatial	regressors.		For	the	MSMAll	registration,	the	resulting	individual	subject	
whole	brain	maps	were	registered	to	the	group	whole	brain	maps	(an	earlier	version	of	the	
visuotopic	maps	was	used	for	the	MSMAll	registration	that	spanned	the	eccentricity	space	
as	bands	rather	than	continuous	linear	gradients).			

The	spatial	maps	generated	using	the	vertical	vs	horizontal	meridian	contrast	(Panel	
H)	and	the	upper	vs	lower	hemifield	contrast	(Panel	D)	were	particularly	useful	in	
delineating	extrastriate	visual	areas,	as	they	identify	the	polar	angle	reversals	that	occur	at	
areal	borders.		Visuotopic	areal	borders	generally	occur	at	representations	of	the	vertical	
or	horizontal	meridian	(Sereno	et	al.,	1995),	corresponding	to	local	maxima	or	minima	in	
these	spatial	maps	and	to	local	minima	in	the	spatial	gradients	computed	from	these	maps.	
For	example,	Panel	I	shows	the	spatial	gradient	magnitude	of	the	map	in	Panel	H	and	has	
multiple	spatial	minima	(e.g.	arrows)	that	we	later	show	correspond	to	areal	boundaries	
(see	NSR	#2).	The	topographic	information	revealed	by	rfMRI	FC	was	particularly	useful	
for	defining	early	visual	cortical	areas,	including	V2,	V3,	V4,	V3A,	and	parts	of	some	higher	
visual	areas	including	V6,	V7,	V8,	VVC,	LO1,	ProS,	V3B,	V3CD,	VMV1,	VMV2,	VMV3	(see	NSR	
#2-4).	

Additional	useful	characterization	of	visuotopic	organization	was	obtained	by	
computing	the	dot	product	at	each	vertex	between	the	gradient	vector	and	a	vector	
pointing	towards	V1	along	the	surface.		This	map	is	shown	in	Panel	J	for	the	gradient	vector	
associated	with	the	vertical	vs	horizontal	meridian	contrast	gradient	magnitude	in	Panel	I.		
This	reveals	where	the	visuotopic	gradient	vector	changes	direction	at	visuotopic	areal	
borders	and	is	analogous	to	the	field	sign	measure	of	(Sereno	et	al.,	1994).		Because	the	
resulting	dot	products	are	all	positive	or	all	negative	in	a	given	area,	this	information	is	
directly	interpretable	by	the	areal	classifier	(see	below	#6.5),	which	otherwise	does	not	
have	access	to	explicit	information	about	intra-areal	spatial	patterns.		This	dot	product	can	
also	be	compared	statistically	across	the	areal	boundary.			
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Figure	9	shows	how	V1-specific	spatial	regressors	are	used	to	produce	corresponding	whole	brain	spatial	
maps	of	various	visuotopic	spatial	contrasts.		The	useful	outputs	are	marked	in	BOLD	font.		The	procedure	
can	be	used	on	either	group	dense	PCA	series	or	individual	subject	dense	timeseries.		It	first	makes	use	of	the	
vertex	areas	in	a	weighted	spatial	regression,	and	the	resulting	V1-specific	timecourses	are	used	in	a	temporal	
regression	together	with	the	dense	series	to	produce	whole	brain	spatial	maps.		Gradient	magnitudes	can	be	
computed	on	these	maps,	the	local	minima	of	which	are	useful	for	positioning	areal	borders	(minima	instead	
of	maxima	because	the	topographic	maps	themselves	are	gradients,	and	we	are	interested	in	local	maxima	or	
minima	in	these	gradient	maps	where	the	second	derivative	is	close	to	zero,	as	these	locations	delineate	areal	
borders).		Additionally,	the	gradient	vectors	can	be	multiplied	in	a	dot	product	with	the	vectors	that	point	
towards	V1	along	the	surface	to	determine	where	the	visuotopic	vectors	switch	direction	(which	occurs	at	the	
areal	border,	similar	to	the	field	sign	measure	of	(Sereno	et	al.,	1994)).		This	dot	product	yielded	maps	in	
which	the	values	within	a	given	visual	area	are	all	one	sign	(and	different	from	neighboring	areas),	which	
were	interpreted	by	the	areal	classifier	(see	below	#6.5)	and	were	also	used	to	measure	initial	cross-border	
statistics.			
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5.	Multi-modal	Cortical	Parcellation	Using	Gradients	
	
5.1	Neuroanatomical	Criteria	for	Multimodal	Delineation	of	Cortical	Areas	
	

The	preceding	sections	have	described	algorithmic	methods	for	extracting	
information	useful	for	parcellation	from	multiple	independent	modalities	in	a	common	
grayordinates	space	(i.e.	allowing	visualization	of	modalities	and	their	gradients	on	the	
same	surfaces	in	Connectome	Workbench).		Gradient	maxima	from	myelin	maps,	thickness	
maps,	tfMRI	contrast	maps,	rfMRI	FC	maps,	plus	gradient	minima	in	continuous,	
topographically	organized	rfMRI	FC	within	cortical	areas	together	provide	objective	
evidence	for	cortical	areal	boundaries.		These	non-invasive	measures	of	architecture,	
function,	connectivity,	and	topography	are	analogous	to	measures	acquired	invasively	in	
non-human	primates	and	in	post-mortem	human	brains.		To	integrate	this	information	
across	modalities	and	facilitate	comparisons	with	published	cortical	parcellations,	we	
combined	a	semi-automated	boundary-delineation	algorithm	described	below	with	
neurobiologically	informed	interpretations	based	on	five	general	criteria.			
	 (1)	To	accept	a	putative	areal	boundary,	we	placed	a	strong	reliance	on	consistent	
boundary	location	across	independent	modalities	(for	this	analysis,	the	various	ways	of	
processing	rfMRI	were	not	considered	“independent”	in	a	full	statistical	sense,	but	
agreement	between	them	was	still	considered	helpful).			

(2)	Presence	of	a	putative	boundary	at	corresponding	locations	in	the	left	and	right	
hemispheres	increased	our	confidence	in	it.		In	this	study	we	did	not	identify	any	areas	that	
were	present	in	one	hemisphere	but	not	the	other	because	we	did	not	find	strong	enough	
evidence	to	support	such	a	parcellation,	though	some	homologous	areas	assigned	the	same	
names	show	substantial	lateralization	of	function	and/or	connectivity	(see	NSR	and	Main	
Text).		A	small	number	of	areas	have	differing	topological	relationships	across	hemispheres	
or	use	different	features	for	delineation	in	the	two	hemispheres.		More	focused	future	
studies	that	find	strong	multi-modal	evidence	for	hemispheric	differences	in	cortical	areal	
parcellation	might	choose	to	revise	this	criterion,	however.			

(3)	Candidate	boundaries	were	rejected	if	they	were	attributable	to	known	imaging	
artifacts,	which	include:	(i)	fMRI	signal	loss	from	magnetic	susceptibility	in	orbitofrontal	
and	inferior	temporal	cortical	regions4;	(ii)	folding-related	artifacts	in	myelin	maps	that	
occur	in	thin,	heavily	myelinated	early	visual	cortex	(attenuated	in	0.7	mm	isotropic	T1w	
and	T2w	images,	but	not	eliminated);	(iii)	susceptibility-related	artifacts	in	cortical	
thickness	(in	the	same	regions	as	fMRI,	but	less	extensive,	and	caused	by	signal	loss	in	the	
gradient	echo	T1w	image);	(iv)	limitations	related	to	task	design	in	the	tfMRI	contrast	data,	
including	left	hemisphere	activation	of	right	hand	regions	from	button	box	pressing	in	
cognitive	tasks	and	preferential	activation	of	the	central	visual	fields	because	of	the	limited	
region	of	the	visual	field	able	to	be	stimulated	by	the	task	in	the	scanner;	and	(v)	
differential	activation	of	foveal	visual	cortex	from	the	visual	fixation	crosshair	in	rfMRI	
scans.		Each	of	these	artifacts	can	give	rise	to	spatial	gradients	that	are	irrelevant	to	cortical	
parcellation.		Reliable	automated	detection	of	such	artifacts	is	currently	impractical,	
requiring	interpretation	of	the	data	by	a	neuroanatomist	with	expertise	in	neuroimaging.			
																																																								
4Susceptibility-loss	regions	were	smaller	in	the	high	resolution	HCP	data	than	in	conventional	fMRI	scans,	but	
were	nonetheless	present.	
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(4)	Cortex	on	opposite	sides	of	a	putative	areal	boundary	should	differ	robustly	and	
statistically	significantly	in	areal	features,	in	order	to	exclude	gradient	ridges	that	are	
simply	local	noise-related	fluctuations.			

