
A. Basic calculations. 

The general equation relating Cq 𝐶𝐺𝑠𝑛 to amount 𝐴 of a transcript 𝐺 in a sample 𝑠, assayed on plate 𝑛 

with quantitation thresold level 𝑇𝐺𝑛 is … 

𝑙𝑜𝑔2(𝐴𝐺𝑠) =
𝐶𝐺𝑠𝑛

𝑆𝐺𝑛
+ 𝑙𝑜𝑔2(𝑇𝐺𝑛)     [1] 

… where 𝑆𝐴𝑛 is the appropriate slope of the regression of log2(𝐴𝐺) vs 𝐶. This may be specific for 

each plate, if a standard curve is included on every plate.  The first step in all our calculations is to 

convert all Cq to the same log2 scale by dividing by the slope, giving 𝑄𝐺𝑠𝑛 = 𝐶𝐺𝑠𝑛 𝑆𝐺𝑛⁄ . In therms of 

the converted measure equation [1] then becomes … 

𝑙𝑜𝑔2(𝐴𝐺𝑠) = 𝑄𝐺𝑠𝑛 + 𝑙𝑜𝑔2(𝑇𝐺𝑛)     [2] 

We first consider the case where the object of interest is the ratio 𝑅 of the level of expression in two 

samples, 𝑟 and 𝑠. Here … 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = 𝑙𝑜𝑔2 (
𝐴𝐺𝑟1

𝐴𝐺𝑠2
) = 𝑄𝐺𝑟1 − 𝑄𝐺𝑠2 + 𝑙𝑜𝑔2(𝑇𝐺1) − 𝑙𝑜𝑔2(𝑇𝐺2)     [3] 

Where the assays are on different plates, it is necessary to include identical control samples for each 

transcript assayed on each plate, to correct inter-plate differences. Let us call these samples 𝑝𝑖  with 

amounts 𝐴𝐺𝑝 and measurements 𝐶𝐺𝑝𝑖𝑛 on plate 𝑛. Then the geometric mean
1
 of the ratios of 𝑁𝑝 

control sample measurements on the two plates are …   
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𝑠𝑜:          𝑙𝑜𝑔2(𝑇𝐺1) − 𝑙𝑜𝑔2(𝑇𝐺2) = −
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𝑠𝑜 𝑓𝑟𝑜𝑚 [3]:        𝑙𝑜𝑔2
(𝑅𝐺𝑟:𝑠) = 𝑄𝐺𝑟1 − 𝑄𝐺𝑠2 −
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     [4] 

It is worth noting that this inter-plate correction is has exactly the same effect as shifting the 

threshold. In many cases it may be possible to adjust the threshold in the instrument data export 

process so that the inter-plate controls yield the same Cqs. If the correcting term is thereby sufficiently 

reduced, its omission might be justfiable, simplifying further analysis. Of course the best solution, 

when it is possible, is to carry out all assays for each transcript on the same plate, so that 𝑄𝐺𝑝𝑖1 =

𝑄𝐺𝑝𝑖2 and the correction disappears from the equation, which becomes ... 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = 𝑄𝐺𝑟 − 𝑄𝐺𝑠      [5] 



In this case the inter-plate calibration samples need not be run, although their omission could 

compromise possible comparisons with later experiments.  

So far, the calculation has assumed that the two samples contain the same amount of RNA. This is not 

generally the case, and samples are usually analysed for amounts of some, presumably constantly 

expressed, reference gene(s). Then the amounts of the gene of interest are expressed in terms of their 

ratios to the goemetric mean of the reference genes quantities in the same samples. Now the ratio 

between two samples becomes* … 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = {𝑄𝐺𝑟1 −
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𝑖. 𝑒.        𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = (𝑄𝐺𝑟1 − 𝑄𝐺𝑠2) −
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𝑁𝑟
∑(𝑄𝑅𝑖𝑟𝑛𝑖
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      [6] 

*note: this equation describes the case where all assays for each reference gene are on the same plate. 

