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Appendix A

Mean of protein in the presence of cell cycle variations

Based on standard stochastic formulation of chemical kinetics [1, 2], the model introduced

in Figure 2A coupled with phase-type distribution introduced in Figure 3 contains the

following stochastic events
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Note that x+(ts) is protein level after division, characteristics of x+(ts) is related to

protein level before division as shown in equation (5) of the main text. Whenever an

event occurs, protein level and states of phase-type distribution change based on the

stoichiometries shown in the second column of the table. The third column of table

shows event propensity function ψ(x, gij), which determines how often reactions occur,

i.e., the probability that an event occurs in the next infinitesimal time interval (t, t+dt] is

ψ(x, gij)dt. Protein production is a stochastic event which happens in bursts, each burst

generates B molecules where B is a general random variable with distribution

Probability{B = u} = p′′u, u ∈ {0, 1, . . . ,∞}. (A.1)
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The probability of having a burst in the time interval (t, t+ dt] is kxp
′′
udt. Events related

to time evolution of phase-type distribution happen with a constant rate ik.

Cell division changes both the level of protein and states of phase-type. This event

contains start of new cell cycle, hence whenever this event occurs, the last state of phase-

type distribution resets to zero, and a new cell cycle which is sum of i exponentials

starts with probability pi; protein count level also resets to x+(ts). The probability of

cell division and starting a new cell cycle from state gi1 in the time interval (t, t + dt] is

kpi
∑n

j=1(jgjj)dt.

Theorem 1 of [3] gives the time derivative of the expected value of any function ϕ(x, gij)

as

d〈ϕ(x, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, gij)× ψ(x, gij)

〉
, (A.2)

where ∆ϕ(x, gij) is a change in ϕ when an event occurs. Based on this setup, mean

dynamics of protein can be written by choosing ϕ to be x

d〈x〉
dt

= kx〈B〉+ k
n∑
j=1

j
(〈

(
x

2
− x)gjj

〉)
⇒

d〈x〉
dt

= kx〈B〉 −
k

2

n∑
j=1

(j〈xgjj〉) ,
(A.3)

where we replaced conditional expected value of x+ by x/2 based on relation between

statistical properties of x+ and x shown in equation (5).

Dynamics of 〈x〉 is not closed and depends to moments 〈xgjj〉, hence in order to have

a closed set of equations we add new moments dynamics by selecting ϕ to be xgij. We

do it in two steps: first we write the moment dynamics of 〈xg11〉

d〈xg11〉
dt

= kx〈B〉〈g11〉+
k

2
p1
〈
xg211

〉
− kp1

〈
xg211

〉
− k

n∑
i=2

pi 〈xg11〉 . (A.4)
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In the equation (9) of the main text it has been shown that

〈gnijxm〉 = 〈gijxm〉, n ∈ {1, 2, . . .}, (A.5)

thus the term 〈xg211〉 will simplify as

〈
xg211

〉
= 〈xg11〉 , (A.6)

and the dynamics of 〈xg11〉 can be written as

d〈xg11〉
dt

= kx〈B〉〈g11〉+
k

2
p1 〈xg11〉 − k 〈xg11〉 . (A.7)

In the second step we write dynamics of the moments of the form 〈xgij〉 other than 〈xg11〉

d〈xgi1〉
dt

= kx〈B〉〈gi1〉+ kpi

n∑
j=1

(
j
〈

(
x

2
+
x

2
gi1 − xgi1)gjj

〉)
− ik〈xgi1〉, (A.8a)

d〈xgij〉
dt

= kx〈B〉〈gij〉 − ik〈xgij〉+ ik〈xgi(j−1)〉, j ∈ {2, . . . , i}, (A.8b)

where dynamics of 〈xgi1〉 can be written as

d〈xgi1〉
dt

= kx〈B〉〈gi1〉+ kpi

n∑
j=1

(
j
〈x

2
gjj

〉)
+ kpi

n∑
j=1

(
−j
〈x

2
gi1gjj

〉)
− ik〈xgi1〉. (A.9)

The equation (10) in the main text shows that

〈gijgrqxm〉 = 0, if i 6= r or j 6= q, (A.10)
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hence
∑n

j=1

(
j
〈
x
2
gi1gjj

〉)
= 0, and equation (A.9) simplifies to

d〈xgi1〉
dt

= kx〈B〉〈gi1〉+
k

2
pi

n∑
j=1

(j 〈xgjj〉)− ik〈xgi1〉. (A.11)

Further based on Figure 3 in the main text the probability of selecting a branch of i

exponentials is pi, and because all the transitions happen with a constant rate ik, hence

mean of each of these i states is

〈gij〉 =
pi
i
. (A.12)

This also can be seen by solving moment dynamics of 〈gij〉

d〈gi1〉
dt

= kpi

n∑
j=1

(j〈gjj〉)− ik〈gi1〉, (A.13a)

d〈gij〉
dt

= ik〈gi(j−1)〉 − ik〈gij〉, j = {2, . . . , i}. (A.13b)

Overall equations (A.7), (A.8b), (A.13), and (A.11) can be compactly written as shown

in equations (11)-(14).



Appendix B

Moment dynamics of hybrid model introduced in Fig-

ure 2B

Stochastic hybrid system introduced in Figure 2B coupled with phase-type distribution

contains the following stochastic events

Event Reset Propensity 
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and deterministic protein production dynamics

ẋ = kx〈B〉. (B.1)

Time derivative of the expected value of any function ϕ(x, gij) for this hybrid system can

be written as [3]

d〈ϕ(x, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, gij)× ψ(x, gij)

〉
+

〈
∂ϕ(x, gij)

∂x
kx〈B〉

〉
, (B.2)

where the first term in the right-hand side is contributed from stochastic events and the

second term is contributed from deterministic protein production dynamics. Based on

6



7

this equation, the mean dynamics of the protein is calculated by choosing ϕ to be x

d〈x〉
dt

= kx〈B〉 −
k

2

n∑
j=1

(j 〈xgjj〉) , (B.3)

which is the same as equation (A.3). In addition to mean, dynamics of 〈xgij〉 are also

equal to their equation in the previous section.