(5)	Confidence	in	a	putative	areal	boundary	is	increased	by	correspondence	with	a	
published	areal	boundary.		Many	areas	that	we	identified	correspond	to	previously	
reported	areas	but	can	now	be	delineated	in	a	large	number	of	living	subjects	based	on	the	
high-quality	HCP	data	and	analyses.			

(6)	Initial	runs	of	the	areal	classifier	(see	below	#6.1-6.8)	on	only	the	210P	and	29T	
subject	groups	were	invaluable	for	finding	putative	areas	in	the	initial	draft	parcellation	
that	were	not	consistently	identifiable	in	individual	subjects.		Also,	the	initial	areal	classifier	
results	revealed	“area	holes”	in	which	no	area	tended	to	reach	at	least	50%	probability	
across	subjects	yet	were	not	otherwise	explainable	by	poor	multi-modal	CNR	(e.g.	
susceptibility	artifacts).		Some	of	these	regions	were	more	finely	parcellated,	thereby	
improving	classifier	performance	(see	Section	#6.7).		Thus,	the	automated	individual	
subject	areal	classifier	served	as	one	objective	check	on	the	neuroanatomists’	
interpretation	of	the	gradient	data.			
	
5.2	A	Semi-automated	Algorithm	for	Objective	Gradient-based	Delineation	of	Areal	Borders	
and	Initial	Internal	Statistical	Validation	
	
	 We	implemented	a	semi-automated	algorithm	for	objective	gradient-based	
delineation	of	areal	borders.		When	a	putative	areal	border	was	identified	in	a	given	region	
(based	on	visual	inspection	of	multiple	areal	features	and	gradients),	it	was	manually	
drawn	in	approximately	the	correct	location	using	the	border-drawing	tool	in	Connectome	
Workbench.		An	optimization	region	of	interest	that	included	a	substantial	portion	of	the	
two	cortical	areas	on	opposite	sides	of	the	border	was	also	drawn	manually.		Using	the	
border	optimization	function	in	Connectome	Workbench,	the	modalities	used	by	the	
neuroanatomists	to	recognize	the	border	were	selected,	and	the	modality	gradients	were	
combined	inside	this	ROI	by	a	method	that	uses	a	tunable	tradeoff	between	averaging	and	
multiplying.		Each	gradient	is	individually	rescaled,	mapping	its	minimum	and	maximum	
value	within	the	ROI	to	0	and	1,	respectively,	then	put	through	the	formula	“precombine	=	
rescaled	*	strength	+	1	–	strength”,	where	strength	is	a	tunable	parameter	between	0	and	1	
(default	of	0.7).		The	resulting	“precombine”	values	are	multiplied	together	across	
modalities	at	each	vertex,	and	the	result	is	again	rescaled	to	the	range	of	0	to	1	and	then	
inverted,	so	that	where	the	gradients	are	maximum,	the	value	is	0.		We	used	these	values	to	
assign	a	cost	to	each	edge	(line	segment	between	adjacent	surface	vertices)	within	the	
entire	ROI	by	multiplying	the	length	of	the	edge	by	the	expression	“1	+	followstrength	*	
(data(i)	+	data(j))”,	where	“i”	and	”j”	are	the	vertices	at	each	end	of	the	edge	being	
evaluated,	“data”	is	the	combined	gradient	data,	as	described	above,	and	“followstrength”	is	
a	tunable	parameter	that	controls	how	much	the	gradient	data	can	influence	the	cost	of	an	
edge	(which	indirectly	controls	how	much	the	optimal	path	can	deviate	from	the	shortest	
geodesic	path	between	the	endpoints,	and	has	a	default	value	of	5).		The	initial	border	was	
then	revised	by	taking	the	first	and	last	points	of	the	border	segment	inside	the	
optimization	ROI	and	using	an	“A*”	search	(a	standard	graph	search	algorithm	(Hart	et	al.,	
1968)),	to	construct	a	new	path	having	the	minimal	sum	of	the	costs	of	the	edges	in	the	
path.		
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	 For	the	vast	majority	of	the	borders	we	kept	the	strength	and	followstrength	
parameters	at	their	defaults	(which	were	considered	to	be	reasonable	values	by	TSC,	the	
algorithm	designer	and	indeed	worked	well	in	initial	testing).		The	approximate	reasoning	
behind	the	initial	choice	of	followstrength	was	that	a	value	of	5	allows	the	path	to	be	up	to	5	
times	longer	than	the	shortest	path,	as	long	as	there	is	an	undisputable	gradient	ridge	to	
follow,	which	seemed	sufficiently	loose	for	the	search	to	choose	reasonable	paths	given	
realistic	gradients.		For	the	strength	parameter	used	during	the	combination	of	gradients,	a	
value	of	0	means	to	ignore	the	map	(and	0.01	for	all	inputs	would	result	in	something	very	
close	to	pure	addition	of	the	gradient	maps),	1	means	pure	multiplication,	and	0.7	was	
considered	a	reasonable	balance	to	achieve	a	more	forgiving	multiplication-like	effect,	
given	what	the	extremes	represent.		In	some	cases,	the	strength	parameter	was	set	to	zero	
for	the	feature	maps	where	we	wished	to	compute	cross-border	statistics	(so	that	we	could	
report	the	difference	between	the	areas	in	the	NSR)	but	did	not	want	the	map	to	contribute	
to	the	final	effective	gradient.		For	example,	if	myelin,	resting	state,	and	5	task	contrasts	
were	all	significant,	but	we	did	not	want	the	task	modality	to	dominate	the	effective	
gradient,	we	would	set	some	task	contrast	maps	to	zero.		Otherwise,	we	kept	the	
followstrength	parameter	set	to	its	default,	except	in	two	explicity	noted	instances	where	a	
border	passed	through	a	susceptibility	artifact	and	we	did	not	want	it	to	take	a	highly	
circuitous	route	(here	we	reduced	the	followstrength	value,	which	weights	the	border	
more	towards	the	shortest	path).			
	 Each	automatically	defined	border	segment	was	used	to	assess	the	effect	size	
(Cohen’s	d	value)	and	significance	of	the	differences	between	feature	map	values	on	
opposite	sides	of	the	border	within	the	optimization	ROI.		For	most	modalities	the	p	value	
was	based	on	a	t-test	for	the	feature	map	values	on	either	side	of	the	border.		For	functional	
connectivity,	a	different	approach	was	used.		For	each	“seed”	vertex	within	the	optimization	
ROI,	an	average	functional	connectivity	map	was	made	for	each	side	of	the	border	within	
the	optimization	ROI;	a	unique	average	was	made	for	each	vertex	to	exclude	vertices	within	
2	mm	geodesic	distance	of	the	seed	vertex	(mainly	to	exclude	the	seed	vertex	itself).		The	
seed	vertex’s	connectivity	map	was	then	correlated	with	each	of	these	average	connectivity	
maps	(average	for	side	“A”	and	average	for	side	“B”).		The	resulting	correlation	values	were	
Fisher	z-transformed	and	grouped	according	to	which	side	the	seed	vertex	is	on,	and	which	
side	the	average	connectivity	map	is	from.		Two	t-tests	were	then	performed	on	these	
Fisher	z-transformed	correlation	values:	one	was	between	the	group	of	values	from	seed	
vertices	from	side	A	to	average	connectivity	maps	on	side	A	versus	the	group	of	values	
from	seed	vertices	from	side	B	to	average	connectivity	maps	on	side	A.		The	other	was	
between	the	group	of	vertices	from	side	A	to	side	B	vs	side	B	to	side	B.		The	test	having	the	
higher	p	value	and	lower	Cohen’s	d	was	used	for	checking	if	the	border	indeed	had	a	robust	
and	statistically	significant	effect.		Two	tests	were	used	because	there	are	inherently	four	
groups,	but	two	pairings	are	not	meaningfully	comparable	for	our	purposes	(A	to	A	average	
with	B	to	B	average,	A	to	B	average	with	B	to	A	average).			

