The self-written Perl script in NGS QC Toolkit v2.3.3 software used to clean the raw data

First, low-quality sequences (reads has more than 70% of low-quality bases with a quality value ≤ 20) were removing from the raw data:

perl \$NGSQCToolkit/QC/IlluQC_PRLL.pl -pe R1.fastq R2.fastq N 5 -l 70 -s 20 -c 15 -o, rawdata_stat

- -pe, Paired-end read files
- N, Do not filter for Primer/Adaptor
- 5, Illumina (1.8+) (Phred+33, 33 to 74)
- -c, Number of CPUs to be used
- R1.fastq R2.fastq, input data

Second, the low-quality bases from the 3' terminus with a quality value ≤ 20 were removing:

perl \$NGSQCToolkit/QC/IlluQC_PRLL.pl -pe R1.fastq R2.fastq N 5 -l 70 -s 20 -c 15 -o rawdata stat

- -i, Forward read/sequence file
- -irev, Reverse read/sequence file of paired-end data
- -q, qual CutOff

R1.fastq_filtered -irev R2.fq_filtered, input fastq data obtaining from the first step

Third, the uncertain bases (N) in all of the read with a length threshold \leq 35bp were removing:

perl \$NGSQCToolkit/Trimming/AmbiguityFiltering.pl -i R1.fastq_filtered_trimmed -irev R2.fastq_filtered_trimmed -t5 -n 35

- -i, Forward read/sequence file
- -irev, Reverse read/sequence file of paired-end data
- -t5, Trim ambiguous bases from 5' end of the sequence
- -n, Sequence length cut-off

 $R1.fastq_filtered_trimmed \ , \ R2.fastq_filtered_trimmed, \ input \ fastq \ data \ obtaining \\ from \ the \ second \ step$

Then, the clean data was obtained as the final output data from the third step.

The self-written Perl script used for the mapping of the clean reads to the B. napus reference genome

tophat -r 50 -o tophat --library-type fr-firststrand -p 15 genome R1.fq R2.fq

- -r, --mate-inner-dist
- --library-type, the type for the sequencing of the library
- -p, Number of CPUs to be used

genome, name of the reference genome (The reference genome has been indexed first used the bowtie2-build)

R1.fq R2.fq, input clean data