
 

Supplementary Figure 1. The SRRF algorithm. (a) Top: Representation of the sub-pixel grid (dashed lines) 
with magnification 4 overlaid on the original image pixel grid. Location of radiality calculation sub-pixel , , 
the  ring-coordinates and the ring radius are indicated (orange pixel, blue circles and orange lines). Bottom: 
The calculation centre ,  for the orange pixel is translated by the drift vector (purple line). (b) Illustration 
of the geometry for the calculation of  for a single ring coordinate ′ , ′ . (c) Dependence of the gradient 
convergence, , on . (d) (i) SRRF line profiles from the centre of a fluorophore; (ii) SRRF FWHM at varying 
ring radius; analysed with different temporal methods. Solid lines represent the theoretical distributions. Stars 
represent (i) the radially averaged profiles, (ii) the FWHM, of N=100, 100 frame simulated fluorophore 
fluctuation data sets SNR = infinity. (e) Dependence of analysis run time on number of 512x512 pixel frames 
for a 2013 2.4GHz Intel i7-4700MQ notebook processor with integrated graphics card.  



 

 

Supplementary Figure 2. Flow chart of the SRRF algorithm. Depiction of the main tasks carried by 
SRRF. Arrows indicate direction of task sequence, bottom right legend indicates task type. Of note, tasks 
labeled as parallelized are executed in OpenCL, while tasks labeled as threaded are executed in Java threads. 
Task "calculate gradient maps" is based on equation S2, task "calculate radiality transform" is based on 
equations S3-9 and task "calculate radial fluctuations" is based on equations S11-12. 

  



 

Supplementary Figure 3. Single fluorophore evaluation of SRRF. (a) Radiality precision at various 
magnifications compared to the Cramér-Rao lower bound (CRLB). (b) Radiality precision at various ring radius 
and SNR. (c) Comparison of the Radiality (Rad) precision including gradient smoothing (GS), intensity 
weighting (IW) and gradient weighting (GW) to centre of mass (CoM), maximum likelihood estimation (MLE) 
and the CRLB. (Inset) The false negative (FN) count for the MLE in (c). Precision refers to the root mean 
square error in the analysis of 1000 simulated single frame, single PSFs. (d) SRRF FWHM at varying SNR; 
analysed with different temporal methods. Solid lines represent the theoretical distributions. Stars represent the 
FWHM of radially averaged profiles of N=100, 100 frame simulated fluorophore fluctuation data sets. 

  



 

Supplementary Figure 4. Fluorophore pair evaluation of SRRF. (a) Comparison of the Radiality (Rad) 
precision for two emitters at various separations including gradient smoothing (GS), intensity weighting (IW) 
and gradient weighting (GW) to centre of mass (CoM) and multi-emitter maximum likelihood estimation 
(MLE). Precision refers to the root mean square error in the analysis of 1000 simulated single frame, emitter 
pairs without intensity fluctuations. (b) The SRRF precision for two emitters at various separations including 
temporal radiality average (TRA), pairwise product mean (TRPPM) and auto-cumulant order 2 and 4 
(TRAC2,4) and multi-emitter maximum likelihood estimation (MLE). The multi-emitter maximum likelihood 
estimation precision without fluctuations from (a) (MLE**) is re-included for comparison in grey. Precision 
refers to the root mean square error in the analysis of 100, 100 frame simulations of fluctuating emitter pairs. (c) 
Comparison of representative (chosen randomly) 100 frame SRRF reconstruction for separation = 275 nm (0.85 
times the FWHM) using TRA, TRPPM and TRAC4 to the MLE reconstruction, the ground truth and the 
widefield. Scale bar 200 nm (d) Line profiles through the known positions of the emitters for the reconstructions 
in (c). 

  



 

Supplementary Figure 5. Quantitative comparison of SRRF, SOFI and multi-emitter fitting by 
visibility analysis. (a) Top: Representative example (chosen randomly) of the ground truth (G.T.), a single 
simulation frame (Sim.), the SOFI reconstruction (SOFI), the multi-emitter maximum likelihood (MLE) 
reconstruction (MLE) and the SRRF reconstruction (SRRF) for separation = FWHM, rate ratio r = koff / kon = 
0.15, fluorophores μm-1 = 5, mean molecular brightness = 5000 photons s-1 and mean background photons = 
100. Scale bar 500 nm.  The projection axis used in the visibility analysis is indicated. Bottom: Normalized 
projected profiles from which the relative visibility is measured. Visibility analysis was performed for SOFI, 
multi-emitter maximum likelihood and SRRF as described in Methods. Parameters, (b) separation, (c) rate ratio, 
(d) labelling density, (e) mean molecular brightness and (f) background photons were varied independently from 
an otherwise fixed parameter set: separation = 0.6 x FWHM, rate ratio r = koff / kon = 0.15, fluorophores μm-1 = 
5, mean molecular brightness = 5000 photons s-1 and mean background photons = 2%. For all data points, SRRF 
N = 20, SOFI N = 20, multi-emitter maximum likelihood (MLE) N = 5 and the mean standard deviation for each 
method is indicated in the legend. 