For	each	modality,	p	values	were	generated,	and	boundaries	that	did	not	have	
significant	p	values	(p<0.05)	in	at	least	one	modality	were	not	retained.		In	practice,	if	the	
neuroanatomist	recognized	a	border,	the	p	value	tended	to	be	very	low	and	the	Cohen’s	d	
standard	effect	size	measure	was	large	(maximum	p<0.001	and	minimum	Cohen’s	d>0.5),	
because	the	group	average	data	for	our	large	subject	groups	has	relatively	low	noise.		We	
used	both	p	values	and	Cohen’s	d	values	in	order	to	identify	differences	that	were	both	
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robust	and	statistically	significant.		In	initial	testing,	we	found	that	the	exact	location	of	the	
initial	border	estimate	and	the	optimization	ROI	had	little	impact	on	the	final	automatically	
delineated	border	location	or	the	statistical	test	values,	as	long	as	the	initial	estimate	was	
within	a	few	mm	of	the	combined	gradient	and	the	border	optimization	ROI	covered	a	
substantial	portion	of	the	cortical	areas	on	either	side	of	the	boundary.			

This	initial	statistical	test	served	mainly	as	an	additional	check	for	the	
neurobiological	plausibility	of	the	boundaries	being	defined	(i.e.	criterion	#4	above;	see	
section	#7.2	below	for	more	rigorous	statistical	cross	validation	of	the	parcellation	
reproducibility	and	multi-modal	cross-border	differences	using	the	independent	210V	
dataset).		The	end	result	of	the	semi-automated	process	was	a	set	of	objectively	defined	
boundaries	dividing	the	neocortex	of	both	hemispheres	into	a	mosaic	of	areas	differing	in	
architecture,	function,	connectivity,	and/or	topography.		The	primary	representation	of	
these	boundaries	was	in	the	form	of	surface	borders	(strings	of	points	projected	to	a	
surface	tessellation	but	not	constrained	to	discrete	surface	vertices).		These	borders	were	
used	to	generate	ROIs	(collections	of	vertices)	and	labels	for	each	area.			
	
5.3	Neuroanatomical	Criteria	for	Identifying	Cortical	Areas	Based	on	Spatial	Neighborhood	
Relationships	
	
	 The	final	stage	of	the	group-average	parcellation	process	involves	identification	and	
naming	of	cortical	areas.		For	purposes	of	continuity	with	prior	studies,	we	retained	cortical	
areal	names	if	they	were	well	matched	to	a	published	parcellation,	whereas	new	names	
were	assigned	to	areas	that	lacked	such	a	match.		When	a	previously	identified	cortical	area	
could	be	subdivided	in	our	multi-modal	analysis,	we	used	a	similar	area	name	with	
appropriate	modifiers	(See	NSR).		Similarly,	if	previous	studies	reported	multiple	
subdivisions	of	a	region	identified	as	a	single	cortical	area	in	our	analysis,	we	incorporated	
both	names	into	the	area	name	and	called	it	a	“complex.”	
	 For	some	areas,	we	were	able	to	use	specific	areal	features	(such	as	heavy	
myelination	or	visuotopic	organization)	as	part	of	the	evidence	for	matching	our	areas	to	
published	parcellations	based	on	in	vivo	or	postmortem	analyses.		However,	in	most	cases	
spatial	location	and	topological	relationships	with	adjoining	areas	were	the	primary	basis	
for	matching	with	published	parcellations.		If	a	published	parcellation	and	the	multi-modal	
parcellation	show	a	similar	set	of	areas	with	similar	spatial	relationships,	the	most	
parsimonious	explanation	is	that	they	represent	corresponding	cortical	areas.			
	 A	major	challenge	in	using	spatial	relationships	to	compare	across	parcellation	
studies	is	the	diversity	of	methods	used	for	intersubject	alignment,	of	which	six	categories	
warrant	brief	mention.		(i)	We	placed	highest	confidence	in	group	average	areal	definitions	
that	are	based	on	cortical	areal	feature-based	surface	registration	(which	will	produce	
maximally	sharp	group	maps)	and	include	dedrifting	during	template	generation,	so	that	an	
overlay	of	data	from	different	studies	has	minimal	bias	and	highest	fidelity	(Abdollahi	et	al.,	
2014).	(ii)	Next	best	are	probabilistic	maps	based	on	folding-constrained	surface	
registration	(e.g.	(Fischl	et	al.,	2008))	that	are	overlaid	together	with	the	multi-modal	
parcellation.		Comparisons	with	the	present	data	should	be	reasonably	accurate,	though	
they	may	be	blurrier	in	regions	of	high	folding	variability	or	high	variability	between	areas	
and	folds.		Additionally,	unless	dedrifting	has	been	done	(see	above	#2.5),	there	may	be	
spatial	drift	between	the	group	average	patterns	of	different	studies	(this	may	explain	
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some	discrepancies	between	our	area	V1	and	that	of	(Fischl	et	al.,	2008),	see	NSR	#1).		(iii)	
Surface-based	figures	and	drawings	from	published	studies	were	often	useful	for	matching	
with	our	parcellation	even	when	direct	comparison	on	the	same	surface	mesh	in	
Connectome	Workbench	was	not	feasible.	(iv)	Volume-registered	probabilistic	maps	of	
cortical	areas	(e.g.	(Eickhoff	et	al.,	2005))	were	more	challenging	to	use	because	of	
inaccuracies	in	mapping	from	group	average	volume	to	group	average	surface	spaces,	as	
well	as	inaccuracies	in	intersubject	alignment	contributing	to	a	group-average	volumetric	
map	((Anticevic	et	al.,	2008;	Fischl	et	al.,	2008;	Fischl	et	al.,	1999b;	Frost	and	Goebel,	2012;	
Smith	et	al.,	2013a;	Tucholka	et	al.,	2012;	Van	Essen	et	al.,	2012)).		Volume-based	
registration	can	also	have	group	average	drifting	issues	(for	instance,	if	using	the	MNI	
template).		However	we	did	use	the	JuBrain	online	resource	((Caspers	et	al.,	2013);	
https://www.jubrain.fz-juelich.de	)	to	help	with	identifying	some	areas.		(v)	Volume-based	
group	average	figures	in	published	studies	typically	lack	the	detail	required	to	distinguish	
cortical	areal	boundaries	and	their	spatial	relationships,	so	these	were	used	sparingly.		(vi)	
Stereotactic	coordinates	(e.g.	MNI	or	Talairach),	based	typically	on	centers	of	
volumetrically	analyzed	group-average	task	activation	foci,	generally	lack	information	
about	cortical	areal	borders	and	are	thus	of	limited	utility	for	making	definitive	areal	
identifications,	even	though	a	major	fraction	of	the	neuroimaging	literature	uses	this	
approach	as	a	primary	means	of	expressing	spatial	localization	(see	examples	of	this	
difficulty	in	(Glasser	and	Van	Essen,	2011)	myelin	mapping	Figure	11).	
	