If not, then further inter-plate controls are required for each, and the equation becomes cumbersome 

… 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = (𝑄𝐺𝑟1 − 𝑄𝐺𝑠2) −
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In the case that all assays for all genes are carried out on the same plates this becomes … 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = (𝑄𝐺𝑟 − 𝑄𝐺𝑠) −
1

𝑁𝑟
∑(𝑄𝑅𝑖𝑟 − 𝑄𝑅𝑖𝑠)       [8]
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One important thing to notice about these equations is that all the intercept/threshold  terms always 

cancel out. This means their errors also cancel out. Error-limitation arguments have been advanced in 

support of carrying out calculations with quantities relative to the mean of experimental Cq (or 

equivalently, Q). The error in 𝑙𝑜𝑔2(𝐴𝐴𝑠) = 𝑄𝐴𝑠 + 𝑙𝑜𝑔2(𝑇𝐴) is much greater than that in the alternative 

expression 𝑙𝑜𝑔2(𝐴𝐴𝑠) = 𝑄𝐴𝑠 − 𝑄𝐴𝑥𝑖
 , where 𝑥𝑖 are all the samples. This is is essentially the same as 

equation [5], and it describes the ratio of transcript level in sample 𝑠 to that of an imaginary 'mean' 

sample. As in the derivation of equation [5], the error in 𝑙𝑜𝑔2(𝑇𝐴) cancels out. However, when we go 

on to calculate the ratios in any two samples, 𝑄𝐴𝑥𝑖
 cancels out, just as does  𝑙𝑜𝑔2(𝑇𝐴) in the derivation 

of equation 5. Thus use of the level relative to the mean sample serves no purpose other than to allow 

the presentation of the intermediate value. The difference between using 𝑄𝐴𝑥𝑖
 and 𝑙𝑜𝑔2(𝑇𝐴) is 

essentially a difference in the unit used to express the intermediate values of 𝐴𝐴𝑠. The choice does not 

affect the ratios between samples. In both cases, the unit is arbitrary. However, while 𝑙𝑜𝑔2(𝑇𝐴) is a 



property of the assay, albeit subject to variation, 𝑄𝐴𝑥𝑖
 is entirely dependent on the distribution of Cq 

in the experiment, and even of the subset of samples in any particular analysis of an experiment. This 

dependence is easily overlooked, which can lead to invalid comparisons, especially between 

experiments. Therefore we prefer to use 𝑙𝑜𝑔2(𝑇𝐴). 

These considerations apply equally to the measurement of absolute transcript levels because the only 

way to arrive at these is by measuring the ratio of a sample to a known standard. Either 𝑄𝐴𝑥𝑖
 or 

𝑙𝑜𝑔2(𝑇𝐴) cancel out in the calculation of that ratio. 

A similar compounding of errors happens if the object of our interest is not the comparison of one 

transcript in different samples, but rather comparison of the ratios between different transcripts in 

different samples. For example, we might be intersted in the ratio of two cytokine gene transcripts in 

different animals. The appropriate expression is readily obtained from equation [8] … 

𝑙𝑜𝑔2 (
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Now the normalisation terms cancel out, and we get … 

𝑙𝑜𝑔2 (
𝑅(𝐺:𝐻)𝑟

𝑅(𝐺:𝐻)𝑠
) = (𝑄𝐺𝑟1 − 𝑄𝐺𝑠2) − (𝑄𝐻𝑟3 − 𝑄𝐻𝑠4)

− {
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𝑁𝑝
∑{(𝑄𝐺𝑝𝑖1 − 𝑄𝐺𝑝𝑖2) − (𝑄𝐻𝑝𝑖3 − 𝑄𝐻𝑝𝑖4)}
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}      [9] 

If all assays for each gene are on the same plate, the correcting term disappears and we have … 