 

Supplementary Figure 6. Quantification of resolution at various densities using temporally 
averaged datasets. Analysis of resolution in high- and ultra-high density datasets created from temporally 
averaging a low density data set as described in Methods. (a) TIRF image of the structure for which the low 
density dataset was acquired, representative single frames from the three datasets (original low density and 
artificial high- and ultra-high density), and the corresponding SRRF and multi-emitter fitting reconstructions. 
The location from which plot profiles were measured, mean fluorophore separation per frame (<dNN>) and 
number of frames in the dataset are indicated. Scale bar 500 nm. (b) Comparison of the plot profiles indicated in 
(a). Analysis of the peak to peak separation (red), full structure width (purple) and, where applicable, FWHM 
(yellow) for the (c) MLE low density and SRRF (d) low, (e) high and (f) ultra-high density datasets. The 
visibilities (v) calculated from these profiles are indicated. 

  



 
Supplementary Figure 7. Fourier Ring Correlation analysis of resolution. (a) Analysis of resolution by 
Fourier ring correlation (FRC) for low density (LD), high density (HD) and ultra-high density (UHD) data in 
Figure 2b. Analysis of resolution by Fourier ring correlation (FRC) for (b) confocal imaging and (c) LED 
illuminated widefield imaging of fixed microtubules (Fig. 3), (d) TIRF imaging of live microtubules 
(Supplementary Movie 2) and (e) TIRF imaging of live mitochondria (Supplementary Movie 4) respectively. 
Green arrows indicate the first crossing point of the 1/7 threshold shown used to determine the resolution in 
each case. 
  



 

Supplementary Figure 8. Comparisons between SRRF and other super-resolution algorithms at a 
range of densities. (a) TIRF and deconvolved TIRF images of the data presented in Fig. 2b. (b) Five 
consecutive frames from the three different density datasets acquired for algorithm comparisons. Imaging 
parameters are as in Fig. 2b and Methods. (c) Images obtained using the listed algorithms to reconstruct the 
three different density datasets. The amount of time taken to produce each image is shown in yellow text in the 
format hh:mm:ss. 3B analysis was not performed on the low density data. Scalebars = 1 µm. 

  



 

Supplementary Figure 9. Line profiles for super-resolution algorithm comparisons. The location at 
which line profiles were measured is shown as a yellow line on the (a) DAOSTORM low density reconstruction 
and (b) TIRF image. The height in the y direction of each profile was 100 nm, allowing for averaging over this 
range to prevent single pixel biases. Scalebars = 1 µm. Line profiles from the region indicated in (a) and (b) are 
plotted in the profiles below (intensities all normalized from 0 to 1). (c-d) Ultra-high density reconstruction 
profiles for SRRF compared with image-based techniques and localization techniques respectively. (e-f) High 
density reconstruction profiles for SRRF compared with image-based techniques and localization techniques 
respectively. (g-h) Low density reconstruction profiles for SRRF compared with image-based techniques and 
localization techniques. 

   



 

Supplementary Figure 10. Correlation scores for super-resolution algorithm comparisons. Plot 
showing values of Pearson’s correlation coefficient for each line profile plotted in Fig. 9b-d when compared 
against the line profile for the low density DAOSTORM reconstruction (orange line, Fig. S9h)). 

 

  



 
Supplementary Figure 11. Peak to peak separation of GFP-labelled structures in live cell 
movies. (a) Magnified view of two crossing microtubules from Supplementary Movie 2 and SRRF 
intensity plot taken between the yellow arrowheads. (b) Magnified view of two crossing microtubules 
from Supplementary Movie 3 and SRRF intensity plot taken between the yellow arrowheads. (c) 
Magnified view of two crossing actin structures from Supplementary Movie 8 and SRRF intensity 
plot taken between the yellow arrowheads. All scalebars = 1 µm. Line profiles were averaged over 
~100 nm adjacent to the line to ensure profiles were not corrupted by noise peaks. 
  



 

Supplementary Figure 12. Actin organisation in a live activated T-cell reconstructed using high 
density algorithms. Region of 100 raw frames of LifeAct-GFP in the T-cell stimulated with anti-
CD3&CD28 as shown in Fig. 4b and Supplementary Movie 8 reconstructed with the various image-
based techniques. Scalebars = 1 µm. 
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Dataset 
On-sample intensity 
(kW cm-2) 

Total imaging time 
(s) 

   

Alexa Fluor 647 labelled microtubules in 
fixed CHO cells 

4 1800 

   

Alexa Fluor 647 labelled microtubules in 
fixed LLC-MK2 cells 

2.31 1042 

   

LifeAct-GFP Jurkat T-cells stimulated with 
anti-CD28 

0.21 50 

   

LifeAct-GFP Jurkat T-cells stimulated with 
anti-CD3&CD28 

0.083 50 

   

LifeAct-GFP Jurkat T-cells stimulated with 
anti-CD3 

0.083 50 

   

Tubulin-GFP HeLa cells – long term 
imaging every 25 mins for 8 hours 

0.065 20 

   

LifeAct-GFP Jurkat T-cell drop onto anti-
CD3 

0.042 200 

   

Tubulin-GFP HeLa cells – short term 
continuous imaging 

0.0085 51 

   

Mitotracker red HeLa cells 0.00025 121 

 

Supplementary Table 1. Laser intensities and total imaging time for datasets displayed. Summary of 
the on-sample intensities (kW cm-2) and the total imaging time (s) for the data sets included in this paper. 