The second order moment dynamics of protein can be expressed by choosing ϕ to be

x2

d〈x2〉
dt

= 2kx〈B〉〈x〉+ k
n∑
j=1

(
j

〈((x
2

)2
− x2

)
gjj

〉)
, (B.4)

which can be simplified as

d〈x2〉
dt

= 2kx〈B〉〈x〉 −
3k

4

n∑
j=1

(
j
〈
x2gjj

〉)
. (B.5)

In order to have a closed set of equations we select ϕ to be of the form x2gij. At the first

step we write moment dynamics of 〈x2g11〉

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
k

4
p1
〈
x2g211

〉
− kp1

〈
x2g211

〉
− k

n∑
i=2

pi〈x2g11〉. (B.6)

Based on equation (9) of the main text, the term 〈x2g211〉 simplifies as

〈
x2g211

〉
=
〈
x2g11

〉
, (B.7)

hence dynamics of 〈x2g11〉 will be

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (B.8)
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In the second step, we write dynamics of moments 〈x2gij〉 when gij 6= g11

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+ kpi

n∑
j=1

(
j

〈(
x2

4
+
x2

4
gi1 − x2gi1

)
gjj

〉)
− ik〈x2gi1〉, (B.9a)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − ik〈x2gij〉+ ik〈x2g(i−1)j〉, j = {2, . . . , i} , (B.9b)

where dynamics of 〈x2gi1〉 can be shown to follow

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
−3k

4
pi

n∑
j=1

(
j
〈
x2gi1gjj

〉)
−ik〈x2gi1〉. (B.10)

Based on equation (10) in the main text
∑n

j=1 (j 〈x2gi1gjj〉) = 0, thus equation (B.10)

simplifies to

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
− ik〈x2gi1〉. (B.11)

Equations (B.8), (B.9b), and (B.11) can be compactly written as equations (19) and (20)

in the main text.



Appendix C

Moment dynamics of hybrid model introduced in Fig-

ure 2C

Stochastic hybrid system introduced in Figure 2C coupled with phase-type distribution

contains the following stochastic events

Event Reset Propensity 
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and deterministic protein production dynamics

ẋ = kx〈B〉. (C.1)

Note that in this model x(t) is a continuous random variable, thus we also use a continuous

distribution to describe x+(ts), however statistical properties of x+(ts) is still given by

(5). For this model we still can use equation (B.2) to derive moment dynamics; equations

describing time evolution of mean and 〈xgij〉 are the same as previous models, thus mean

of protein for this model is equal to its value in Appendix A. The second order moment
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dynamics of protein can be written by choosing ϕ to be x2 in equation (B.2)

d〈x2〉
dt

= 2kx〈B〉〈x〉+ k
n∑
j=1

(
j

〈(
x2

4
+
αx

4
− x2

)
gjj

〉)
, (C.2)

where conditional expected value of x2+ is substituted based on equation (5). Dynamics

of 〈x2〉 can be simplified as

d〈x2〉
dt

= 2kx〈B〉〈x〉+
αk

4

n∑
j=1

(j 〈xgjj〉)−
3k

4

n∑
j=1

(
j
〈
x2gjj

〉)
. (C.3)

The same as before we add dynamics of the form 〈x2gij〉 to have a closed set of dynamics.

First we add dynamics of 〈x2g11〉

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
αk

4
p1
〈
xg211

〉
+
k

4
p1
〈
x2g211

〉
− kp1

〈
x2g211

〉
− k

n∑
i=2

pi〈x2g11〉,

(C.4)

Based on equation (9) of the main text dynamics of 〈x2g11〉 simplifies to

d〈x2g11〉
dt

= 2kx〈B〉〈xg11〉+
αk

4
p1 〈xg11〉+

k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (C.5)

Now we express dynamics of moments 〈x2gij〉 for gij 6= g11

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+ kpi

n∑
j=1

(
j

〈(
x2

4
+
x2

4
gi1 +

αx

4
+
αx

4
gi1 − x2gi1

)
gjj

〉)
− ik〈x2gi1〉,

(C.6a)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − ik〈x2gij〉+ ik〈x2g(i−1)j〉, j = {2, . . . , i} , (C.6b)
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where dynamics of 〈x2gi1〉 can be shown as

d〈x2gi1〉
dt

=2kx〈B〉〈xgi1〉+
αk

4
pi

n∑
j=1

(j 〈xgjj〉) +
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
+
αk

4
pi

n∑
j=1

(j 〈xgi1gjj〉)−
3k

4
pi

n∑
j=1

(
j
〈
x2gi1gjj

〉)
− ik〈x2gi1〉.

(C.7)

Based on equation (10) in the main text
∑n

j=1 (j 〈x2gi1gjj〉) = 0, and
∑n

j=1 (j 〈xgi1gjj〉) =

0, hence equation (C.7) simplifies to

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
αk

4
pi

n∑
j=1

(j 〈xgjj〉) +
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
− ik〈x2gi1〉. (C.8)

Equations (C.3), (C.5), (C.6b), and (C.8) can be compactly written as equations (28)-(30)

in the main text.



Appendix D

Effect of mean protein level on partitioning noise

Right before division, the phase type is in one of its last states. Hence the mean number

of proteins before division, can be derived by conditioning on the phase type being on the

last stages Gii

〈x | gii = 1〉 =
〈xgii〉
〈gii〉

, i ∈ {1, 2, . . . , n}. (D.1)

Using (D.1) and moment 〈xgii〉 obtained from (16) in the main article, we derive the mean

number of proteins right before

〈x|gii = 1〉 = 2kx〈B〉〈T 〉, i ∈ {1, 2, . . . , n}. (D.2)

D.1 Partitioning noise for constant variance

Suppose that the noise added by partitioning is independent of the protein level before

division, i.e.,

〈x+(ts)|x(ts)〉 =
x(ts)

2
,

〈
x2+(ts)− 〈x+(ts)〉2

∣∣∣∣x(ts)

〉
= α, (D.3)
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Then the time evolution of 〈x2〉 and 〈x2gij〉 changes to

d〈x2〉
dt

= 2kx〈B〉〈x〉+ αk
n∑
j=1

(j〈gjj〉)−
3

4
k

n∑
j=1

(
j〈x2gjj〉

)
, (D.4a)

d〈x2gi1〉
dt

= 2kx〈B〉〈xgi1〉+
k

4
pi

n∑
j=1

(
j〈x2gjj〉

)
+ αkpi

n∑
j=1

(j〈gjj〉)− ik〈x2gi1〉, (D.4b)

d〈x2gij〉
dt

= 2kx〈B〉〈xgij〉 − ik〈x2gij〉+ ik〈x2g(i−1)j〉, j = {2, . . . , i} . (D.4c)