𝑙𝑜𝑔2 (
𝑅(𝐺:𝐻)𝑟

𝑅(𝐺:𝐻)𝑠
) = (𝑄𝐺𝑟 − 𝑄𝐺𝑠) − (𝑄𝐻𝑟 − 𝑄𝐻𝑠)       [10] 

In either [9] or [10], the normalisation terms have cancelled out. This means that using intermediate 

normalised values in stepwise error propagation will include the random error in the reference 

transcript assays which should be cancelled out, uneccesarily inflating the error. So if comparison of 

ratios of different transcripts in experimental groups is the aim, equation 9 or 10 should be used 

directly. Normalisation using reference genes is not only uneccesary, but may be deleterious if 

stepwise error propagation is used.  

  



B. Errors 

There are two sources of experimental errors in the calculations described. First is the individual 

random variability, whether technical or biological, in the individual measurements of Cq. The second 

is in the slopes of the standard curves that are used to convert Cq into Q. We will discuss the former 

first.  

Random variation arises at multiple levels. For the tissue sample analyses described here we can 

identify underlying biological variation, sample related variation in the representation of substructures 

in the tissue architechture, variation in the efficiency of extraction of RNA and variation in the qPCR 

assay. Where reverse transcription and PCR assays are conducted separately, the latter has variability 

at two levels, in reverse transcription, shared between different assays on the same sample, and in the 

PCR reaction, specific to each measurement.  

When a normalisation factor is calculated for each sample and does not cancel out in subsequent 

calculation, that is when comparing levels of a transcript among samples, the error in the reference 

gene contributes variance to the result of the calculation, so that it is necessary to take account of the 

random error in the reference transcript assays in any statistical analysis. Hellemans et al. (….) have 

used error propagation to deal with this  requirement. They combine the standard error of the 

normalisation factor, from replicate assays on each sample, with that from the assays of the gene(s) of 

interest, using error propagation  calculation. Since the normalisation factor is necessarily a propertry 

of an individual sample, this approach can only deal with the technical variation between replicate 

assays on the same sample. It cannot include biologiocal variation, variation in sample composition.  

In many experimental situations, the variance due to biological variation and/or sampling variation is 

found to be much greater than the technical variance between assays on a single sample. In such 

cases, and even when the variances are comparable, if resources limit the number of assays, means 

may be more accurately measured by maximising biological replicates without nested technical 

replication of the assays. In that case, the overall error combines the two sources of variance. In the 

same way, a single reference gene measurement for each sample simply contributes to the overall 

variance. In experiments of this design, without technical replication, the observed variance represents 

the sum of biological and technical error in both reference and genes of interest. It is therefore only 

appropriate in estimating means, not in estimation biological variance per se. If the latter is the 

objective, technical variance must be measured so that its contribution can be removed. I that case, the 

estimation of variance by appropriate formulation of the statistical model can be use as an alternative 

to error propagation methods. 

In the work described here, we have maximised biological replication at the expense of technical 

replication, and the combined errors have been estimated by the statistical modelling rather than by 

explicit error propagation. This has the further advantage of allowing selection of the most appropriate 

model for variance using established methods of model comparison. 

  



Effect of errors in standard curve slopes 

From equation 7 … 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = (𝑄𝐺𝑟1 − 𝑄𝐺𝑠2) −
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𝐶𝐺𝑟1
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The uncertainty in this value, given known uncertainties in values of 𝐶 and 𝑆 can be calculated using partial 

differentials.  Calling the value V, and designating uncertainty in quantity X as EX ... 