 



Parameter Description (further details available in Supplementary Note 1 
and Supplementary Software Manual) 

Ring Radius Sets the radius (in pixels) at which gradient convergence is calculated. 
Determines the FWHM and the precision of the Radiality distribution. 
See Supplementary Figs. 1 and 3b. 

Radiality Magnification Sets the factor decrease in the 1D sub pixel size relative to the original 
pixel size. Determines the spatial support of the SRRF image and affects 
the algorithm run time. See Supplementary Fig. 3a. 

Axes in Ring Sets the number of symmetry axes to be used in the Radiality 
calculation. N ‘ring coordinates’ (Supplementary Note 1) is double the 
number of symmetry axes. Determines the sampling frequency of the 
local gradient field and affects the algorithm run time. 

Remove Positivity Constraint Allows Radiality distribution to have negative values. 

Renormalize Renormalizes the Radiality distribution range from [-1 1] to [0 1]. 

Do Gradient Smoothing Applies a larger 5x3 and 3x5 first derivative kernel pair to gradient 
calculation. Increases accuracy of Radiality distribution at low SNR but 
decreases sensitivity to high spatial frequencies. See Supplementary 
Figs. 3c and 4a. 

Do Intensity Weighting Weights the Radiality distribution by intensity. Increases contrast and 
SNR of the radiality distribution. See Supplementary Figs. 3c and 4a. 

Do Gradient Weighting Weights the Radiality distribution by local gradient magnitude. Increases 
contrast and SNR of the Radiality distribution. See Supplementary Figs. 
3c and 4a. 

PSF FWHM Determines the Ring Radius of the local gradient magnitude calculation; 
only applies to Gradient Weighting. 

Temporal Analysis Method Chooses between temporal analysis methods, TRM, TRA, TRPPM and 
TRAC. See Supplementary Figs. 1d, 3d and 4. 

Integrate Temporal 
Correlations 

Calculates the cumulant integrated over all time lags (TRAC only). 

TRAC Order 
Sets the order of the cumulant analysis (TRAC only). See Supplementary 
Figs. 1d, 3d and 4. 

Do Temporal Subtraction Applies a frame by frame subtraction to the raw data before calculation 
of SRRF (as described by Burnette et alS1). 

Supplementary Table 2. Summary of user defined parameters in the SRRF algorithm. User 
defined parameters in the SRRF algorithm are summarised with reference to figures and text 
providing additional details.  



Supplementary Note 1: Super-Resolution Radial Fluctuations Algorithm 

The Super-Resolution Radial Fluctuations (SRRF) algorithm is comprised of two distinct parts, a 
spatial and a temporal analysis, that when combined efficiently super-resolve cellular structures from 
a temporal image sequence of fluorophores oscillating their emission (Fig. 1).  

The first part, spatial analysis, corresponds to the calculation of the degree of radial symmetry for sub-
pixel regions. This procedure applied to an image generates what we refer to here as a radiality map. 
Each frame on the original image sequence will be analysed by this procedure, generating a 
corresponding sequence of radiality maps. The second step, temporal analysis, entails the analysis of 
the sequence of radiality maps through higher-order temporal statistics, such as cumulant analysis, 
generating a single super-resolution image referred to here as a SRRF map. 

Spatial Analysis – Generating Radiality Maps 

We quantify the radial symmetry of a point in space by measuring the extent to which the local image 
gradients converge on this point (Fig. 1a). Measuring the average distance to lines of gradient around 
a point in an image provides a measure of the degree of convergence of the gradient lines. Thus, the 
radiality map of an image is calculated as follows. 

For an image plane	 , , the gradients  and  can be calculated separately as per Equation S1. 

 
,

,
 

,
,

 

S1 

For every pixel in the original image, , , a good first order approximation to the image gradients 
in  and  directions,  and  can be calculated, without translation, by convolution with a 
differentiation kernel pairS2 (Equations S2,3). 
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S2 

In low densities this kernel pair can be increased to a 5x3 and 3x5 first derivative kernel pair 
(Equation S3) in order to be more robust to low SNR however sensitivity to the higher spatial 
frequencies in the image is compromised by the spatial averaging of the gradient fields. 
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From this point calculations are performed in continuous space in order to populate a magnified 
analysis grid. As such we define a set of locations ,  in a magnified pixel grid for which the 
calculation of radiality is performed (Supplementary Fig. 1a). Note that in general these points will be 
the centre of each magnified pixel. If a drift correction table is provided however, the drift can be 
corrected for by shifting the point ,  by the corresponding drift vector for the current frame 
(purple line Supplementary Fig. 1a). This shift can be performed in continuous space without altering 
the subsequent calculations in any way. A drift correction table can be provided by the user or 



calculated with the normalised cross correlation based drift estimation methodS3,S4,S5 included in the 
NanoJ-SRRF plugin. 

From the point , ,  ‘ring co-ordinates’ , ′  are defined such that they are equally 
distributed around a ring of radius  (Supplementary Fig. 1a).  is an arbitrarily defined variable that 
determines the number of gradient samples, in this algorithm it takes a value of 12 by default. At each 
of these co-ordinates in continuous space the gradients  and  are calculated by Catmull-Rom 

spline interpolationS6 from the original image gradients  and . The equation of a line describing 
this gradient can be formulated (Equation S4) and in general the perpendicular distance from a point 
,  to a line is given by Equation S5. 