Taking a similar approach as we used in the main article results in

〈x2〉 = k2x〈B〉2
〈T 3〉+ 4CV 2

T 〈T 〉3 + 6〈T 〉3

3〈T 〉
+

4α

3
. (D.5)

Finding CV 2 of the protein level and subtracting the extrinsic noise found in (24) results

in

CV 2
R =

4α

3

1

〈x〉
2 . (D.6)



Appendix E

Second and third-order moment dynamics of the full

model

Based on model introduced in Appendix A, second order moment dynamics of protein is

expressed by choosing ϕ to be x2 in equation (A.2),

d〈x2〉
dt

= kx〈B2〉+ 2kx〈B〉〈x〉+ k
n∑
j=1

(
j

〈(
x2

4
+
αx

4
− x2

)
gjj

〉)
, (E.1)

where conditional expected value of x2+ is substituted based on equation (5). Dynamics

of 〈x2〉 can be simplified as

d〈x2〉
dt

= kx〈B2〉+ 2kx〈B〉〈x〉+
αk

4

n∑
j=1

(j 〈xgjj〉)−
3k

4

n∑
j=1

(
j
〈
x2gjj

〉)
. (E.2)

The same as before we add dynamics of the form 〈x2gij〉 to have a closed set of moments.

First we write dynamics of 〈x2g11〉

d〈x2g11〉
dt

= kx〈B2〉〈g11〉+2kx〈B〉〈xg11〉+
αk

4
p1
〈
xg211

〉
+
k

4
p1
〈
x2g211

〉
−kp1

〈
x2g211

〉
−k

n∑
i=2

pi〈x2g11〉,

(E.3)

Based on equation (9) of the main text dynamics of 〈x2g11〉 simplifies to

d〈x2g11〉
dt

= kx〈B2〉〈g11〉+ 2kx〈B〉〈xg11〉+
αk

4
p1 〈xg11〉+

k

4
p1
〈
x2g11

〉
− k〈x2g11〉. (E.4)
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Next, dynamics of moments 〈x2gij〉 when gij 6= g11 can be written as

d〈x2gi1〉
dt

=kx〈B2〉〈gi1〉+ 2kx〈B〉〈xgi1〉

+ kpi

n∑
j=1

(
j

〈(
x2

4
+
x2

4
gi1 +

αx

4
+
αx

4
gi1 − x2gi1

)
gjj

〉)
− ik〈x2gi1〉,

(E.5a)

d〈x2gij〉
dt

=kx〈B2〉〈gij〉+ 2kx〈B〉〈xgij〉 − ik〈x2gij〉+ ik〈x2g(i−1)j〉, j = {2, . . . , i} ,

(E.5b)

where dynamics of 〈x2gi1〉 can be shown as

d〈x2gi1〉
dt

=kx〈B2〉〈gi1〉+ 2kx〈B〉〈xgi1〉+
αk

4
pi

n∑
j=1

(j 〈xgjj〉) +
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
+
αk

4
pi

n∑
j=1

(j 〈xgi1gjj〉)−
3k

4
pi

n∑
j=1

(
j
〈
x2gi1gjj

〉)
− ik〈x2gi1〉.

(E.6)

Based on equation (10) in the main text
∑n

j=1 (j 〈x2gi1gjj〉) = 0 and
∑n

j=1 (j 〈xgi1gjj〉) =

0, hence equation (E.6) simplifies to

d〈x2gi1〉
dt

= kx〈B2〉〈gi1〉+2kx〈B〉〈xgi1〉+
αk

4
pi

n∑
j=1

(j 〈xgjj〉)+
k

4
pi

n∑
j=1

(
j
〈
x2gjj

〉)
−ik〈x2gi1〉.

(E.7)

Equations (E.2), (E.4), (E.5b), and (E.7) can be compactly written as equations (35)-(37)

in the main text.



Appendix F

Contribution of different sources of stochasticity in

protein by taking into account gene duplication

B) 
Stochastic cell cycle,   

Stochastic gene duplication,   

Deterministic partitioning, 

Deterministic production 

 

A) 
Stochastic cell cycle,   

Stochastic gene duplication,   

Stochastic partitioning, 

Stochastic production 

Cell division 

Gene duplication 

0x0x
xx

Bxx  Bxx 

xfkxk

Cell division 

Gene duplication 

2/xx

Cell division 

Gene duplication 

xx

Bfkx xBkx x

Bfkx xBkx x

C) 
Stochastic cell cycle,   

Stochastic gene duplication,   

Deterministic partitioning, 

Deterministic production 

 

Figure A: Stochastic hybrid models for quantifying different sources of noise,
where gene duplication and cell division times are random events. A) Protein
production happens in random bursts with burst frequency kx. After gene duplication
event, burst frequency increases to fkx (f > 1). At the time of division, proteins are
randomly distributed between daughter cells, and the protein burst frequency is kx again.
B) Protein production is deterministic, and after gene duplication, dynamics of protein
production is multiplied by a factor f , i.e., ẋ = fkx〈B〉. At the division event, proteins
are distributed between daughter cells equally. Thus the only stochastic events are dupli-
cation and division events. C) Protein production is deterministic, and protein levels are
distributed randomly among daughter and mother cells. Thus duplication, division, and
partitioning are random events.
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Figure B: Cell cycle time consists of two time intervals: at the end of the
first interval gene duplicates, and at the end of the second one cell di-
vides. Two independent phase-type distributions are used to model cell cycle time in
the presence of genome duplication. The states of the first distribution are denoted by
Sij, i = {1, . . . , n1}, j = {1, . . . , i}; transition between these states happens at rate ik1.
The states of the second distribution are shown by Gij, i = {1, . . . , n2}, j = {1, . . . , i},
and transition between these states occurs at rate ik2.

We study the contribution of different sources of stochasticity by using models in-

troduced in Figure A. Note that the model in Figure A.A contains both intrinsic and

extrinsic sources of randomness. Model in Figure A.B just include extrinsic noise, and

finally model in Figure A.C contains extrinsic noise and one source of intrinsic noise (par-

titioning). The cell cycle time consists of two time intervals: the time interval before gene

duplication and the time after gene duplication. These time intervals are modeled by us-

ing two independent phase-type distributions as shown in Figure B. Based on phase-type

characteristics mean of the states of the first phase-type 〈sij〉 and the second phase-type
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〈gij〉 are

〈sij〉 =
pi
i
β, i ∈ {1, . . . , n1}, j ∈ {1, . . . , i},

〈gij〉 =
p′i
i

(1− β), i ∈ {1, . . . , n2}, j ∈ {1, . . . , i},
(F.1)

where β is defined as

β :=
Mean time interval before gene duplication

Mean cell cycle time
=
〈T1〉
〈T 〉

. (F.2)

We start our analysis by deriving mean level of protein in the next section.