5.4	Coloration	of	the	Multi-modal	Parcellation	
	
	 A	parcellation	can	be	colored	in	many	ways,	e.g.	solving	the	map-coloring	problem	
(Ringel	and	Youngs,	1968)	with	random	colors,	using	only	a	single	color,	or	coloration	
based	on	some	data	driven	metric.		For	our	parcellation,	we	wanted	a	color	scheme	that	(i)	
utilizes	a	large	portion	of	the	printable	and	computer-displayable	3D	color	space	(hue,	
saturation,	and	luminance)	and	(ii)	is	neurobiologicaly	informative,	for	example	by	
conveying	how	the	major	sensory	inputs	and	two	major	anti-correlated	cognitive	networks	
are	organized	and	how	they	are	mixed	in	different	cortical	areas.		We	used	rfMRI	
relationships	between	each	area	and	five	core	groups	of	areas	for	this	purpose.		The	group	
MIGP	PCASeries	was	parcellated	(i.e.,	the	average	PCASeries	was	computed	inside	each	
area)	according	to	the	multi-modal	parcellation	separately	for	each	hemisphere.		Core	
groups	of	areas	(with	each	group	covering	similar	amounts	of	cortical	territory)	were	
selected	that	are	associated	with	auditory	(A1+MBelt+LBelt+PBelt+RI),	somatosensory	
(4+3a+3b+1),	visual	(V1+V2+V3),	task	positive	(PF+PHT+23c+46),	and	task	negative	(a.k.a	
default	mode)	networks	(PGi+PGs+TE1a+7m+v23ab+10r+10v).		Auditory,	somatosensory,	
and	visual	groups	were	selected	because	these	represent	the	main	input	modalities	to	the	
brain.		Task	positive	and	task	negative	cognitive	networks	were	selected	because	they	are	
the	strongest	anticorrelated	resting	state	networks	in	the	brain	(Fox	et	al.,	2005).		In	calling	
these	networks	“task	positive”	and	“task	negative”	we	do	not	mean	to	suggest	that	tasks	
never	activate	the	task	negative	network	or	always	activate	the	task	positive	network	(e.g.	
the	LANGUAGE	Story	vs	baseline	task	contrast	in	the	HCP	dataset	activates	the	task	
negative	network	but	not	the	task	positive	network),	but	rather	to	highlight	the	anti-
correlated	relationship	between	these	networks	and	avoid	making	assertions	about	what	
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the	brain’s	“default	mode”	is.		Nodes	of	the	task	positive	and	task	negative	networks	were	
selected	in	parietal,	temporal,	cingulate,	and	frontal	lobes.			

Five	area	groups	were	chosen	because	that	is	the	maximum	number	whose	colors	
can	be	blended	uniquely.		The	mean	PCASeries	of	the	5	groups	of	areas	were	computed	and	
these	were	temporally	multiple	regressed	into	the	parcellated	PCASeries,	producing	a	180	
X	5	partial	beta	matrix.		This	matrix	was	then	scaled	to	range	from	0	to	1.		The	scaled	matrix	
was	then	matrix	multiplied	with	a	primary	colors	matrix	[255	0	0	;	0	255	0	;	0	0	255	;	255	
255	255	;	0	0	0]	(pure	red,	green,	blue,	white,	black)	to	produce	an	180	X	3	color	
components	matrix.		This	matrix	was	rescaled	from	0	to	255	and	used	as	the	label	colors	
for	each	area	(e.g.	in	Main	Text	Figure	3,	see	associated	text	for	discussion	of	the	
neurobiological	interpretations	of	the	color	patterns).			
	
6.	Automatically	Defining	and	Identifying	Cortical	Areas	in	Individual	Subjects	Using	
Multi-modal	Areal	Fingerprints	
	
6.1	Motivation	
	

The	group	average	parcellation	described	in	the	preceding	methods	sections	and	in	
the	NSR	is	very	useful	in	its	own	right	for	various	purposes.		However,	it	is	also	desirable	to	
generate	parcellations	of	individual	subjects	(including	those	who	were	not	part	of	the	
original	group-average	parcellation)	that	are	as	accurate	as	possible	at	capturing	individual	
variability.		Despite	the	improvements	in	areal	feature-based	surface	registration	reported	
here	and	elsewhere	(Robinson	et	al.,	2014),	there	remain	residual	misalignments	between	
particular	individuals	in	particular	areas	and	the	typical	subject’s	areas	found	in	the	
population-based	parcellation.		We	found	that	a	major	source	of	these	residual	
misalignments	involved	topologically	incompatible	differences	in	the	spatial	neighborhood	
relationships	between	some	areas	in	some	individuals	and	the	typical	pattern	of	areal	
spatial	neighborhood	relationships	in	the	group.		For	example,	this	includes	areas	that	are	a	
single	contiguous	region	in	most	individuals,	but	with	strong	evidence	for	multiple	nearby	
but	discrete	patches	in	some	individuals	(see	ESDI	#1.3-1.4).		Topology-preserving	spatial	
registration,	such	as	MSM,	is	inherently	unable	to	compensate	for	such	topological	
differences	(and	if	regularization	was	relaxed	in	an	attempt	to	align	such	areas,	the	
resulting	estimated	warps	would	contain	excessive,	neurobiologically	implausible	amounts	
of	areal	distortion).			

One	approach	to	individual-subject	parcellation	is	to	rely	on	the	alignment	achieved	
by	the	registration	process	to	map	the	group-average	parcel	boundaries	back	to	each	
individual.		However,	this	does	not	take	into	account	the	residual	misalignments	after	the	
registration	process,	such	as	the	topological	mismatches	noted	above.		To	enable	accurate	
analyses	of	individual	variability	in	areal	size,	functional	activity,	or	connectivity,	we	sought	
a	way	to	generate	multi-modal	parcellations	in	the	individual	subjects	that	account	for	the	
residual	spatial	variability	in	areal	locations.		The	semi-automated	methods	used	to	
generate	the	group	parcellation	above	would	be	far	too	tedious,	especially	when	dealing	
with	a	large	number	of	subjects	(e.g.,	the	full	~1100	subjects	having	MRI	scans	for	the	HCP	
or	future	studies	that	may	wish	to	take	advantage	of	the	multi-modal	parcellation).		
Fortunately,	we	were	able	to	capitalize	on	machine	learning	methods	capable	of	addressing	
this	problem	once	the	typical	subject’s	parcellation	has	been	generated	at	the	group	level.			
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6.2	Machine	Learning	Classifier	Design	
	

We	started	with	a	multi-layer	perceptron	machine	learning	classifier	used	to	classify	
7	resting	state	networks	from	functional	connectivity	maps	(Hacker	et	al.,	2013)	and	
adapted	it	to	the	problem	of	classifying	cortical	areas	based	on	their	multi-modal	areal	
fingerprints.		Classifying	180	areas	in	a	single	classifier	run	across	the	whole	brain	is	an	
extremely	hard	problem,	made	even	harder	by	the	fact	that	spatially	distant	areas	(e.g.,	in	
different	lobes)	may	have	similar	areal	fingerprints.		Fortunately,	the	problem	becomes	
much	simpler	by	making	two	neurobiologically	reasonable	assumptions:		(1).		We	assume	
that	after	the	areal	feature-based	surface	registration,	individual	cortical	areas	are	in	
reasonably	close	proximity	to	the	group	areal	definition.		(2)	It	is	sufficient	to	distinguish	
each	cortical	area	from	all	of	its	spatially	adjacent	neighbors	combined	into	a	single	class.		
Binary	classification	(class	one=area,	class	two=neighbors)	is	the	simplest	and	most	robust	
kind	of	classification	problem.		Thus,	the	classification	problem	setup	and	classifier	
architecture	were	as	follows:		For	each	of	180	areas	in	each	hemisphere,	a	multi-layer	
perceptron	was	trained	to	classify	whether	or	not	each	vertex	in	an	ROI	containing	the	
group	areal	definition	plus	a	30	mm	surface	geodesic	distance	surrounding	it	is	a	part	of	
the	area	or	not—the	neuroanatomical	“searchlight”	for	the	area.		The	multi-layer	
perceptron	had	3	layers	(1	input,	1	hidden,	1	output)	and	the	same	nonlinear	functions	as	
in	(Hacker	et	al.,	2013)	and	used	9	hidden	nodes	(a	reasonable	compromise	between	
accuracy	and	training	speed	for	this	problem).		The	training	labels	were	the	group	average	
areal	definition	and	the	30	mm	radius	spatial	neighborhood	surrounding	it	(see	below	#6.6	
for	detecting	and	excluding	residually	misaligned	areas	in	specific	subjects	from	classifier	
training).	
	