 0  S4 
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S5 

This allows the calculation of the minimum perpendicular distance (Supplementary Fig. 1b), , from 
the point ,  to the gradient line through the point ′ , ′  to be calculated as follows, 

 ′ ′
. 

S6 

The normalised dot product, Θ, between the vectors ,  and ,  can be 
calculated,  

 
Θ

.
| || |

, 
S7 

which is positive if the gradient is convergent and negative if the gradient is divergent. We then define 
the degree of convergence of the gradient line on the point ,  as 

 
sgn Θ

1
| |

, 
S8 

that can take values from -1 to 1 and is dependent on the angle  alone (Supplementary Fig. 1c). The 
mean convergence for the  ring co-ordinates is calculated to give the raw un-weighted radiality in 
the pixel ,  in frame , 

 
,

1
. 

S9 

The raw radiality, , , can subsequently be weighted by the interpolated intensity at the point 
, . Alternatively or in addition, the radiality can be weighted by a sum of the local gradient 

magnitudes. A second ring with an independently chosen radius is used to determine the gradient 
weight, , calculated as  

 1 sgn Θ | | | |
, 

S10 

where Θ and  are recalculated for the new ring co-ordinates and  and  are the gradient and 
intensities respectively at the point , . Regions of the resulting radiality map can be negative, 
indicating divergence in the gradient field and suggesting the absence of an emitter at these locations. 



Since the absence of an emitter in a single frame does not diminish the probability of an emitter 
appearing in subsequent frames, negative radialities are set to zero. This positivity constraint can be 
disabled in the NanoJ-SRRF plugin. At this stage, the presence of radially symmetric PSF profiles 
caused by fluorophores in an image will lead to equivalent conically shaped peaks appearing on the 
corresponding radiality map, with a FWHM proportional to the ring radius used (Supplementary Fig. 
1d). We solved Equation S9 numerically (Mathematica, Wolfram Research, Inc) demonstrating that 
two, equally intense Gaussians, separated by <0.7 times their FWHM can be resolved in a single time 
point (frame) by calculating the radiality map. Supplementary Movie 1 demonstrates the effect on the 
radiality map of varying key parameters such as ring radius and PSF size, shape and position.  

Temporal Analysis – Generating the SRRF Map 

Following calculation of the radiality image sequence a single super-resolution frame can be 
generated from a pixel-by-pixel maximum projection, temporal radiality maximum (TRM), or average 
projection, temporal radiality average (TRA). In datasets where peak separation is greater than 0.7 
times the FWHM of the PSF, emitters can be directly resolved by the radiality map without further 
enhancement brought by higher-order temporal correlations. Thus, TRM and TRA projections of the 
radiality image sequence will produce super-resolution reconstructions with resolutions dependent on 
the chosen ring radius and the SNR (Supplementary Figs. 1, 3). Each method has an advantage as the 
TRA will be less influenced by noise whereas TRM will have the benefit of not being dominated by 
constantly emitting sources such as fiducial markers. If persistently emitting sources are present in the 
data however, these can also be removed by frame-by-frame temporal subtractionS1 prior to the 
calculation of the radiality.  

Further resolution gains and significant improvements in fidelity and contrast can be achieved 
however, if the temporal fluctuations in the radiality maps are analysed using higher-order statistics.  

The NanoJ-SRRF plugin offers four options for higher-order temporal analysis. The first, temporal 
radiality pairwise product mean, TRPPM, calculates the second order raw-moment, integrated over all 
time lags and normalised by the number of frame pairs used. This can be formulated as follows, 

 
TRPPM ,

2
1

, 
S11 

where T is the total number of frames,  and  enumerate the frames and  and  are the radialities 
at the pixel ,  in frame  and  respectively. 

The other three methods, temporal radiality auto-cumulant, TRAC 2, 3 and 4, constitute the second, 
third and fourth order central auto-cumulants with a time lag, , of 1 frame as previously discussed 
in Dertinger, T. et alS7 and formulated here, as follows, 

 TRAC2 , 〈 ∙ 〉, 

TRAC3 , 〈 ∙ ∙ 〉, 

TRAC4 , 〈 ∙ ∙ ∙ 〉
〈 ∙ 〉	〈 ∙ 〉
〈 ∙ 〉 〈 ∙ 〉
〈 ∙ 〉 〈 ∙ 〉 
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where 〈 〉, and 〈⋯ 〉 indicates an average over time. For a comprehensive overview of 
cumulant analysis see Mendel, J.M.S8.  

 



Note on the implementation of the ImageJ SRRF plugin 

The NanoJ-SRRF ImageJ plugin (Supplementary Software) provided includes a graphical user 
interface allowing options for data management, time-lapse analysis, drift correction and temporal 
subtraction as well as the user defined algorithm parameters. These user defined parameters are 
summarised in Supplementary Table 2. A software manual (Supplementary Software) is also provided 
describing installation of the plugin and giving further information on the selection of algorithm 
parameters. 