F.1 Mean of protein count level in the presence of

gene duplication

After gene duplication the amount of genes expressing a specific protein doubles. Thus

the rate of protein production increases by a factor f as shown in Figure A.A. This model

coupled with phase-type distributions contains the following stochastic events

Event Reset Propensity 
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
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 

2

1 1

11
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j
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,)()( 1tsts ijij 

111  )()( )()( tsts jiji 

,ijsik1
},,,{ 12 ni 

},,{ 11  ij 

First phase-type 

evolution 

Cell-division 

),()( ss txtx 

,)( 0sjj tg

111 )()( sisi tsts  },,{ 11 ni 

Gene-duplication 
,)( 0ts jj

111 )()( tgtg ii 
 

1

11

n

j jjjspk ,'

},,{ 21 ni 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijgik2
},,,{ 22 ni 

},,{ 11  ij 
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i

 
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n

j jji jgpk ,

u
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Note that in the protein production event, before gene duplication all the states gij are

zero thus propensity function will be kxp
′′
u. After gene duplication and before division, one

of the states gij is one hence propensity function will be fkxp
′′
u. In time of gene duplication,

states of the first phase-type will reset to zero and state gi1 of the second distribution will

be selected with probability p′i; hence propensity function of gene duplication event is

k1p
′
i

∑n1

j=1(jsjj). At the end of cell cycle, states of the second phase-type will reset to zero

and a new cell cycle which is sum of i exponentials will be selected with probability pi;

thus propensity function of cell division event is k2pi
∑n1

j=1(jgjj).

Theorem 1 of [3] gives the time derivative of the expected value of any function

ϕ(x, sij, gij) as

d〈ϕ(x, sij, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, sij, gij)× ψ(x, sij, gij)

〉
, (F.3)

where ∆ϕ(x, sij, gij) is a change in ϕ when an event occurs. The first-order moment

dynamic of this model can be expressed by selecting ϕ to be x in equation (F.3)

d〈x〉
dt

=kx〈B〉

(
1 + (f − 1)

〈
n2∑
i=1

i∑
j=1

gij

〉)
+ k2

n2∑
j=1

(
j
〈

(
x

2
− x)gjj

〉)
, (F.4)

where conditional expected value of x+ is replaced from equation (5).

Mean dynamics is not closed thus we add dynamics of 〈xsij〉, i = {1, . . . , n1}, j =

{1, . . . , i} and 〈xgij〉, i = {1, . . . , n1}, j = {1, . . . , i} to have a closed set of moment

equations. These moment dynamics are simplified by using equations (5), (9), (10) and
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(F.1) as

d〈xsi1〉
dt

= kx〈B〉〈si1〉+
k2
2
p′i

n2∑
j=1

(j 〈xgjj〉)− ik1〈xsi1〉, (F.5a)

d〈xsij〉
dt

= kx〈B〉〈sij〉 − ik1〈xsij〉+ ik1〈xsi(j−1)〉, j = {2, . . . , i}, (F.5b)

d〈xgi1〉
dt

= fkx〈B〉〈gi1〉+ k1pi

n1∑
j=1

(j 〈xsjj〉)− ik2〈xgi1〉, (F.5c)

d〈xgij〉
dt

= fkx〈B〉〈gij〉 − ik2〈xgij〉+ ik2〈xgi(j−1)〉, j = {2, . . . , i}. (F.5d)

In order to find the mean of protein, first we need to find the moments 〈xsij〉, i =

{1, . . . , n1} , j = {1, . . . , i} and 〈xgij〉, i = {1, . . . , n2} , j = {1, . . . , i}. For calculating

these moments we should calculate the term
∑n2

j=1

(
j〈xgjj〉

)
; this term can be obtained

by analyzing equation (F.4) in steady-state

kx〈B〉 (f(1− β) + β) =
k2
2

n2∑
j=1

(
j〈xgjj〉

)
⇒

n2∑
j=1

(
j〈xgjj〉

)
=

2kx〈B〉 (f(1− β) + β)

k2
.

(F.6)

By having this term, we calculate 〈xsij〉 by recursion process: we start by calculating

〈xsi1〉 by substituting equation (F.6) in equation (F.5a). In the next step we use the

definition we derived for 〈xsi1〉 to calculate 〈xsi2〉 from equation (F.5b). We continue this

process until we derive all the moments

〈xsij〉 =
kx〈B〉
ik1

p′i

(
β
j

i
+ (f(1− β) + β)

)
, i = {1, . . . , n1}, j = {1, . . . , i}. (F.7)

Now we need to calculate the moments 〈xgij〉, i = {1, . . . , n2} , j = {1, . . . , i}, thus we
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need the expression of the term
∑n1

j=1

(
j〈xsjj〉

)
; from equation (F.7) we have the following

n1∑
j=1

(
j〈xsjj〉

)
=
kx〈B〉 (f(1− β) + 2β)

k1
. (F.8)

Substituting this term in equations (F.5c) and (F.5d) result in

〈xgij〉 =
fkx〈B〉
ik2

pi

(
(1− β)

j

i
+ (1− β)

)
+

2βkx〈B〉
ik2

pi, i = {1, . . . , n2}, j = {1, . . . , i}.

(F.9)

Note that

n1∑
i=1

i∑
j=1

sij +

n2∑
i=1

i∑
j=1

gij = 1⇒ 〈x〉 =

〈
x

(
n1∑
i=1

i∑
j=1

sij +

n2∑
i=1

i∑
j=1

gij

)〉

⇒ 〈x〉 =

n1∑
i=1

i∑
j=1

〈xsij〉+

n2∑
i=1

i∑
j=1

〈xgij〉.
(F.10)

Thus by adding all the term calculated here and using equation (7) mean of protein can

be calculated as

〈x〉 =
kx〈B〉〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
2

+
kx〈B〉〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
2

.