6.3	Multi-modal	Features	for	Areal	Classification:	Myelin,	Thickness,	and	Resting	State	
Functional	Connectivity	
	

The	features	used	by	the	classifier	were	based	on	the	various	modalities	used	in	the	
semi-automated	parcellation,	but	they	were	optimized	for	single	subject	analyses,	classifier	
training	speed,	and	accuracy.		Simplest	were	the	individual	subject	myelin	and	cortical	
thickness	maps	corrected	for	folding	effects,	for	which	we	used	the	unsmoothed	left	and	
right	cortical	surface	maps	of	each	measure.			

Because	there	is	no	temporal	correspondence	across	subjects	in	the	rfMRI	
timeseries,	the	only	corresponding	rfMRI	subject-wise	(i.e.	without	reference	to	group	
data)	dataset	is	the	rfMRI	FC	“dense	connectome”	(91,282	X	91,282	X	4	bytes	=	32.5GB).		As	
mentioned	above	in	the	section	on	areal	feature	registration,	each	dense	connectome	
contains	a	large	amount	of	redundant	information	and	(unless	adequately	processed)	a	
large	amount	of	unstructured	noise	(see	above	#2.2).		Such	data	is	impractical	as	input	to	a	
classifier,	and,	as	with	the	MSMAll	registration,	a	dimensionality	reduction	with	
consistency	across	subjects	is	required.		As	with	MSMAll	registration,	this	was	done	using	
group	ICA	(d=137)	of	the	MIGP	PCASeries,	followed	by	weighted	regression	into	the	
individual	subjects’	final	dense	timeseries	(see	above	#2.3)	to	obtain	individual	subject	
versions	of	the	component	spatial	maps	with	the	same	splitting	and	component	numbers.			
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The	choice	of	RSN	dimensionality	for	the	classifier	rfMRI	modality	entails	a	balance	
between	classifier	accuracy	(measured	by	detection	rate	of	the	area—was	an	area	found	
with	between	0.33x	and	3x	the	group	area	size)	and	the	classifier’s	ability	to	detect	
misaligned	areas	(assessed	by	visual	inspection	in	the	210P	dataset	for	a	few	cortical	areas	
determined	to	have	substantial	cross-subject	variability	in	spatial	position	of	areal	features	
easily	discernible	for	multiple	modalities).		Because	a	central	objective	of	the	classifier	is	to	
detect	these	misaligned	areas,	the	classifier	step	is	not	useful	if	it	only	finds	the	area	in	the	
typical	group	location	in	every	subject,	if	in	fact	some	subjects	actually	have	it	in	an	atypical	
location.			

Preliminary	classifier	runs	using	dual	regression	(DR),	large	numbers	of	
components	(e.g.	200),	and	with	the	original	MSMRSN	registration	that	tolerated	
substantial	distortion	(Robinson	et	al.,	2014)	tended	to	have	this	negative	property	of	
failing	to	identify	misaligned	areas.		Better	misaligned	area	performance	was	achieved	with	
classifier	runs	using	much	lower	RSN	dimensionalities	(e.g.	27),	despite	having	overall	
lower	areal	detection	rates.		Although	larger	numbers	of	group	ICA	components	tap	deeper	
into	the	partial	correlation	relationships	between	areas,	it	is	problematic	if	they	begin	to	
cause	overfitting	of	the	classifier.		The	effort	to	address	this	tradeoff	between	overall	
detection	rate	and	ability	to	identify	misaligned	cortical	areas	for	low	vs	high	RSN	
dimensionalities	led	to	a	number	of	the	methodological	improvements	described	in	this	
study.		This	includes	the	use	of	the	less	distorting	MSMAll	registration;	the	use	of	weighted	
regression	instead	of	DR;	the	use	of	only	the	predominantly	surface	RSNs	in	the	classifier	
(i.e.	only	maps	with	useful	contrast);	and	the	use	of	an	RSN	dimensionality	that	describes	
the	data	by	a	local	minimum	in	the	number	of	spatially	contiguous	regions,	prior	to	the	
point	at	which	the	ICA	starts	adding	substantial	amounts	of	unstructured	noise	to	the	
subcortical	components	(as	mentioned	above,	at	around	d=140).		All	of	these	changes	
empirically	improved	classifier	performance	(at	detecting	misaligned	areas	at	higher	RSN	
dimensionalities)	and	helped	avoid	overfitting.		Some	of	them	also	improved	the	speed	of	
training	the	classifier	by	reducing	the	number	of	features	used.		Thus,	an	RSN	
dimensionality	of	d=137	was	chosen	because	it	offered	high	areal	detection	rates	while	still	
being	able	to	detect	misaligned	areas	well,	perhaps	because	it	contains	most	of	the	
available	useful	rfMRI	information	in	the	HCP	dataset.	
	
	
	
	
Figure	10,	below,	shows	the	task	processing	used	in	this	study.		Starting	from	the	task	design	and	the	
MSMAll_DeDrift	resampled	tfMRI	dense	timeseries	for	each	run,	the	important	outputs	in	BOLD	font	are	
produced.		The	task	GLM	is	fit	and	fixed	effects	cross-run	within	subject	analyses	are	performed	to	produce	
86	individual	subject	task	contrast	maps.		Cross-subject	mixed	effects	analyses	are	also	performed	to	produce	
86	group	task	contrast	maps	(beta	maps)	and	their	associated	gradients.		Because	there	is	a	lot	of	duplicate	
information	in	the	task	fMRI	contrast	map	datasets,	group	ICA	can	then	be	performed	on	these	maps	at	d=20	
(>99%	of	the	variance	across	contrasts	retained),	to	find	the	unique	information	in	the	tfMRI	dataset	and	
produce	spatial	maps	and	contrast	series.		These	contrast	series	can	be	multiple	regressed	into	the	individual	
subject	task	contrast	maps	using	a	single	“temporal”	regression	stage	to	produce	20	individual	subject	tfMRI	
component	maps	that	can	be	used	in	the	areal	classifier.		These	20	maps	contain	higher	CNR	than	the	original	
86	maps	because	of	cross-contrast	averaging	and	reduction	of	the	redundant	information	across	contrasts.		
Additionally,	the	mean	task	fMRI	image	is	included	as	a	feature	but	not	shown	above	(because	the	ICA	
decomposition	does	not	include	the	mean	image).			
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6.4	Multi-modal	Features	for	Areal	Classification:	Task	fMRI	
	

Figure	10	provides	an	overview	of	the	tfMRI	processing	used	in	this	paper.		The	HCP	
task	analysis	pipeline	generates	86	task	contrasts,	so	the	tfMRI	contrast	information	is	a	
91,282	X	86	contrast	beta	matrix	for	each	subject	(and	each	whole	group).		By	both	visual	
inspection	and	preliminary	classifier	performance,	the	individual	subject	tfMRI	contrast	
maps	had	substantially	lower	CNR	per	map	than	the	other	features	used	in	the	
classification	(thickness	may	contain	less	overall	useful	information,	but	the	information	it	
does	contain	has	high	CNR).		Additionally	there	is	extensive	redundancy	of	information	in	
the	group	and	individual	tfMRI	contrast	maps.		At	the	group	level,	this	redundancy	was	
assessed	by	performing	group	ICA	on	the	86	group	mixed	effects	tfMRI	contrast	beta	maps.		
Twenty	ICA	components	sufficed	to	represent	>99%	of	the	variance	in	these	86	group	
contrast	maps.		Interestingly,	by	visual	inspection	many	of	these	ICA	components	closely	
resemble	rfMRI	group	ICA	components,	though	the	dimensionality	at	which	they	emerge	
may	be	higher	than	a	d=20	rfMRI	group	ICA.		Also	some	components	found	in	the	d=20	
rfMRI	group	ICA	are	absent	from	the	d=20	tfMRI	contrast	map	group	ICA.		This	suggests	
that	the	HCP	task	battery	was	imperfect	in	covering	all	possible	cognitive	brain	states	
measurable	by	BOLD	fMRI,	even	though	efforts	were	made	to	provide	broad	spatial	
coverage	of	the	brain	(Barch	et	al.,	2013).		The	finding	of	similarities	between	rfMRI	group	
ICA	components	and	tfMRI	contrast	map	group	ICA	components	is	reminiscent	of	(Smith	et	
al.,	2009)	and	is	consistent	with	(Cole	et	al.,	2014)’s	finding	of	very	similar	patterns	when	
all	of	the	HCP	tfMRI	data	are	processed	like	rfMRI	data	and	compared	with	rfMRI	data.			