The calculation of the radiality of each sub-pixel is trivially parallelisable since each calculation is 
independent of all other sub pixels in time and space. Similarly, the temporal calculation for each sub-
pixel is independent of all other sub pixels in space and can be parallelised with respect to space. A 
computationally efficient approximate calculation of the auto cumulant integrated over all time lags 
excluding 0  is also implemented using a course-grained binning approach adopted from 
fluorescence correlation spectroscopyS9. NanoJ-SRRF performs these calculations on a graphical 
processing card, where one is available, allowing massive parallelisation enabling a typical 512x512 
pixel data set to be analysed at 1 frame per second on a 2013 2.4GHz Intel i7-4700MQ notebook 
processor with integrated graphics card (Supplementary Fig. 1e). A flow-chart outlining the main 
elements of SRRF is presented in Supplementary Fig. 2.  

The NanoJ-SRRF plugin additionally provides the functionality to test its environment for suitable 
CPU and GPU hardware allowing the user to select the most suitable environment. Debugging options 
are also provided. 

Note on temporal analysis of radiality 

Dertinger et alS7, in the formulation of the SOFI algorithm, make the assumption that the fluorescence 
distribution arises from a set of fluorophores with statistically independent intensity fluctuations in 
stationary equilibrium. This allows, as in Equation 3 of Dertinger et al, the fluorescence, ,  at 
position , time  to be expressed as a sum of the zero mean fluctuations of N fluorophores, 

 
, ∙ ∙ , 

S13 

where ∙ ∙  is the convolution of the system PSF, , and the  contribution to 
the fluorescence source distribution having mean brightness, , and time dependent fluctuation 

. Applying a second order auto correlation function to the fluorescence fluctuations (Equation 4 
Dertinger et al) yields  
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where 〈… 〉 denotes a time average. When the fluorescence intensity fluctuations are transformed to 
radiality fluctuations however a dependence on the local environment of the image is introduced into 
the correlation function. This dependence prevents the simple reduction of the correlation function via 
the assumptions made by Dertinger et al. 

In the case of very low densities where no fluorophores overlap in space within a pair of frames then 
there are no cross correlation terms in the autocorrelation function and the radiality intensity 1. 
It has been shown previously that the  order auto-cumulant analysis of a fluctuating Gaussian 
intensity distribution bestows a factor of √  decrease in the FWHM of the PSF since the extent of 
correlation varies non-linearly across the distributionS7. We empirically demonstrate a similar FWHM 
decrease in the non-Gaussian radiality PSF using TRPPM and TRAC 2, 3 and 4 applied to a 



simulated, single fluorophore (Supplementary Fig. 1d). Under this best-case scenario the resulting 
SRRF intensity distribution is equal to the radiality PSF raised to the power 2, 3 or 4 depending on the 
auto-cumulant order and weighted by the molecular correlation function. This is demonstrated by 
simulation of the ideal case of a single fluctuating fluorophore with no noise (Supplementary Fig. 1d) 
and is shown to agree well with the theoretical model of the radiality PSF squared. Good agreement is 
also seen with the theoretical distribution for 3rd and 4th order auto-cumulants.  

In the case of multiple fluorophores coexisting in the same spatial and temporal volume however, the 
appearance of an additional fluorophore will reduce the radiality of adjacent fluorophores while the 
disappearance of a fluorophore will increase the radiality of adjacent fluorophores (Supplementary 
Movie 1). This results in a radiality brightness 1 reintroducing some of the non-linear brightness 
effects seen in SOFI. Since the appearance and disappearance of fluorophores can still be assumed to 
be independent, the cross-correlation terms in the auto-correlation function should still in general be 
approximately equal to zero despite the intensity distribution not being a simple sum of fluorophore 
intensities. We demonstrate in Supplementary Fig. 4d that the radiality PSF FWHM is in fact reduced 
when higher-order cumulants are applied to the radiality of adjacent fluorophores however as 
anticipated the effect is less pronounced than what might be expected in the single molecule case. The 
application of higher-order statistical analysis to pairs of fluctuating fluorophores however, 
demonstrates a notable improvement in the ability to resolve fluorophores at smaller separations 
(Supplementary Fig. 4b). Moreover, since the radiality peaks that occur as a result of noise are always 
uncorrelated in time it will in general be useful to use higher-order statistics in order to de-noise and 
enhance the contrast of the SRRF reconstructions.   



Supplementary Note 2: Characterisation of performance across regimes 

The evaluation of localisation algorithms has typically been based on the comparison of localisations 
made on simulated datasets, to the true simulated positions. The minimum theoretically achievable 
mean square error in localisation is given by the Cramér-Rao lower bound (CRLB) which can be 
approximated by Equation 7 from Rieger, B. & Stallinga, S.S10, 
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where  is the number of photons,  is the PSF width,  is the pixel size and  approximates the ratio 
of the background intensity to the peak signal intensity. 

Since SRRF is a non-localisation based algorithm that produces single super-resolution images, a 
table of localised positions is not available for comparison with the ground truth. Instead, in order to 
provide a comparison to the CRLB, we have used single frame simulations of single fluorophores at 
various signal to noise ratios and compared the location of the pixel with the maximum radiality to the 
ground truth location. Due to the discrete nature of the possible locations of the radiality maxima, this 
method gives an approximation to the true precision of the radiality peak. This approximation is 
dependent on the magnification of the sub-pixel grid on which the radiality calculation is performed 
(Supplementary Fig. 3a). If the magnification is such that the sub-pixel size is smaller than the true 
precision the best possible estimate of the precision is achieved which is seen to approach the CRLB.  