(F.11)
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F.2 Noise in protein count level contributed from cell

cycle time variations

In order to calculate the noise contributed from cell cycle time variation, the model

introduced in Figure A.B coupled with phase-type distributions is used. This model

contains following stochastic events

Event Reset Propensity 

,)()( 1tsts ijij 

111  )()( )()( tsts jiji 

,ijsik1
},,,{ 12 ni 

},,{ 11  ij 

First phase-type 

evolution 

Cell-division 

,/)()( 2ss txtx 

,)( 0sjj tg

111 )()( sisi tsts  },,{ ni 1

Gene-duplication 
,)( 0ts jj

111 )()( tgtg ii 
 

1

11

n

j jjjspk ,' )(

},,{ 21 ni 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijgik2
},,,{ 22 ni 

},,{ 11  ij 

Second phase-type 

evolution 

 

2

12

n

j jji jgpk ,)(

i

and deterministic protein production

ẋ = kx〈B〉

(
1 + (f − 1)

n2∑
i=1

i∑
j=1

gij

)
. (F.12)

Theorem 1 of [3] gives the time derivative of the expected value of any function
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ϕ(x, sij, gij) as

d〈ϕ(x, sij, gij)〉
dt

=

〈 ∑
Events

∆ϕ(x, sij, gij)× ψ(x, sij, gij)

〉

+

〈
∂ϕ(x, gij)

∂x
kx〈B〉

(
1 + (f − 1)

n2∑
i=1

i∑
j=1

gij

)〉
,

(F.13)

where the first term in the right hand side is contributed from stochastic events, and

the second term is contributed from deterministic protein production. In this model,

dynamics of 〈x〉, 〈xsij〉 and 〈xgij〉 are the same as equations (F.4) and (E.6), thus mean

of protein, 〈xsij〉, and 〈xgij〉 will be equal to their value in previous section. Further,

the second-order moment dynamics of protein can be added by selecting ϕ to be x2 in

equation (F.13)

d〈x2〉
dt

= 2kx〈B〉

(
〈x〉+ (f − 1)

〈
n2∑
i=1

i∑
j=1

xgij

〉)
− 3k2

4

n2∑
j=1

(
j
〈
x2gjj

〉)
. (F.14)

This equation is not closed thus we add dynamics of 〈x2sij〉, i = {1, . . . , n1} , j =

{1, . . . , i} and 〈x2gij〉, i = {1, . . . , n2} , j = {1, . . . , i} to have a closed set of equations

d〈x2si1〉
dt

= 2kx〈B〉〈xsi1〉+
k2
4
pi

n2∑
j=1

(
j
〈
x2gjj

〉)
− ik1〈x2si1〉, (F.15a)

d〈x2sij〉
dt

= 2kx〈B〉〈xsij〉 − ik1〈x2sij〉+ ik1〈x2s(i−1)j〉, j = {2, . . . , i} , (F.15b)

d〈x2gi1〉
dt

= 2fkx〈B〉〈xgi1〉+ k1pi

n1∑
j=1

(
j
〈
x2sjj

〉)
− ik2〈x2gi1〉, (F.15c)

d〈x2gij〉
dt

= 2fkx〈B〉〈xgij〉 − ik2〈x2gij〉+ ik2〈x2g(i−1)j〉, j = {2, . . . , i} . (F.15d)

In order to calculate noise we need to express 〈x2sij〉, and 〈x2gij〉, which requires calcu-
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lating the term
∑n2

j=1

(
j〈x2gjj〉

)
; this term can be derived by analyzing equation (F.14)

in steady-state

3k2
4

n2∑
j=1

(
j〈x2gjj〉

)
=2kx〈B〉

〈x〉+ (f − 1)

〈
n2∑
i=1

i∑
j=1

xgij

〉⇒
n2∑
j=1

(
j〈x2gjj〉

)
=

4k2x〈B〉2〈T1〉
(
2f(1− β) + 3β + βCV 2

T1

)
3k2

+
4fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3k2

,

(F.16)

where in deriving this term we used equation (F.11) and we summed all the terms in

equation (F.9). By having this term, we calculate 〈x2sij〉 by recursion process. we derive

〈x2si1〉 by substituting equation (F.16) in equation (F.15a). In the next step we use the

definition of 〈x2si1〉 to calculate 〈x2si2〉 from equation (F.15b). We continue this process

until we derive all the moments

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik1

p′i

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik1

p′i

+
k2x〈B〉2

i2k21
p′i

(
βj2 + 2(f(1− β) + β)ij + βj

i

)
, i = {1, . . . , n1}, j = {1, . . . , i}.

(F.17)

Expressing 〈x2gij〉 requires calculation of the term
∑n1

j=1

(
j〈x2sjj〉

)
which can be obtained

from equation (F.17) as

n1∑
j=1

(
j〈x2sjj〉

)
=

4k2x〈B〉2〈T1〉
(
2f(1− β) + 3β + βCV 2

T1

)
3k1

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3k1

.

(F.18)
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Thus 〈x2gij〉 can be obtained with a recursion process from equations (F.15c) and (F.15d)

〈x2gij〉 =
4k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik2

pi

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik2

pi

+
f 2k2x〈B〉2

ik2
pi

(
(1− β)j2 + (1− β)j + 2(1− β)ij

i

)
+

4fk2x〈B〉2

ik2
pi

(
ij

i

)
,

i = {1, . . . , n2}, j = {1, . . . , i}.
(F.19)

Note that
∑n1

i=1

∑i
j=1 〈x2sij〉 +

∑n2

i=1

∑i
j=1 〈x2gij〉 = 〈x2〉 thus the second order moment

of protein can be derived by adding all the terms in equations (F.17) and (F.19). 〈x2〉
can be simplified by using equations (7) in the main article as

〈x2〉 = k2x〈B〉2
(
〈T 3

1 〉+ f2〈T 3
2 〉

3〈T 〉
+

〈T 〉3
2β2(−3β + 2CV 2

T1
+ 6) + 3β(β − 1)f(3β − βCV 2

T1
+ 2(β − 1)CV 2

T2
− 6) + (β − 1)2

(
−f2

)
(3β + 3βCV 2

T2
− 4CV 2

T2
− 6)

3〈T 〉

)
.