Because	the	d=20	dimensionality	reduction	of	the	group	ICA	components	reduces	
redundancies,	it	reduced	classifier	computational	time	and	also	improved	individual	
subject	tfMRI	contrast	map	CNR.		Group	ICA	produces	both	component	spatial	maps	and	
component	“contrast	series”	(the	equivalent	of	a	component	timeseries	when	using	rfMRI	
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data).			Because	each	of	the	86	tfMRI	contrasts	means	the	same	thing	across	subjects	(as	
opposed	to	resting	state	timeseries	that	do	not	correspond	across	subjects),	a	simple	single	
“temporal”	multiple	linear	regression	stage	was	sufficient	to	produce	individual	subject	
dimensionality-reduced	tfMRI	contrast	maps.		The	20	group	component	tfMRI	contrast	
series	were	“temporally”	regressed	into	the	86	individual	subject	tfMRI	contrast	maps.		
This	produced	20	tfMRI	component	contrast	maps	with	the	redundant	information	
removed	and	CNR	improved	because	of	averaging	across	multiple	contrast	maps.		
Additionally	the	mean	contrast	map	was	included	because	the	ICA	decomposition	does	not	
represent	the	mean	map,	only	the	variance	across	maps.		These	21	maps	were	used	in	the	
areal	classifier	to	represent	the	tfMRI	modality.		Preliminary	classifier	runs	indicated	that	
this	data	was	used	more	efficiently	than	using	86	contrast	maps,	as	evidenced	by	higher	
feature	weights	for	tfMRI.		Also,	in	a	separate	analysis	(see	Main	Text)	the	classifier	was	run	
without	including	any	tfMRI	data	at	all	to	see	how	it	would	perform	in	studies	where	the	
HCP’s	task	fMRI	battery	was	not	available.	
	
6.5	Multi-modal	Features	for	Areal	Classification:	Within-area	Smooth	Gradients	in	Visuotopic	
Maps	Derived	from	Resting	State	Functional	Connectivity	
	

A	final	source	of	information	fed	into	the	areal	classifier	was	the	visotopically-
organized	rfMRI	FC	used	for	defining	early	extrastriate	visual	areas	(see	above	#4.4,	and	
NSR	#2-4).		The	multi-layer	perceptron	classifier	cannot	directly	interpret	smoothly	
varying	intra-area	topographic	gradients	within	the	whole-brain	visuotopic	spatial	
regression	maps.		This	is	because	the	classifier	treats	each	value	of	each	feature	
independently,	and	has	no	way	of	assessing	spatial	patterns	in	the	values	(it	only	knows	if	
they	are	distinctly	higher	or	lower	in	a	given	cortical	area	vs	the	30	mm	surrounding	it).		As	
mentioned	above	(see	Figures	8	and	9),	it	was	necessary	to	transform	the	topographic	data	
into	a	form	that	the	areal	classifier	could	use.		We	achieved	this	by	taking	the	dot	product	of	
the	gradient	vector	of	the	visuotopic	whole	brain	regression	map	and	a	reference	vector	
whose	direction	is	based	on	the	start	of	the	shortest	geodesic	path	towards	the	V1	ROI.			
	 The	resulting	dot	product	maps	contain	positive	values	when	the	gradient	vector	
points	towards	V1	and	negative	values	when	it	points	away	from	V1.		The	change	from	
positive	to	negative	should	occur	at	visuotopic	areal	boundaries,	converting	the	within-
area	spatially	varying	pattern	into	a	map	that	is	consistent	across	the	entire	area	and	can	
be	used	by	the	classifier	in	the	same	way	that	it	handles	other	modalities.		For	example,	we	
used	the	gradient	of	the	spatial	contrast	between	horizontal	and	vertical	meridians	to	
define	cortical	areas	V2	and	V3	in	extrastriate	cortex	(NSR	#2).		To	the	extent	that	
visuotopy	within	areas	V2	and	V3	is	perfectly	orderly,	the	gradient	vector	of	this	spatial	
contrast	should	always	point	away	from	V1	within	V2	(dot	product	of	the	gradient	vector	
with	the	V1	ROI	reference	vector	producing	negative	values),	and	point	towards	V1	within	
V3	(with	the	dot	product	of	the	vectors	producing	positive	values).		Thus,	the	transition	
between	negative	and	positive	values	occurs	at	the	V2/V3	border	(in	an	analogous	way	to	
how	the	field	sign	changes	at	the	areal	border	(Sereno	et	al.,	1995).		The	classifier	made	use	
of	this	transformed	information,	just	as	it	does	for	the	other	modalities,	to	define	areas	V2	
and	V3	in	individual	subjects.		This	type	of	transformation	was	computed	for	all	four	polar-
angle	related	spatial	contrasts	and	the	first	eccentricity	related	contrast,	producing	useful	
information	for	the	classifier	to	delineate	and	identify	visuotopically	organized	areas	in	
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individual	subjects.		The	transformation	was	also	computed	on	the	upper	vs	lower	vertical	
meridian	contrast	after	the	absolute	value	is	taken	so	that	areas	V2,	V3,	and	V4	have	the	
same	sign	throughout	their	extents	(otherwise	for	this	contrast	in	V2	for	example,	the	
superior	portion	would	have	a	positive	sign	and	the	inferior	portion	would	have	a	negative	
sign).		This	is	because	the	gradient	vectors	always	point	towards	the	higher	number	(e.g.	
they	will	point	away	from	a	local	minimum).			
	

	
	
Figure	11	shows	the	procedure	used	to	go	from	the	group	parcellation	and	individual	subject	multi-modal	
areal	features	to	the	important	outputs	produced	by	the	areal	classifier	and	listed	in	BOLD	font.		The	
individual	subject	multi-modal	areal	features	are	concatenated	(n=112)	and	used	together	with	the	group	
area	ROI	and	30	mm	surround	as	training	labels	for	the	initial	classifier	training.		This	abbreviated	training	is	
used	to	identify	the	important	areal	features,	which	are	then	used	to	detect	the	subjects	that	are	likely	to	have	
a	misaligned	cortical	area.		These	subjects	are	excluded	from	the	final	classifier	training	(which	also	uses	the	
group	training	labels)	so	that	they	do	not	confuse	the	classifier	(as	they	will	be	outliers	for	which	the	group	
training	labels	will	not	be	valid).	This	final	training	produces	the	final	classifier	training	weights,	which	can	be	
used	in	the	210V	group	or	another	study.		These	weights	are	used	to	simply	apply	the	classifier	to	the	
individual	subject	multi-modal	features,	producing	the	final	areal	fingerprints	(what	the	classifier	has	
determined	are	the	distinctive	features	of	each	cortical	area	relative	to	it	neighbors).		Then	the	classifiers	are	
combined	across	areas	to	produce	the	final	individual	subject	parcellations.			
	