We first tested the precision of radiality as the ring radius,  in Supplementary Fig. 1, was varied. The 
ring radius is an important parameter as it determines the proximity of the gradient lines to the point 
of interest. As a consequence, the ring radius determines the maximum spatial frequency of the 
radiality map by changing the full width half maximum (FWHM) of the of the resulting radiality 
distribution. The precision of the radiality calculation will be influenced however, by the magnitude 
of the gradient from which it is calculated. This results in a reduction of the precision at small ring 
radius where the gradient at the centre of the emitter intensity distribution approaches zero 
(Supplementary Fig. 3b). 

A principal determinant of the precision of localisation microscopy, as can be deduced from the 
equation for the CRLB, is the signal to noise ratio (SNR). We determined the precision of radiality at 
a range of SNRs from 1, equivalent to ~90 photons per emitter, to 15, equivalent ~1300 photons per 
emitter (Supplementary Fig. 3c). A selection of possible weighting methods and gradient kernels were 
tested. These results indicate that intensity weighting (IW) and gradient weighting (GW) both have a 
very small effect on the precision of radiality. However, the use of the larger (3x5 and 5x3) gradient 
smoothing (GS) kernels (Equation S3) has a marked increase in precision. For comparison, the 
precision of centre of mass (CoM) estimationS11 and maximum likelihood estimation (MLE)S3 were 
also calculated for the same datasets. In the case of the MLE the inset in Supplementary Fig. 3c shows 
the false negative (FN) count, the number of frames in which no fitting was performed as the 
algorithm was unable to detect a suitable candidate signal to fit the model to. 

Aside from the interdependence between the radialities of adjacent fluorophores another important 
factor in determining the final FWHM of the SRRF reconstruction is the SNR. This is because despite 
the highly accurate peak position the displacement of the peak due to noise can approach a similar 
scale to the FWHM of the radiality peak (before temporal analysis). Temporal averaging or 
correlation of this displacement will result in a broadening of the SRRF FWHM while increasing the 
precision of the peak position. This effect is demonstrated for a fluctuating fluorophore in 
Supplementary Fig. 3d. 



Many localisation algorithms achieve close to CRLB precision on single emitter localisations but 
suffer from a significant loss of precision when localising pairs of emitters separated by less than 
~3 , where , the standard deviation of a Gaussian PSF, is approximately 135 nm for wavelengths 
corresponding to Alexa Fluor 647 for example. The performance of radiality in the case of nearby 
emitters was investigated by simulating two equal intensity emitters at various separations 
(Supplementary Fig. 4a). The error in this case was calculated as the distance to the nearest pixel that 
was a local maximum. Again, error estimates from CoM and MLE (using a multi-emitter model) are 
included for comparison, for which the errors were calculated as the distance from each true position 
to the nearest localisation. The linear response initially at low separations indicates the condition 
where a single radiality peak is observed on the line between the two emitters. Any precision 
estimates lower than this line, equal to half the separation, indicates separation into two distinct peaks. 
These results indicate that GW and IW improve the precision of radiality when emitters overlap and 
demonstrate the inaccessibility of higher spatial frequencies when the larger GS gradient kernels are 
used. They also demonstrate that while radiality performs favourably to CoM estimation, MLE multi-
emitter fitting is superior to radiality on a single frame basis. 

To this point, all evaluations have been performed on a single frame, not including the resolution 
improvements to SRRF afforded by the temporal analysis. In order to investigate the effect of 
including the temporal information, emitter pairs were simulated with a 50% standard deviation in 
photon yield over 100 frames and analysed with each of the temporal radiality SRRF methods. Errors 
were calculated as the distance from the true emitter positions to the nearest local maxima in the 
single SRRF frame produced from 100 raw frames (Supplementary Fig. 4b). The results show a 
notable improvement in the precision over the most successful single frame radiality method and are 
comparable with MLE multi-emitter fitting. An example ground truth simulation (separation 275 nm) 
is shown in Supplementary Fig. 4c. A representative widefield image produced from an average 
projection of 100 frames shows that, at this separation, fluorophores would not be resolved using 
conventional imaging approaches (Supplementary Fig. 4c). Higher-order SRRF methods, TRA, 
TRPPM and TRAC4 produce images with progressively decreasing FWHM and increasing contrast 
allowing the two emitters to be better distinguished (Supplementary Fig. 4c). An MLE multi-emitter 
fitting reconstruction from the same 100 frame data set is shown for comparison (Supplementary Fig. 
4c). Line profiles through the known positions of both emitters for the reconstructions in 
Supplementary Fig. 4c are shown in Supplementary Fig. 4d. Despite the complex inter-dependence of 
the radiality distributions these line profiles demonstrate that higher-order auto-cumulants do reduce 
the FWHM to some degree as well as de-noising and enhancing the SRRF reconstruction. 

SRRF is not only applicable to low density datasets where one or two fluorophores appear close to 
one another. In order to quantitatively assess the performance of SRRF at higher densities of emitting 
fluorophores we have performed a comparative analysis across a wide range of parameters based on 
the analysis used by Geissbuehler et alS12. This analysis is based on a normalized visibility parameter 
that quantitatively assesses the extent to which two adjacent filamentous structures can be resolved. 
This analysis shows that at low rate ratios where the fluorophore on-time is significantly longer than 
the fluorophore off-time, resulting in high density datasets, SRRF consistently outperforms both the 
similar SOFI method and the benchmark localization method multi-emitter MLE (Supplementary Fig. 
5). The visibility of the structures when analysed with SRRF was greater than both SOFI and MLE at 
low filament separations, low rate ratios, higher labelling densities, lower mean molecular signal and 
higher background. 

