
Supporting Information

The following supporting information accompanies the manuscript, “T

2

Shu�ing: Sharp,

Multi-Contrast, Volumetric Fast Spin-Echo Imaging.” Additional information and MATLAB

demonstration code is available at http://eecs.berkeley.edu/

˜

mlustig/Software.html.

Additional In Vivo Results

Supporting Figure S-1 compares Poisson disc CUBE with L1-ESPIRiT to the 5th and 30th

virtual TE of T

2

Shu�ing on an adult volunteer (Table 1, Scan 1b and Scan 2b, respectively).

In this comparison, a short ETL of 28 was used for the first scan to reduce intrinsic blur.

The short ETL was compensated for by very high Poisson disc sampling acceleration with

compressed sensing. At this scan time and ETL, the deblurring is negligible; however, both

proton-density and T

2

contrast are recovered by T

2

Shu�ing in the same scan time.
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Supporting Figure S-1: Reconstruction comparison of volunteer scans (see Table 1, Scan 1b and Scan

2b for acquisition parameters). a. Poisson disc CUBE acquisition and L1-ESPIRiT reconstruction.

The short ETL of 28 was o�set by a high Relative Acceleration of 6.6. b. T2 Shu�ing at the 5th virtual

echo time (TEe� = 21 ms). c. T2 Shu�ing at the 30th virtual echo time (TEe� = 90 ms).

Supporting Figure S-2 compares linear reconstructions without and with Tikhonov regu-

larization, i.e. solving Eq. (15) without LLR, to T

2

Shu�ing with LLR regularization at the

first virtual TE. From the figure, it is evident that the linear subspace constraint alone is not

su�cient to fully recover the object. The LLR constraint reduces the sample complexity and
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creates a more well-posed reconstruction.

Supporting Figure S-2: Comparison of linear reconstructions (a) without and (b) with Tikhonov regu-

larization to (c) T2 Shu�ing with LLR regularization at the first virtual TE. The linear reconstruction

without regularization su�ers from noise amplification. Tikhonov regularization reduces noise amplifi-

cation, but detailed structure is lost. The LLR-regularized reconstruction recovers the image, indicating

the reduced sample complexity. Scan parameters are given in Table 1, Scan 2b.

The primary focus of this work was the application of T

2

Shu�ing to pediatric knee imaging;

however, we have begun to explore the broader use of T

2

Shu�ing in other applications. These

include other musculoskeletal anatomy such as ankle, shoulder, and wrist imaging, as well as

brain and prostate imaging. Supporting Figure S-3 shows T

2

Shu�ing reconstructions at an

early and a late virtual echo time for brain, ankle, wrist, and prostate scans. The brain and

prostate reconstructions are sharp and show proton and T

2

contrast. The ankle and wrist

reconstructions su�er from residual aliasing artifacts and ghosting, potentially due to motion.

The use of T

2

Shu�ing in motion-corrupted environments is a topic of future exploration.
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Supporting Figure S-3: T2 Shu�ing reconstructions of brain, ankle, wrist, and prostate scans at two

virtual echo times.

Transform Point Spread Function

The transform point spread function (TPSF) can be used to empirically assess the interference

caused by a single transform coe�cient (42). For T

2

Shu�ing, locally low rank (LLR) matrices

are used as a sparsifying transform (33). The LLR transform operates on temporal coe�cient

image blocks, as shown in Supporting Figure S-4. A block centered at position r is extracted

from each temporal coe�cient image and reshaped into a column of a small matrix. The

transform components are the singular vectors of this matrix, and the coe�cient amplitudes

are the singular values. Since there are K temporal coe�cient images, the maximum number

of coe�cients (rank) for each matrix is equal to K.
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Supporting Figure S-4: Visualization of the block-wise matrix operator for LLR. Non-overlapping blocks

from each temporal coe�cient image are reshaped into columns to form small matrices. The transform

components are the singular vectors of the matrices.

We can analyze the e�ect of a single coe�cient in the LLR domain by constructing a

system input with a uniform patch in the center of a single temporal coe�cient image, and

zero elsewhere. The TPSF is then computed by passing the system input through the forward

operator and its adjoint:

–

TPSF

= �H
KSHFHPFS�K–

input

. (33)

The procedure is repeated K times; each repetition places the uniform patch in the subsequent

temporal coe�cient image. The final TPSF is a K-by-K grid of temporal coe�cient images.