𝐸𝑉
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In our calculation pipeline so far, slopes have been treated as exactly known constants. In other words, 

the slope error terms 𝐸𝑆𝑥
are all zero. Thus the errors accounted for in the statistical model are those in 

the first two lines. With constant slopes, 𝐸𝐶𝑋𝑎𝑠𝑛
= 𝑆𝑋𝑎𝑛

𝐸𝑄𝑋𝑎𝑠𝑛
, so this component is … 



𝐸𝛼
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2 + 𝐸𝑄𝐺𝑠2

2 +
1

𝑁𝑝
2

∑ 𝐸𝑄𝐺𝑝𝑖1

2

𝑁𝑝

𝑖=1

+
1

𝑁𝑝
2

∑ 𝐸𝑄𝐺𝑝𝑖2

2

𝑁𝑝

𝑖=1

+
1

𝑁𝑟
2 ∑ {𝐸𝑄𝑅𝑖𝑟𝑛𝑖

2 + 𝐸𝑄𝑅𝑖𝑠𝑚𝑖

2 +
1

𝑁𝑞
2 ∑ 𝐸𝑄𝑅𝑖𝑞𝑗𝑛𝑗

2

𝑁𝑞

𝑗=1

+
1

𝑁𝑞
2 ∑ 𝐸𝑄𝑅𝑖𝑞𝑗𝑚𝑗

2

𝑁𝑞

𝑗=1

}

𝑁𝑟

𝑖=1

 

This is the error that will be estimated in the statistical model. The remaining error depends only on the error of 

the slopes. Substituting 𝐶𝑋𝑠𝑛
𝑆𝑋𝑛

=⁄ 𝑄𝑋𝑛
 … 

𝐸𝛽
2 =

𝐸𝑆𝐺1

2

𝑆𝐺1
2 {𝑄

𝐺𝑟1
−

1

𝑁𝑝

∑ 𝑄
𝐺𝑝𝑖1

𝑁𝑝

𝑖=1

}

2

+
𝐸𝑆𝐺2

2

𝑆𝐺2
2 {𝑄

𝐺𝑠2
−

1

𝑁𝑝

∑ 𝑄
𝐺𝑝𝑖2

𝑁𝑝

𝑖=1

}

2

+
1

𝑁𝑟
2

∑ {
𝐸𝑆𝑅𝑖𝑛𝑖

2

𝑆𝑅𝑖𝑛𝑖

2 {𝑄
𝑅𝑖𝑟𝑛𝑖

−
1

𝑁𝑞

∑ 𝑄
𝑅𝑖𝑞𝑗𝑛𝑗

𝑁𝑞

𝑗=1

}

2

+
𝐸𝑆𝑅𝑖𝑚𝑖

2

𝑆𝑅𝑖𝑛𝑖

2 {𝑄
𝑅𝑖𝑠𝑚𝑖

−
1

𝑁𝑞

∑ 𝑄
𝑅𝑖𝑞𝑗𝑚𝑗

𝑁𝑞

𝑗=1

}

2

}       [11]

𝑁𝑟

𝑖=1

 

Now 𝐸𝑉
2 = 𝐸𝛼

2 + 𝐸𝛽
2, where 𝐸𝛼

2 depends only on the errors in Cq and 𝐸𝛽
2 depends only on the 

proportional errors in the standard curve slopes (as well as differences of mean Q terms). 

This is the most complex case. We can simplify in two stages. First by using the same slope for all 

assays with a given gene, although they may be on more than one plate; then by considering the ideal 

situation when all assays for a given gene are on the same plate. In the former case, equation [7] 

remains the same, but in its expansion the coefficients are simplified to … 

1

𝑆𝐺

{(𝐶𝐺𝑟1 − 𝐶𝐺𝑠2) − (
1

𝑁𝑝

∑ 𝐶𝐺𝑝𝑖1

𝑁𝑝

𝑖=1

−
1

𝑁𝑝

∑ 𝐶𝐺𝑝𝑖2

𝑁𝑝

𝑖=1

)}

−
1

𝑁𝑟

∑
1

𝑆𝑅𝑖

{(𝐶𝑅𝑖𝑟𝑛𝑖
− 𝐶𝑅𝑖𝑠𝑚𝑖

) − (
1

𝑁𝑞

∑ 𝐶𝑅𝑖𝑞𝑗𝑛𝑗

𝑁𝑞

𝑗=1

−
1

𝑁𝑞

∑ 𝐶𝑅𝑖𝑞𝑗𝑚𝑗

𝑁𝑞

𝑗=1

)}

𝑁𝑟

𝑖=1

 