6.6	Implementation	of	the	Machine	Learning	Classifier		
	
	 Figure	11	shows	an	overview	of	the	implementation	of	the	areal	classifier.		112	
feature	maps	representing	all	of	the	parcellation	modalities	in	each	individual	were	
provided	to	the	classifier	for	training	(1	thickness	map	corrected	for	curvature,	1	myelin	
map,	1	surface	curvature	map,	1	mean	tfMRI	activation	map,	20	tfMRI	component	contrast	
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maps,	77	surface	rfMRI	RSN	maps	from	a	d=137	ICA,	1	map	of	vein	effects,	1	fMRI	dropout	
map,	1	map	of	insular	surface	artifacts,	1	map	of	the	resting	state	timeseries	standard	
deviation,	1	map	of	the	mean	grey	timecourse	beta,	and	5	topographic	regression	dot	
product	maps).		Classifier	training	used	these	maps	from	the	210P	(training	set)	and	29T	
(test	set)	subject	groups	together	with	areal	distortion	maps	for	each	subject.		The	areal	
features	were	demeaned	and	normalized	so	that	each	modality	had	a	similar	spatial	
standard	deviation	(to	initially	give	each	modality	equal	weight	in	proportion	to	the	
number	of	features	it	contains).		An	initial	“quick”	1,000-iteration	classifier	training	was	
done	after	excluding	areal	distortion	outliers,	by	using	all	subjects	that	had	a	mean	areal	
distortion	within	the	area	being	classified	of	less	than	2-fold	expansion	or	contraction	(in	
practice	few	subjects	in	few	areas	were	excluded	by	this	criterion	because	of	the	
improvements	in	the	MSMAll	registration	used	in	this	study).		
	 After	the	initial	quick	classifier	training,	the	output	weight	matrices	were	
algorithmically	examined	to	determine	which	features	drove	the	areal	classification	of	each	
area.		Specifically,	for	each	area	class,	its	partial	derivatives	with	respect	to	the	input	data	
values	were	computed	and	evaluated	using	the	feature	data.		This	measure	was	then	
multiplied	by	the	features’	gradient	magnitudes	to	generate	a	classifier	‘sensitivity’	metric.		
Spatially,	these	sensitivities	were	highest	in	absolute	value	along	the	parcel	boundaries.		
Features	whose	sensitivities	were	higher	in	absolute	value	contribute	more	to	the	areal	
classification	than	those	whose	sensitivities	had	lower	absolute	value.		We	used	this	
sensitivity	information	to	automatically	select	features	that	were	particularly	predictive	of	
areal	misalignment	in	individual	subjects	for	a	given	area	(because	the	features	most	
strongly	used	in	classification	should	also	be	most	likely	to	differ	if	an	individual	cortical	
area	is	misaligned	with	the	group	average	cortical	areal	definition—the	training	label).		If	in	
a	particular	individual	for	the	region	near	a	particular	area	deviated	substantially	from	the	
group	values	in	the	region,	the	subject	was	excluded	from	training.			
	 After	potentially	misaligned	subjects	were	excluded	from	the	training	and	test	sets,	
the	classifier	was	trained	using	a	full	4,000	iterations	(the	learning	rate	nonlinearly	
increased	with	iteration	number).		The	classifier	learning	rate	was	automatically	adjusted	
down	if	the	classifier	was	stopping	too	early	(i.e.	it	detected	it	was	overfitting	itself	to	the	
210P	training	dataset,	insofar	as	performance	on	the	29T	test	dataset	began	to	drop)	and	
the	number	of	iterations	was	extended	(since	the	training	would	take	longer	with	a	lower	
learning	rate).		The	overall	loop	(that	was	able	to	adjust	the	learning	rate)	was	terminated	
when	the	most	recent	training	run	was	the	best	and	the	classifier	had	finished	the	
requested	number	of	iterations,	or	the	classifier	AUC	(Area	Under	Curve)	was	greater	than	
0.98.		If	the	most	recent	run	did	worse	than	a	previous	run	with	a	higher	learning	rate,	the	
process	was	also	stopped	and	the	previous	run	was	used.		The	goal	was	to	either	get	an	
AUC	of	>0.98	or	to	complete	the	full	number	of	training	iterations	without	prematurely	
stopping.		Classifier	performance	was	evaluated	using	AUC	and	MSE	(Mean	Squared	Error)	
as	standard	metrics.		Once	satisfactory	classification	had	been	achieved,	the	trained	
classifier	was	applied	to	every	subjects’	data	(including	the	misaligned	subjects).		Classifier	
performance	was	also	evaluated	by	confirming	that	in	subjects	with	known	misaligned	
areas	the	classifier	was	correctly	classifying	these	areas	(visually	based	on	multi-modal	
information,	see	for	example	Supplementary	Figures	9	and	10	in	the	SRD).		
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6.7	Combination	Across	Areal	Classifiers	
	

Classifier	output	values	ranged	from	0	to	1	for	each	class	(class	one=area,	class	
two=neighborhood),	indicating	the	likelihood	that	a	given	vertex	in	a	given	individual	is	
part	of	either	the	cortical	area	or	the	neighborhood.		The	areal	probability	maps	(class	one)	
for	each	area	in	a	subject	were	combined	using	a	find	the	biggest	approach.		Regions	where	
no	areal	probability	exceeded	50%	were	also	marked	as	areal	“holes”	(when	present	
consistently	across	subjects,	these	represented	candidates	for	draft	parcellation	revision,	
see	above	#5.1).		There	were	several	instances	(e.g.	among	the	VMV1-3	areas,	particularly	
VMV1)	where	this	occurred.		We	think	the	hole	arises	when	the	classifier	encounters	two	
distinct	areal	fingerprints	within	a	larger	draft	parcel.		It	likely	only	learns	the	larger	of	
these,	so	the	smaller	one	is	neglected.		Because	it	is	not	represented	by	a	high	areal	
probability	for	any	classifier,	the	smaller	region	becomes	an	“area	hole.”		The	issue	is	
resolved	if	an	appropriate	subparcellation	is	done,	as	each	areal	classifier	learns	the	areal	
fingerprint	of	its	subparcellated	area,	and	both	will	now	be	detected	with	high	probability.			

This	initial	combined	parcellation	was	regularized	(i)	to	remove	very	small	patches	
(less	than	25	mm2);	(ii)	to	join	pieces	of	areas	that	were	broken	by	only	a	few	vertices	of	
another	area	(as	long	as	the	piece	being	joined	was	proportionally	larger	than	any	piece	
being	split	off	from	another	area	as	a	result	of	the	joining	operation);	and	(iii)	to	make	sure	
that	if	any	multiple	pieces	remained,	they	were	at	least	0.33x	the	size	of	the	largest	piece	
and	within	30	mm	of	its	nearest	edge.		Any	remaining	holes	in	the	parcellation	were	filled	
by	nearest	neighbor	dilation.		After	careful	consideration	of	the	multi-modal	evidence,	we	
did	not	enforce	a	strict	spatial	contiguity	constraint	on	the	parcels	in	individual	subjects.		
We	found	strong	multi-modal	evidence	of	parcels	that	were	split	into	multiple	pieces	in	
some	atypical	individuals,	although	in	the	typical	subject	(i.e.	group	average)	they	were	
joined	(see	SRD	#1.3-1.4).	The	resulting	initial	individual	subject	parcellations	were	
checked	relative	to	the	group	parcellations	to	see	if	the	areas	found	were	within	0.33x	to	3x	
the	size	of	the	group	area.		If	this	was	the	case,	the	area	was	considered	to	have	been	
detected	in	the	individual	subject.			
	
6.8	Classification	of	Individual	Subject	Cortical	Areas	Based	on	Their	Multi-modal	Areal	
Fingerprints	
	

The	final	classifier	training	weights	were	applied	to	the	210P	and	210V	subject	
groups	to	make	final	individual	subject	cortical	parcellations.		Additionally,	the	partial	
derivatives	were	tracked	through	the	classifier	application	and	multiplied	by	the	feature	
map	gradient	magnitudes	to	produce	the	final	areal	fingerprints	of	each	cortical	area—that	
is,	the	information	the	classifier	learned	that	uniquely	distinguishes	the	cortical	area	from	
surrounding	cortex	(see	above	#6.1,	Supplementary	Figure	12	in	the	SRD).		
	