The ideal system input is shown in Supporting Figure S-5. The TPSF for a center-out view

ordering is shown in Supporting Figure S-6, and the TPSF for a randomly shu�ed view ordering

is shown in Supporting Figure S-7. Both the center-out and the randomly shu�ed sampling

patterns were constructed such that every phase encode was sampled exactly once (i.e. no

parallel imaging acceleration or repeated phase encode re-sampling). The center-out TPSF

shows coherent interference and blurring, and the coe�cients are coupled. This demonstrates

the di�culty of deconvolution. The randomly shu�ed TPSF shows incoherent interference and

maintains a sharp central patch. The coe�cients are decoupled, and the interference manifests

as benign noise-like artifacts.
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Supporting Figure S-5: System input and ideal system response for TPSF calculation. Each row

represents a system input. The center of the active temporal coe�cient image contains a 7-by-7 uniform

magnitude-one patch.
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Supporting Figure S-6: The TPSF for center-out echo train ordering shows coherent interference. The

patch in the active coe�cient leaks to adjacent coe�cients and is blurred.
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Supporting Figure S-7: TPSF for randomly shu�ed echo train ordering. The main patch remains sharp,

and interference is spread incoherently to all transform coe�cients.

Sampling Pattern and Echo Train Formation

For large ETLs, it is not practical to generate a unique variable density Poisson disc sampling

pattern for each TE separately. Instead, we outline an alternative technique described in

Algorithm 1. The echo times are segmented into M batches and a unique variable-density
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Poisson disc sampling pattern is generated for each of the M batches. The acceleration factor

for each pattern is chosen so that there are at least

N

points

= T

M

◊ N

trains

(34)

samples in each mask, where T is the ETL (minus initial skipped echoes) and N

trains

is the

number of echo trains, given by Eq. (17). The acceleration factor is computed as

R =
Û

fi

4
Ny ◊ Nz

T ◊ N

trains

◊ ·

, (35)

where (Ny, Nz) are the k-space phase encode dimensions and · ¥ 1.1 is a “fudge factor” so that

the number of actual points is greater than or equal to N

points

. The masks are then randomly

pruned until each mask contains exactly N

points

samples. The fi/4 factor is included because

the corners of k-space are not acquired (6).

For the m

th sampling pattern, a small sliding window is moved until T/M points are

selected. These points are randomly ordered to form the m

th segment of one echo train. The

m

th segment of the subsequent echo train is formed by sliding the window until T/M new

points are selected. This is repeated until all points are covered, and the procedure continues

with the next sampling pattern. Since the echo trains are formed by grouping phase encodes

locally, eddy current e�ects are potentially reduced.

Several user-defined parameters a�ect the generated sampling distribution in k-t space.

The number of batches, M , controls the level of phase encode re-sampling. For large M , low

frequency phase encodes are more likely to be re-acquired due to the variable density weighting.

Note that T (excluding skipped echoes) must be divisible by M . Each sampling pattern can

specify a fully-sampled central region and the degree of variable-density weighting. Finally,

the sliding window size, (Wy, Wz), a�ects the degree of spatial locality for the echo train in

k-space.
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Algorithm 1 Randomly shu�ed sampling pattern and echo train formation.
Inputs: Ny, Nz, N

trains

, T , M , Wy, Wz, ·

Outputs: trains [N

trains

, T] – array of phase encodes to acquire

1: trains Ω zeros(N

trains

, T)

2: N

points

Ω Eq. (34)

3: R Ω Eq. (35)

4: for m = 1 : M do

5: mask Ω genVDPoissonMask(Ny, Nz, R, ·)

6: mask Ω mask.randprune(N

points

)

7: Initialize sliding window of size (Wy, Wz) in mask

8: for n = 1 : N

trains

do

9: arr Ω []

10: while arr.size() < T/M do

11: Add active (ky, kz) points within the sliding window to arr

12: Move sliding window to next region in mask

13: end while

14: arr Ω randperm(arr)

15: trains[n].append(arr)

16: end for

17: end for
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