(F.20)

Finally, using the definition of CV 2 results in noise of protein raised from cell cycle time

variations

CV 2
E =

(4〈T 3
1 〉+ 4f2〈T 3

2 〉)/〈T 〉3

3(β(β(CV 2
T1
− 1) + 4) + (β − 1)f(β + (β − 1)CV 2

T2
− 3))2

+
β2
(
−3β2(1− CV 2

T1
)2 − 24βCV 2

T1
− 6(β − 1)2(CV 2

T1
− 1)(CV 2

T2
+ 1)f + 16CV 2

T1

)
3(β(β(CV 2

T1
− 1) + 4) + (β − 1)f(β + (β − 1)CV 2

T2
− 3))2

−
(β − 1)2f2

(
3CV 4

T2
+ 3β2(CV 2

T2
+ 1)2 − 6β(CV 2

T2
+ 1)2 + 2CV 2

T2
+ 3
)

3(β(β(CV 2
T1
− 1) + 4) + (β − 1)f(β + (β − 1)CV 2

T2
− 3))2

.

(F.21)
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F.3 Noise in protein count level contributed from

random partitioning

In order to take into account noise caused by random partitioning of proteins between

two daughter cells, we use the model shown in Figure A.C coupled with phase-type dis-

tributions. This model contains the following stochastic events

Event Reset Propensity 

,)()( 1tsts ijij 

111  )()( )()( tsts jiji 

,ijsik1
},,,{ 12 ni 

},,{ 11  ij 

First phase-type 

evolution 
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),()( ss txtx 

,)( 0sjj tg

111 )()( sisi tsts  },,{ ni 1
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,)( 0ts jj

111 )()( tgtg ii 
 

1

11

n

j jjjspk ,' )(

},,{ 21 ni 

,)()( 1tgtg ijij 

111  )()( )()( tgtg jiji 

,ijgik2
},,,{ 22 ni 

},,{ 11  ij 

Second phase-type 

evolution 

 

2

12

n

j jji jgpk ,)(

i

and deterministic protein production

ẋ = kx〈B〉

(
1 + (f − 1)

n2∑
i=1

i∑
j=1

gij

)
. (F.22)

Note that here x is a continuous random variable, hence x+ is also obtained from a

continious distribution. Connection between statistical statistical moments of x and x+

is given by (5).

For this model, 〈x〉, 〈xsij〉, and 〈xgij〉 are equal to their value in Section E.1 and
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Section E.2. However, dynamics of 〈x2〉 and 〈x2si1〉 are different

d〈x2〉
dt

= 2kx〈B〉

〈x〉+ (f − 1)

〈
n2∑
i=1

i∑
j=1

xgij

〉+
1

4
αk2

n2∑
j=1

(j 〈xgjj〉)−
3k2
4

n2∑
j=1

(
j
〈
x2gjj

〉)
,

(F.23a)

d〈x2si1〉
dt

= 2kx〈B〉〈xsi1〉+
k2
4
pi

n2∑
j=1

(
j
〈
x2gjj

〉)
+

1

4
αk2

n2∑
j=1

(j 〈xgjj〉)− ik1〈x2si1〉, (F.23b)

note that dynamics of 〈x2sij〉, j = {2, . . . , i} and 〈x2gij〉 are identical to equations

(F.15b), (F.15c), and (F.15d). Similar to previous section, we derive 〈x2sij〉 and 〈x2gij〉

as

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik1

p′i

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik1

p′i

+
k2x〈B〉2

i2k21
p′i

(
βj2 + 2(f(1− β) + β)ij + βj

i

)
+

2αkx〈B〉(f(1− β) + β)

3ik1
p′i,

i = {1, . . . , n1} j = {1, . . . , i}.

(F.24)

〈x2gij〉 =
4k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik2

pi

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik2

pi

+
f2k2x〈B〉2

ik2
pi

(
(1− β)j2 + (1− β)j + 2(1− β)ij

i

)
+

4fk2x〈B〉2

ik2
pi

(
ij

i

)
+

2αkx〈B〉(f(1− β) + β)

3ik2
pi, i = {1, . . . , n2}, j = {1, . . . , i}.

(F.25)
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Hence the second-order moment is

〈x2〉 = k2x〈B〉2
(
〈T 3

1 〉+ f2〈T 3
2 〉

3〈T 〉
+

〈T 〉3
2β2(−3β + 2CV 2

T1
+ 6) + 3β(β − 1)f(3β − βCV 2

T1
+ 2(β − 1)CV 2

T2
− 6) + (β − 1)2

(
−f2

)
(3β + 3βCV 2

T2
− 4CV 2

T2
− 6)

3〈T 〉

)

+
2αkx〈B〉(f(1− β) + β)〈T 〉

3
.

(F.26)

Squared coefficient of variation gives noise raised from partitioning and cell cycle varia-

tions, which subtracting equation (F.21) from results gives partitioning noise as

CV 2
R =

4α(f(1− β) + β)

3
(
(β2(f − 1)− 4β(f − 1) + 3f) + β2CV 2

T1
+ f(1− β)2CV 2

T2

) 1

〈x〉
. (F.27)
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F.4 Noise in protein count level contributed from

stochastic production

In order to calculate the noise caused by stochastic birth of protein, we use the model

introduced in Section C.1. For this model, moments dynamics of 〈x2〉, 〈x2sij〉, and 〈x2gij〉

can be written as

d〈x2〉
dt

=kx〈B2〉

1 + (f − 1)

〈
n2∑
i=1

i∑
j=1

gij

〉+ 2kx〈B〉

〈x〉+ (f − 1)

〈
n2∑
i=1

i∑
j=1

xgij

〉
+

1

4
αk2

n2∑
j=1

(j 〈xgjj〉)−
3k2
4

n2∑
j=1

(
j
〈
x2gjj

〉)
, (F.28a)

d〈x2si1〉
dt

=kx〈B2〉〈si1〉+ 2kx〈B〉〈xsi1〉+
k2
4
pi

n2∑
j=1

(
j
〈
x2gjj

〉)
+

1

4
αk2

n2∑
j=1

(j 〈xgjj〉)− ik1〈x2si1〉, (F.28b)

d〈x2sij〉
dt

=kx〈B2〉〈sij〉+ 2kx〈B〉〈xsij〉 − ik1〈x2sij〉+ ik1〈x2s(i−1)j〉, j = {2, . . . , i} , (F.28c)

d〈x2gi1〉
dt

=fkx〈B2〉〈gi1〉+ 2fkx〈B〉〈xgi1〉+ k1pi

n1∑
j=1

(
j
〈
x2sjj

〉)
− ik2〈x2gi1〉, (F.28d)

d〈x2gij〉
dt

=fkx〈B2〉〈gij〉+ 2fkx〈B〉〈xgij〉 − ik2〈x2gij〉+ ik2〈x2g(i−1)j〉, j = {2, . . . , i} . (F.28e)