To investigate experimentally the performance of SRRF, we acquired a low density super-resolution 
data set of Alexa Fluor 647 immuno-labelled fixed microtubules, fluorophore density was then 
estimated through analysis of the dataset using maximum likelihood estimation. A sequence of data 
sets with increasing fluorophore density was then generated by averaging frames from the low density 
data. This approach allows us to maintain an accurate fluorophore density and ground truth estimate, 



which would not be possible with experimental high density datasets. Through the analysis of this 
data, the performance of SRRF was investigated, showing it is possible to resolve two approaching 
filaments even at ultra-high density (Supplementary Fig. 6, Methods). The averaging of low density 
data allowed the creation of datasets of length 990 and 198 frames with mean fluorophore separations 
of 74 nm and 31 nm respectively. Two microtubules were identified in the low density MLE dataset 
with a peak-to-peak separation of 74.7 nm. The mean localization precision of the 44454 localized 
fluorophores in the low density data was 15.9 nm giving a conservative estimate that the maximum 
possible separation of the filaments as 90 nm apart. A plot profile of the of the SRRF reconstruction at 
low density indicates the same 74.7 nm peak-to-peak separation while the FWHMs of the two 
filaments were 57.1 nm and 55.9 nm approximately equal to the 53 nm width expected for secondary 
antibody immuno-labelling of microtubules. While the visibility of the microtubules was reduced in 
the high density datasets the two microtubules were still resolved well (Supplementary Fig. 6). 

 

  



Supplementary Note 3: Comparisons of SRRF performance against published super-resolution 
algorithms at different densities and for live-cell data 

In order to qualify the advantages of SRRF, the three datasets presented in Fig. 2b were also analysed 
for six other super-resolution algorithms: three image-based approaches (3BS13, SOFIS7 and 
DeconSTORMS14) and three localization methods (DAOSTORMS15, FALCONS16 and 
ThunderSTORMS3). The corresponding single frame TIRF image for this region was also 
deconvolved using commercial deconvolution software (Supplementary Fig. 8a). Parameters for 
performing reconstruction using deconvolution and other super-resolution algorithms were 
determined from direct measurements on the raw data where appropriate (for example, image 
background estimations). Where other user-defined parameters were required, parameter sweeps were 
performed and the image most closely resembling the low density reconstruction from 
ThunderSTORM was chosen. The reconstructed images are shown in Supplementary Fig. 8c along 
with the computational time required to generate each displayed image. 3B analysis was not 
performed on the low density dataset as this dataset had tenfold more frames than the high density 
dataset and even when using cloud computingS17 was expected to take approximately 20 days to run. 

Of all the super-resolution algorithms tested, only SRRF and DeconSTORM were capable of 
producing images representative of the underlying structure at all three densities. However, the 
amount of time required for DeconSTORM computation was significantly longer than required for 
SRRF analysis (not including the time required to perform parameter sweeps in DeconSTORM) and 
DeconSTORM analysis is restricted to using square datasets. In this regard, SRRF is a considerably 
more efficient and flexible algorithm for performing super resolution analysis of datasets at a range of 
densities. 

We also sought to quantify the similarity between the various reconstructed images, as it is clear from 
Supplementary Fig. 8c that many of the algorithms lose image information, especially at the higher 
densities. To achieve this, a line profile was taken across each image (location of profile shown in 
Supplementary Fig. 9a-b), and for each image this profile was averaged over 100 nm in the y direction 
to prevent bias from individual bright or mislocalized pixels. These profiles and the corresponding 
TIRF profile are plotted in Supplementary Figs. 9c-h. Supplementary Figs. 9c and d show the line 
profiles for the ultra-high density data reconstructions for SRRF compared with image-based methods 
and localization techniques respectively. As can be seen in Supplementary Fig. 9c, both SRRF and 
DeconSTORM both recovered all of the peaks visible in the TIRF profile and decreased their widths; 
DeconSTORM also succeeded in resolving a second peak within the large TIRF peak extending from 
3500-4500 nm. The SOFI profile indicates blurring together of TIRF peaks (such as in the regions at 
500-1500 nm and 2500-3500 nm), and 3B profile only recovers three of the peaks visible in the TIRF 
profile. The localization techniques also fail to recover the majority of peaks visible in the TIRF 
profile for ultra-high density data (Supplementary Fig. 9d). SRRF, SOFI and DeconSTORM 
displayed good fidelity in recovering peaks from high density data (Supplementary Fig. 9e), with all 
three algorithms now resolving two distinct peaks within the broad TIRF peak located at 3500-4500 
nm. Again, 3B was incapable of recovering all of the features in the TIRF profile. At this density, the 
profiles for the localization techniques (Supplementary Fig. 9f) still lacked many of the features 
observable in the TIRF profile although more peaks were recovered than for the ultra-high density 
data (for example at ~750 nm and ~3200 nm). For the low density data, all of the image-based 
(Supplementary Fig. 9g) and localization (Supplementary Fig. 9h) methods recovered all of the peaks 
in the TIRF profiles and super-resolved multiple peaks within the single broad TIRF peaks at 1500-
2500 nm (with the exception of SOFI) and 3500-4500 nm. All algorithms apart from SOFI also 
reconstructed sharper peaks than seen in the TIRF profile. 