7.	Parcellating	Data	and	Validating	the	Parcellation		
	
7.1	Creation	of	Parcellated	Datasets	of	Multiple	Modalities	
	

Parcellated	datasets	offer	a	tremendous	reduction	in	data	size	and	complexity,	
together	with	performing	a	neurobiologically	valid	form	of	spatial	integration	that	does	not	
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blur	across	tissue	types	or	areal	boundaries	as	happens	with	conventional	smoothing.		
They	increase	statistical	sensitivity	and	power	both	by	reducing	unstructured	noise	and	
multiple	comparisons.		For	most	whole	brain	analyses,	parcellated	datasets	should	be	
easier	to	work	with	and	more	likely	to	show	interesting	effects	(e.g.	correlations	with	
behavior,	genetics,	etc.).		Also,	they	provide	a	level	of	coarseness	appropriate	for	
integration	with	non-MRI	modalities	such	as	magnetoencephalography	(MEG;	(Larson-
Prior	et	al.,	2013).		Thus,	we	created	parcellated	datasets	of	each	modality	used	in	this	
study,	except	for	the	within	area	topographic	gradients,	which	are	an	example	of	a	
phenomenon	that	is	inherently	more	appropriate	to	study	using	dense,	grayordinate-wise	
data.			

Myelin	maps	and	thickness	maps	were	simply	averaged	across	each	parcel.		For	the	
fMRI	modalities,	cross-parcel	averaging	substantially	reduces	the	unstructured	noise	
present	in	the	timeseries	data.		tfMRI	timeseries	data	were	averaged	within	parcels	and	
then	the	tfMRI	analysis	pipeline	(described	above)	was	run	(with	autocorrelation	
smoothing	turned	off).		This	generated	parcellated	task	contrast	maps,	which	are	
advantageous	for	assessing	the	statistical	significance	of	activations	without	resorting	to	
conventional	statistical	approaches	for	dealing	with	voxelwise	multiple	comparisons	that	
are	likely	less	sensitive	(e.g.	Threshold-Free	Cluster	Enhancement,	(Smith	and	Nichols,	
2009)),	and,	in	the	case	of	Gaussian	Random	Field	theory,	use	geometrical	models	that	are	
poorly	matched	to	areal	shapes	in	the	convoluted	cortex.		One	still	needs	to	do	multiple	
comparison	correction;	however,	because	of	the	reduced	number	of	tests,	there	is	more	
power.		rfMRI	timeseries	data	were	averaged	within	parcels.		Parcellated	functional	
connectomes	were	computed	using	full	and	partial	correlation	(by	inverting	the	covariance	
matrix)	using	FSLNets	((Smith	et	al.,	2013b)	http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).		
These	connectomes	were	converted	to	Z-scores	using	the	Fisher	transform	and	an	
empirical	correction	for	temporal	autocorrelation	(see	FSLNets).			

To	produce	group	average	parcellated	datasets,	myelin	and	thickness	parcellated	
maps	were	simply	averaged.		tfMRI	contrast	maps	were	combined	across	subjects	by	
processing	the	data	through	the	group	tfMRI	analysis	pipeline	using	a	mixed	effects	
analysis	(FSL’s	FLAME).		rfMRI	FC	parcellated	connectomes	were	also	combined	across	
subjects	using	a	mixed	effects	analysis	(a	one-sample	t-test	performed	across	subjects	on	
each	cell	to	produce	group	mixed	effects	Z	statistic	maps).		Thus,	both	individual	subject	
and	group	average	parcellated	datasets	were	generated	for	myelin,	thickness,	tfMRI	
contrasts,	and	rfMRI	FC	full	and	unregularized	partial	correlation	connectomes.			
	
7.2	Validation	of	the	Multi-modal	Parcellation	with	an	Independent	HCP	Dataset	
	

All	parcellation	and	areal	classifier	training	analyses	described	in	preceding	sections	
were	performed	on	the	210P	parcellation	subjects	(plus	29T	classifier	test	subjects).		The	
210V	validation	subjects	were	set	aside	as	an	independent	cross-validation	dataset.		Given	
the	large	number	of	subjects	in	each	group,	we	expected	that	aggregate	results	would	be	
very	similar	between	the	two	groups	(as	was	shown	in	the	Supplementary	Figures	1-5	in	
the	SRD	and	#1.1	for	the	reproducibility	of	the	dense	features	used	for	parcellation).		To	
produce	individual-subject	parcellations	in	the	210V	group,	the	multi-modal	individual	
subject	features	were	generated	and	the	trained	classifiers	(i.e.	two	weight	matrices	and	
two	nonlinear	functions	for	each	cortical	area)	were	applied	to	each	individual	subject’s	
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multi-modal	areal	features	to	define	and	identify	their	cortical	areas.		The	classifier	outputs	
were	combined	as	described	above.			Two	approaches	were	then	used	to	cross-validate	the	
parcellation.			

1)	Parcellated	datasets	of	210V	individuals	were	generated	using	the	original	semi-
automated	parcellation	from	the	210P	dataset	(applied	as	an	atlas	parcellation,	rather	than	
using	the	areal	classifier)	for	myelin	maps,	cortical	thickness	maps,	tfMRI	contrast	maps,	
and	an	rfMRI	full	correlation	parcellated	connectome.		These	data	were	concatenated	into	
an	areas	X	features	X	subjects	matrix.		t-tests	across	subjects	were	done	between	each	pair	
of	areas	that	shared	a	border	in	the	original	210P	parcellation	for	each	feature	to	determine	
whether	the	feature	was	robustly	and	statistically	significantly	different	between	the	two	
neighboring	areas.		A	conservative	Bonferroni	threshold	of	p<9*10-8	was	imposed	on	the	
data	(#	of	area	pairs	across	both	hemispheres	(1050)	X	number	of	features	(266)	X	number	
of	tails	(2)	*	0.05).		63%	of	all	possible	feature/border	combinations	were	significant,	
including	many	features	that	the	classifier	regarded	as	unimportant	for	defining	the	
relevant	area.		We	therefore	opted	to	additionally	threshold	based	on	effect	size	(Cohen’s	
d>1).		We	grouped	features	into	4	independent	categories:	myelin,	thickness,	tfMRI	
contrasts	(though	technically	the	seven	tasks	are	independent)	and	the	rfMRI	full	
correlation	parcellated	connectome.		We	then	binned	areal	pairs	according	to	how	many	
feature	categories	in	which	they	had	a	robust	and	statistically	significant	difference	across	
their	mutual	border.		The	parcellated	connectome’s	diagonal	was	ignored	for	this	test	(else	
areas	would	always	be	different	from	their	neighbors	because	of	a	connectivity	difference	
with	the	diagonal).		The	vast	majority	of	areal	pairs	had	robust	and	statistically	significant	
effect	sizes	in	more	than	one	independent	feature	category	in	the	independent	cross-
validation	dataset	(see	Main	Results,	SRD	#1.2).			

2)	Probabilistic	maps	of	each	cortical	area	within	each	hemisphere	were	generated	
by	averaging	the	areal	definitions	across	subjects	within	the	210P	and	210V	groups	
separately,	and	a	maximum	probability	map	MPM	map	was	calculated	for	each	group	based	
on	the	probabilistic	maps.		The	group	MPM	maps	were	converted	into	binary	ROIs	(180	of	
them,	one	for	each	area),	which	were	concatenated	into	a	single	vector.		The	210P	MPM	
vector	and	the	210V	MPM	vectors	were	correlated	(also	the	210P	MPM	was	correlated	with	
the	original	semi-automated	multimodal	parcellation).		Because	some	readers	found	the	
Dice	coefficient	more	intuitive	than	correlation	for	this	application	we	also	computed	it	for	
each	parcellation	reproducibility	test.		The	Dice	coefficent	is	(2	*	A	∩	B)/(A	+	B).	

3)	The	individual	subject	parcellations	of	the	27	individuals	who	were	scanned	and	
analyzed	with	the	whole	protocol	on	two	separate	occasions	were	also	correlated	and	
Diced	as	in	2)	above.			
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