The same as before we derive 〈x2sij〉

〈x2sij〉 =
k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik1

p′i

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik1

p′i

+
k2x〈B〉2

i2k21
p′i

(
βj2 + 2(f(1− β) + β)ij + βj

i

)
+

2αkx〈B〉(f(1− β) + β)

3ik1
p′i

+
kx〈B2〉
ik1

(
f(1− β) + β

3
+ β

j

i

)
p′i, i = {1, . . . , n1}, j = {1, . . . , i},

(F.29)
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and 〈x2gij〉

〈x2gij〉 =
4k2x〈B〉2〈T1〉

(
2f(1− β) + 3β + βCV 2

T1

)
3ik2

pi

+
fk2x〈B〉2〈T2〉

(
3f(1− β) + 4β + f(1− β)CV 2

T2

)
3ik2

pi

+
f2k2x〈B〉2

ik2
pi

(
(1− β)j2 + (1− β)j + 2(1− β)ij

i

)
+

4fk2x〈B〉2

ik2
pi

(
ij

i

)
+

2αkx〈B〉(f(1− β) + β)

3ik2
pi +

kx〈B2〉
ik2

(
f(1− β) + 4β

3
+ f(1− β)j

i

)
pi

i = {1, . . . , n2}, j = {1, . . . , i}.

(F.30)

Finally summing all the moments 〈x2sij〉, and 〈x2gij〉 results in 〈x2〉 as

〈x2〉 = k2x〈B〉2
(
〈T 3

1 〉+ f2〈T 3
2 〉

3〈T 〉
+

〈T 〉3
2β2(−3β + 2CV 2

T1
+ 6) + 3β(β − 1)f(3β − βCV 2

T1
+ 2(β − 1)CV 2

T2
− 6) + (β − 1)2

(
−f2

)
(3β + 3βCV 2

T2
− 4CV 2

T2
− 6)

3〈T 〉

)

+
2αkx〈B〉(f(1− β) + β)〈T 〉

3
+ kx〈B2〉

(
f(1− β) + β

3
+ β

(
1 + CV 2

T1

2

))
〈T1〉

+ kx〈B2〉
(
f(1− β) + 4β

3
+ f(1− β)

(
1 + CV 2

T2

2

))
〈T2〉.

(F.31)

Steady-state analysis gives the noise from stochastic birth, random partitioning, and cell

cycle time variations. Subtracting noise of cell cycle time and partitioning in equations

(F.21) and (F.27) results in noise caused by stochastic production of protein

CV 2
P =

(5f − 8β(f − 1) + 3β2(f − 1)) + 3f(1− β)2CV 2
T2

+ 3β2CV 2
T1

3
(
(β2(f − 1)− 4β(f − 1) + 3f) + β2CV 2

T1
+ f(1− β)2CV 2

T2

) 〈B2〉
〈B〉

1

〈x〉
. (F.32)
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F.5 Effect of gene duplication time on intrinsic noise

We investigate how the noise contributions from random partitioning and stochastic ex-

pression (CV 2
R and CV 2

P terms in equation (45) of the main text) change as β is varied

between 0 and 1 for f = 2. Results show that CV 2
R and CV 2

P follow the same qualitative

shapes as reported in Figure 6. There exists a β∗

β∗ =
−
√
2(2CV 4

T1
+ 5CV 2

T1
CV 2

T2
+ 3CV 2

T1
+ 2CV 4

T2
+ 3CV 2

T2
+ 1) + 2CV 2

T1
+ 4CV 2

T2
+ 2

CV 2
T1

+ 2CV 2
T2

+ 1
, (F.33)

such that CV 2
P is minimized and CV 2

R is maximized when β = β∗. Note that when

CV 2
T1

= CV 2
T2

= 0, β∗ = 2−
√

2 as reported in the main text. The minimum value of CV 2
P

and the maximum value of CV 2
R are given by

CV 2
P =

CV 2
T1
(3CV 2

T2
+ 7)−

√
2(2CV 2

T1
+ CV 2

T2
+ 1)(CV 2

T1
+ 2CV 2

T2
+ 1) + 7CV 2

T2
+ 3

3(CV 2
T1
(CV 2

T2
+ 3) + 3CV 2

T2
+ 1)

〈B2〉
〈B〉

1

〈x〉
,

(F.34)

CV 2
R =

√
2α

3
√
(2CV 2

T1
+ CV 2

T2
+ 1)(CV 2

T1
+ 2CV 2

T2
+ 1)− 3

√
2CV 2

T1
− 3
√
2CV 2

T2

, (F.35)
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Figure C: Effect of gene duplication on intrinsic noise level. Left : Value of β where
CV 2

P is minimized and CV 2
R is maximized as a function of CV 2

T1
. When CV 2

T1
= CV 2

T2
,

noise levels always reach their extrema at β = 2−
√

2. Middle & Right : Extremum values
of CV 2

P and CV 2
R as a functions of CV 2

T1
. Noise levels are normalized by their values at

β = 0.
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respectively. Plots of β∗ and optimal value of CV 2
R and CV 2

P as a function of CV 2
T1

are

shown in Figure D. Note that if noise in T1 is high and T2 is deterministic then β∗ shifts

towards zero. Similarly, if noise in T2 is high and T1 is deterministic then β∗ shifts towards

one.



Appendix G

Noise level in unstable protein

Consider an unstable protein with sufficiently high degradation rate γx such that the

protein level reaches steady-state instantaneously compared to the cell cycle time (Figure

D). Let τ denote the time from the last division event, then

〈x|τ < T1〉 =
kx〈B〉
γx

, 〈x|τ > T1〉 =
fkx〈B〉
γx

, (G.1)

where T1 is the time in which duplication happens. The mean level of an unstable protein

can be calculated as

〈x〉 = 〈x|τ < T1〉p(τ < T1) + 〈x|τ > T1〉p(τ > T1), (G.2)

where p(τ < T1) and p(τ > T1) denote the probability of being in the time interval before

and after gene duplication. Using

p(τ < T1) = β, p(τ > T1) = (1− β), (G.3)

we obtain

〈x〉 =
kx〈B〉(f(1− β) + β)

γx
. (G.4)

To compute the extrinsic noise component we consider deterministic protein produc-
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tion and decay. The second-order moment of x(t) is given by

〈x2|τ < T1〉 =
(
kx〈B〉
γx

)2
〈x2|τ > T1〉 =

(
fkx〈B〉
γx

)2 ⇒ 〈x2〉 =

(
kx〈B〉
γx

)2

β +

(
fkx〈B〉
γx

)2

(1− β). (G.5)

By using definition of CV 2, extrinsic noise is

CV 2
E =

(1− β)β(f − 1)2

(β + f(1− β))2
, (G.6)

which is zero at β = 0, 1 and reaches its maximum at β = f/(1 + f) (Figure D).