To fully assess the content of these measured line profiles, correlation analysis was performed for 
each line profile against a reference profile. The DAOSTORM low density profile was chosen as this 



reference due to the previously reported good performance of DAOSTORM for both high and low 
density dataS18. The Pearson’s correlation coefficients between each profile from Supplementary Figs. 
9b-d and the DAOSTORM low density profile are presented in Supplementary Fig. 10, where higher 
scores indicate better correlation. For the low density reconstructions SRRF had the second highest 
correlations score of all the tested algorithms, second only to FALCON and higher than that for the 
other localization algorithm tested, ThunderSTORM. For both the high and ultra-high density 
reconstructions SRRF had the highest correlation scores against the reference. Of particular note, 
SRRF reconstructions possessed similar correlation scores indicating that SRRF analysis is robust to 
different density datasets. 

The image-based methods 3B, SOFI and DeconSTORM were also used to reconstruct a region of the 
anti-CD3&CD28 stimulated T-cell dataset shown in Fig. 4b and Supplementary Movie 8 
(Supplementary Fig. 12). The deconvolved widefield image is also shown for comparison. SRRF 
analysis produced a reconstructed image containing all of the structural information within the 
deconvolved image with higher fidelity and improved contrast. Insufficient fluctuations in the 
acquired GFP data prevented SOFI from resolving any additional structure, and the DeconSTORM 
image contains typical ringing artefacts. While 3B succeeded in resolving part of the cell periphery, 
very little structure was recovered from the cell interior. Therefore for live-cell GFP data containing 
minimal intensity fluctuations SRRF performs similarly to deconvolution and produces images 
superior to those reconstructed with any other image-based super-resolution algorithm. 

  



Supplementary Methods 

Comparison with other super resolution algorithms For the comparisons with other super 
resolution algorithms in Supplementary Figs. 8-10, a 64x64 pixel region of interest was selected from 
each dataset (as acquired for Fig. 2). 3B: 3B analysis was performed using Amazon Elastic Cloud 
Compute according to the method described in Hu et alS17. 81 overlapping 10x10 pixel masks were 
used on each image. For each image analysed, 20 c1.medium (compute optimized) instances were 
launched and monitored until the average number of iterations per mask exceeded 50 (as output by the 
scripts provided in Hu et al; this corresponds to 200 iterations as described in the original 3B 
paperS13). The average number of iterations per mask for was 62.9 for the ultra-high density dataset 
and 56.5 for the high density dataset. Quoted run times correspond to the total time required to 
analyse all 81 masks. A particles table was exported for the 3B results and the displayed images were 
rendered using normalized Gaussians of uncertainty 20 nm. SOFI: SOFI was run for orders 1-6 along 
with (fourth order) bSOFIS19 for each density and the best image selected in each case. The ultra-high 
density reconstruction was produced using bSOFI with FWHM determined by the algorithm, and the 
high and low density reconstructions were produced using third order SOFI with a fixed FWHM. Run 
times indicate the total time to run all 6 orders and bSOFI. Analysis was performed using MATLAB 
running on a 2014 Intel Xeon E5-2687W v2 desktop processor.  DeconSTORM: For DeconSTORM 
analysis the average background per pixel per frame was measured for each dataset and input into the 
algorithm, along with the measured sigma. For all reconstructions the gain parameter was set to 256 
and 1000 iterations were used. Parameter sweeps were performed for the emitter probabilities α and β 
in the ranges α=[0.2, 0.99] and β=[10-6, 10-1] and the best images selected. For the ultra-high and high 
density reconstructions, α=0.99 and β=10-6. For the low density reconstruction, α=0.5 and β=10-2. 
Analysis was performed using MATLAB running on a 2014 Intel Xeon E5-2687W v2 desktop 
processor. DAOSTORM: The PSF used for DAOSTORM analysis was generated from a frame in the 
low density dataset with PSF parameters as measured from this image. All other parameters in 
DAOSTORM were set as measured from the individual datasets. The resulting DAOSTORM particles 
tables were then rendered using normalized Gaussians of uncertainty 20 nm. Analysis was performed 
using a 2013 MacBook Pro. FALCON: FALCON was run using parameters as measured from the 
images and final images were rendered using normalised Gaussians of uncertainty 20 nm. Analysis 
was performed using MATLAB running on a 2013 Intel i7-4700MQ notebook processor with 
integrated graphics card. ThunderSTORM: ThunderSTORM analysis on each dataset was performed 
using the PSF: Integrated Gaussian method with maximum likelihood estimation and multi-emitter 
fitting analysis. Reconstructed images were rendered with normalized Gaussians of uncertainty 
measured from the molecular intensities. Analysis was run on a 2014 Intel Xeon E5-2687W v2 
desktop processor. Deconvolution: Huygens deconvolution software was used to deconvolve the 
TIRF image using an estimated PSF based on the microscope parameters. 

For the comparisons between different algorithms for the LifeAct-GFP T-cell image (Supplementary 
Fig. 12), algorithms were run as above. The SOFI reconstruction displayed is for third order SOFI 
with FWHM determined by the algorithm. The deconSTORM reconstruction displayed was created 
with α=0.99 and β=10-6 and 50 iterations. 
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