We will ignore 𝐸𝛼
2, which will be calculated by the statistical model, and deal with 𝐸𝛽

2 … 

𝐸𝛽
2 =

𝐸𝑆𝐺

2

𝑆𝐺
2 {(𝑄

𝐺𝑟1
− 𝑄

𝐺𝑠2
) − (

1

𝑁𝑝

∑ 𝑄
𝐺𝑝𝑖1

𝑁𝑝

𝑖=1

−
1

𝑁𝑝

∑ 𝑄
𝐺𝑝𝑖2

𝑁𝑝

𝑖=1

)}

2

+
1

𝑁𝑟
2 ∑

𝐸𝑆𝑅𝑖

2

𝑆𝑅𝑖

2 {(𝑄
𝑅𝑖𝑟𝑛𝑖

− 𝑄
𝑅𝑖𝑠𝑚𝑖

) − (
1

𝑁𝑞

∑ 𝑄
𝑅𝑖𝑞𝑗𝑛𝑗

𝑁𝑞

𝑗=1

−
1

𝑁𝑞

∑ 𝑄
𝑅𝑖𝑞𝑗𝑚𝑗

𝑁𝑞

𝑗=1

)}

2

         [12]

𝑁𝑟

𝑖=1

 

With all assays for any transcript on the same plate, we use equation [8] … 

𝑙𝑜𝑔2(𝑅𝐺𝑟:𝑠) = (𝑄𝐺𝑟 − 𝑄𝐺𝑠) −
1

𝑁𝑟
∑(𝑄𝑅𝑖𝑟 − 𝑄𝑅𝑖𝑠)       [8]

𝑁𝑟

𝑖=1

 

=
1

𝑆𝐺

(𝐶𝐺𝑟 − 𝐶𝐺𝑠) −
1

𝑁𝑟
∑

1

𝑆𝑅𝑖

(𝐶𝑅𝑖𝑟 − 𝐶𝑅𝑖𝑠)

𝑁𝑟

𝑖=1

 



𝑛𝑜𝑤      𝐸𝛽
2 =

𝐸𝑆𝐺

2

𝑆𝐺
4

(𝐶𝐺𝑟 − 𝐶𝐺𝑠)2 +
1

𝑁𝑟
2 ∑

𝐸𝑆𝑅𝑖

2

𝑆𝑅𝑖

4 (𝐶𝑅𝑖𝑟 − 𝐶𝑅𝑖𝑠)
2

𝑁𝑟

𝑖=1

 

=
𝐸𝑆𝐺

2

𝑆𝐺
2

(𝑄𝐺𝑟 − 𝑄𝐺𝑠)2 +
1

𝑁𝑟
2 ∑

𝐸𝑆𝑅𝑖

2

𝑆𝑅𝑖

2 (𝑄𝑅𝑖𝑟 − 𝑄𝑅𝑖𝑠)
2

       [13]

𝑁𝑟

𝑖=1

 

These equations allow us to discuss the sizes of the part of the error that depends on the slope, and the 

effects of omitting error from this source on the results obtained from statistical models (which 

already include the effects of errors in Q). The extent to which the overall error comes from the error 

in the slopes is dependent on the size of this error compared with the statistically estimated error from 

biological and technical variability, since the overall error is √𝐸𝛼
2 + 𝐸𝛽

2, where… 

𝐸𝛼
2 = 𝐸𝑄𝐺𝑟

2 + 𝐸𝑄𝐺𝑠

2 +
1

𝑁𝑟
2 ∑ (𝐸𝑄𝑅𝑖𝑟

2 + 𝐸𝑄𝑅𝑖𝑠

2 )          [14]

𝑁𝑟

𝑖=1

 

If all the assays have equal errors, The 𝐶𝑞-associated error 𝐸𝛼 will reduce slightly as more reference 

genes are included, but the effect is small, only about 20% reduction with four reference transcripts. 