Next we compute the intrinsic noise component. If the protein decay is sufficiently

high, the noise contribution from partitioning errors will be negligible because any er-

rors will be instantaneously corrected due to rapid protein turnover. Noise raised from

stochastic gene expression can be investigated by considering a model containing stochas-

tic bursty production and stochastic degradation of proteins, where after gene duplication

the burst frequency doubles. Again assuming large enough γx, 〈x2|τ < T1〉 is equal to the

steady-state second-order moment of a stochastic model with burst frequency kx (analyzed

in [4])

〈x2|τ < T1〉 =

(
kx〈B〉
γx

)2

+
kx〈B2〉

2γx
+
kx〈B〉
2γx

. (G.7)

In comparison with equation (G.5), there are two extra terms at the right hand side of

〈x2|τ < T1〉. The first extra term is due to production of protein in random bursts and

the second one is due to stochastic degradation of protein molecules. Further for the same

reasons (large degradation rate and rapid equilibration of the distribution), 〈x2|τ > T1〉

is equal to the second-order moment of a model containing stochastic bursty production
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of proteins with burst frequency fkx which is

〈x2|τ > T1〉 =

(
fkx〈B〉
γx

)2

+
fkx〈B2〉

2γx
+
fkx〈B〉

2γx
. (G.8)

Thus the second order moment of an unstable protein can be written as

〈x2〉 =

(
kx〈B〉
γx

)2

β +
kx〈B2〉

2γx
β +

kx〈B〉
2γx

β

+

(
fkx〈B〉
γx

)2

(1− β) +
fkx〈B2〉

2γx
(1− β) +

fkx〈B〉
2γx

(1− β).

(G.9)

Using definition of CV 2 and subtracting extrinsic noise we obtain the following noise

contribution from stochastic expression and decay

CV 2
P =

1

2

(
〈B2〉
〈B〉

+ 1

)
1

〈x〉
. (G.10)
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Figure D: Contribution of gene duplication to noise levels of an unstable protein.
Left : For a stable protein, copy numbers accumulate in a bilinear fashion. In contrast,
an unstable protein reaches equilibrium rapidly and its level changes in steps. Right :
Extrinsic and intrinsic noise predicted for an unstable protein as a function of β. Solid
lines are predictions from (G.6) and (G.10), which agree with estimates from 20, 000 Monte
Carlo simulations. Parameters taken as γx = 10hr−1, geometric burst with 〈B〉 = 6, and
f = 2. Burst frequency is changed to have a constant mean protein level of 100 molecules
for different values of β. 95% confidence intervals are calculated via bootstrapping.



Appendix H

Simulation results

In this section we compare the analytic results obtained in this paper with numerical

simulations. We start with results obtained in equation (39). This equation is obtained

by assuming that cell cycle times are independent identically distributed random variables.

Here we perturb this assumption: suppose cell cycle times Ti, i ∈ N are related through

an AR process as

Ti = T0 + φTi−1 + ηi, (H.1)

where ηi is a normally distributed noise with zero mean and variance σ2
η; moreover T0 is

a constant, and |φ| < 1. For this model the mean and variance of cell cycle time is

〈Ti〉 =
T0

1− φ
, i ∈ N, V ar(Ti) =

σ2
η

1− φ2
. (H.2)

Further the cross correlation between two cell cycles which are i cycles apart is φi. Note

that ηi’s are independent and identically distributed random variables hence 〈ηiηj〉 = 0.

In order to separate noise levels contributed from different sources, we used three mod-

els as shown in Figure 2 in the main text. For each model we run 10000 simulations, while

model in Figure 2B gives the extrinsic noise, the difference in the noise levels obtained

from models in Figure 2B and 2C gives the noise raised from partitioning errors. Nose

raised from stochastic protein production can be obtained by subtracting noise levels of

the models in Figure 2A and 2C. The comparison between numerical simulations and

analytic results based on equation (39) is shown in Figure E. As it is obvious from this
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figure our equations match the simulations.
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Figure E: Stochastic simulations show analysis obtained for independent cell
cycles can be applied to dependent cell cycle times. For this plot, B is assumed
to be geometrically-distributed with mean 〈B〉 = 1.5. Mean cell cycle time is 20mins and
CV 2

T = 0.05. We assumed binomial partitioning , i.e., α = 1. Error bars obtained via
bootstrapping based on 10000 Monte Carlo simulations. For this plot we have assumed a
−0.25 correlation between successive cell-cycle times as reported in [5].

Next we use numerical simulations to verify our results obtained for gene duplication.

In our analysis we assumed that the time before and after gene duplication are indepen-

dent. We relax this assumption by assuming that they are correlated, i.e., we draw the

first time interval T1 from a log-normal distribution with mean T1 and we assume that

the second time interval T2 is

T2 =
1− β
β

T1 + η (H.3)

where β = 〈T1〉
〈T 〉 and η is a normally distributed noise. We fixed the cell cycle time mean

〈T 〉 = 〈T1〉 + 〈T2〉 = 2 hours [6], and used the models introduced in Figure A to do

numerical simulations. We kept correlation coefficient between time intervals before and
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after gene duplication around 0.79 [6]. The simulation results for the correlated time

intervals is shown in Figure F. The analytic solutions match the numerical results for

different gene-duplication times.
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Figure F: Numerical simulations show results obtained for gene duplication can
be applied to dependent T1 and T2. For this plot, B is assumed to be geometrically-
distributed with mean 〈B〉 = 10, and mean of protein is set to be 170. Mean cell cycle
time is 2 hours and CV 2

T1
= 0.05. We assumed binomial partitioning , i.e., α = 1. The

correlation coefficient between time intervals before and after gene duplication is take
as 0.79 [6]. Error bars obtained via bootstrapping method based on 10000 Monte Carlo
simulations.
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