So, as pointed out by Nordgard et al (2006), reduction of variance alone is not sufficient argument for 

using more than one reference. Rather, the improvement has to depend on the expected reduction of 

differences in expression between experimental groups, implicitly with GeNorm or explicitly with 

Normfinder. It remains important that the random error in the reference genes is as small as possible, 

so that it does not increase the error unecessarily. Nordgard et al. include terms for covariance 

between assays in their error propagation equations, and showed that in some circumstances, this is 

necessary for accurate accounting for errors. However, in the cases used here, with each gene assayed 

only once per biological sample, and with all assays for any gene conducted in a single experiment, 

we have omitted covariance terms because we consider none will be significantly different from zero. 

From equation 13, the overall contribution is essentially two terms, each of which multiplies the 

squares of a proportional slope error by the squared difference between (adjusted) Cq values. The 

typical standard error of the slopes for the assays reported here is about 0.02, which corresponds to 

approximately 1.4% increase or decrease in PCR efficiency. In the two experimental systems 

described here the lowest standard errors for differences between tissues or experimental groups, 

calculated by statistical modelling, 𝐸𝛼, are about 0.25, corresponding to about 0.8 to 1.2 fold 

modulation. These numbers give 𝐸 = √(0.25)2 + (0.02 × 𝛥𝑄)2. With the exception of PGK1 in 

muscle, the highest absolute 𝛥𝑄𝑠 are about 3, giving 𝐸 = √(0.25)2 + (0.02 × 3)2 = 0.257. Even for 

PGK1 in muscle, inclusion of the slope-related error the error in 𝛥𝑄 increases it from 0.33 to 0.35. 

That is from fold differences of about 50.9-80.4 to about 50.2-81.6. Clearly the error component due 

to the uncertainty of slopes is marginal for this dataset and can safely be ignored when testing for 

significant differences in transcript levels. 

More generally, the slope errors will only be important if either the standard curves are poor or the 

relevant differences in Cq, for experimental or reference transcripts, are much larger, and the 

biological and assay variances are small. The equations given can be used to adjust standard errors 

when that is the case. As a general principle, carrying out assays with similar Cq for reference genes 

in all samples will mean that slope errors will only be significant when differences in expression of 

genes of interest are very large. While thay may affect the exact ratios of means for genes of interest, 



they are unlikely to affect tests for significance of such large differences. On the other hand, if 

reference gene measurements are very different, then slope errors may become important. 

Looking at the more complex cases, if we have to use inter-plate controls, we should use equation 

[12]. The change here is the addition of the differences in plate control 𝛥𝑄 into the terms for each 

slope error. These should be relatively small. If they are not, the assays must be suspect anyway. They 

can be minimised by appropriate adjustment of the threshold in the software that provides the Cq. So 

the discussion of the slope related error in this case is essentially unaltered. 

Slopes should not vary between plates. If they do, we have to use equation [11] for the ratios of assays 

run on different plates. This is very different from [12] and [13], because now it is not 𝛥𝑄 for a 

sample that matters, but rather the difference between each value of 𝑄 and the plate control(s) of the 

same transcript. The only way to reduce this error is to have enough plate controls at different 

concentrations to ensure there is one close to every sample. Of course, to get the plate-specific 

control, we need to satisfy that requirement anyway, for the standard curve. If these are used for both 

measuring the slope and inter-plate controls, the standard curve error and the error in the plate 

controls are no longer independent, and the equation becomes invalid (covariance terms need to be 

added). Rather than delve into that situation, we would suggest that variation of the standard curve 

slope on different plates reveals serious problems with the assay. A (possibly partial) standard curve 

on each plate should still be used to check that the slope is consistent between plates, while it also 

provides the inter-plate controls. Provided the distribution of indivudual plate slopes care consistent, 

the curves can be combined to provide a combined curve with lower standard error. Plates with outlier 

slopes should be discarded. 

 

 

 


