
 

Supplementary Figure 1. ZrTe5 unit cell, Brillouin zone and band structure. a, Unit 

cell for ZrTe5, where the green spheres indicate Zr atoms, while brown spheres depict 

Te atoms. b, Brillouin zone of ZrTe5, with the high-symmetry points marked. c, 

Variation of the band gap at the Brillouin zone centre with changing lattice constants. 

Reference experimental lattice constants are obtained from Ref. 1. d, Relativistic band 

structure of bulk ZrTe5 at different values of lattice constants. Left and right panels in e 

show a zoom-in-view of the band structure along M-Γ-Z and X-Γ-Y directions, 

respectively. 

 



 

Supplementary Figure 2. Fermi surface of ZrTe5. Side view (left) and top view (right) 

of Fermi surfaces at (a) 100 meV below the Fermi level, (b) 50 meV above the Fermi 

level and (c) 100 meV above the Fermi level, for ZrTe5 with lattice constants chosen to 

be one percent greater than the reported value from Ref. 1. 

 



 

Supplementary Figure 3. The temperature-dependent magneto-transport of ZrTe5. 

a, Temperature-dependent MR of ZrTe5. The MR exhibits SdH oscillations at 2~20 K. 

As the temperature increases (40~150 K), it shows a saturation under high magnetic 

field. When the temperature reaches 160~300 K, the MR gives a parabolic behavior. b, 

Temperature-dependent Hall resistance of ZrTe5. At low temperatures, it generates 

negative slope showing the electron-dominated transport. Around the transition 

temperature, the Hall slope changes sign with both electrons and holes contributing to 

the transport (two-carrier transport). At high temperatures, the positive Hall slope 

reveals a hole-dominated transport. 

 

 

Supplementary Figure 4. Temperature-dependence of multi-carrier transport of 

ZrTe5 around the anomalous resistivity peak. a-b, Temperature dependence of MR 

and Hall resistance at high temperatures, respectively. The nonlinear Hall signal reveals 

the multi-carrier transport. c, Temperature dependence of the Kohler’s plot.   
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Supplementary Figure 5. Multi-carrier transport of ZrTe5 at low temperatures. a-

b, Temperature dependence of MR and Hall resistance at low temperatures, respectively. 

Electrons dominate the transport with negative Hall slope. c, Temperature dependence 

of the Kohler’s plot. 

 

 

Supplementary Figure 6. Two-carrier transport fitting of the Gxy at 30 K and 150 

K. The blue curves are the experimental results while the red curves are the fitting 

curves.  
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Supplementary Figure 7. Temperature-dependence of carrier density and mobility. 

a, Temperature-dependence of carrier density for two types of electrons. b, 

Temperature-dependent mobility. c, Temperature-dependent conductance ratio between 

two types of electrons.  

 

 

Supplementary Figure 8. Temperature dependence of carrier density (a) and 

mobility (b) of the high mobility carrier. The p-n transition occurs at 138 K, 

accompanied by an anomalous resistance peak.  
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Supplementary Figure 9. Magnetoresistance of ZrTe5 with the rotated magnetic 

field in a-b plane. a, Angular-dependent magnetoresistance of ZrTe5 at 2 K. b, Landau 

fan diagram with different magnetic field orientation. Inset: the intercept of Landau fan 

diagram. c, Angular-dependent frequency of quantum oscillations. 

 

 

 

Supplementary Figure 10. Quantum oscillations of ZrTe5 with magnetic field 

applied along a-axis. a, Temperature-dependent MR of ZrTe5 with magnetic field 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

2

4

6

8

10

90°

N
1/B (T

-1
)

0°

0.00 0.02 0.04

0.0

0.5

1.0

1/B (T
-1
)

N

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

1

2

R
x
x
 (

Ω
)

B (T)

0°

90°

0 20 40 60 80 100

0

10

20

30

40

50

S
F
 (

T
)

α

a b c

0.135 0.140 0.145 0.150 0.155 0.160

-3.6

-3.4

-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0
B  // a-axis

 2 K

 3 K

 4 K

 5 K

ln
[△

R
B

s
in

h
(λ

)]

1/B (T
-1
)

-9 -8 -7 -6 -5 -4 -3 -2

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

R
x
x
 (

Ω
)

B (T)

B// a-axis

 2 K

 3 K

 4 K

 5 K

 6 K

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

R
x
x
 (

Ω
)

B (T)

B // a-axis

 2 K

 3 K

 4 K

 5 K

 6 K

2 3 4 5 6 7 8

0.001

0.002

0.003

0.004

0.005

0.006

△
R

 (
Ω

)

T (K)

   B // a axis

 7.287

 6.742

 6.311 

6 7

0.21

0.24

0.27

0.30

m
* 

(m
e
)

B (T)

a b

c d



parallel to a-axis. b, The extracted quantum oscillations of ZrTe5 based on a. The 

analysis of quantum oscillations - Dingle plot - gives the quantum lifetime and effective 

mass (c) and temperature factor fitting (d).  

 

 

Supplementary Figure 11. Quantum oscillations of ZrTe5 with magnetic field along 

the c-axis. a, Temperature-dependent MR of ZrTe5 with magnetic field along the c-axis. 

b, The extracted SdH oscillations. c-d, Dingle plots of B//c-axis and b-axis, respectively.  
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Supplementary Figure 12. Quantum oscillations and Zeeman splitting from Rxx 

and Rxy of ZrTe5. a, Normalized MR and Hall resistance at 2 K. The solid lines mark 

the oscillations observed from Rxx. b, The oscillation components extracted via different 

approaches. c, The Hall resistance under 0.4 K and 0.5 K, respectively. The arrows here 

mark the splitting signal of 3rd and 2nd Landau levels, respectively. d, Angular 

dependent Hall resistance at 2 K. Figure 3e in the main text is extracted from this figure.  
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Supplementary Figure 13. MR (a) and quantum oscillations (b) of ZrTe5 when 

magnetic field is along a-axis. c, Temperature-dependent residual resistance ratio of 

ZrTe5 from nphys3648 and our manuscript. d, Longitudinal MR of ZrTe5 at different 

temperatures. It shows positive MR at low temperatures with quantum oscillations. The 

negative MR develops as the temperature increases. 
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Supplementary Figure 14. Angular-dependent MR of ZrTe5 and Hall resistance 

under high magnetic field at 4.2 K. a, Angular-dependent MR of another sample with 

magnetic field rotated in a-b plane. b, Angular-dependent MR with magnetic field 

rotated in b-c plane. c-e, Rxx and Rxy of three different ZrTe5 single crystals under high 

magnetic field at 4.2 K. 

 

 

 

Supplementary Figure 15. The spin density from the n = 0 Landau level. 
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Supplementary Figure 16. Transport properties of ZrTe5 and HfTe5. a, 

Temperature-dependent resistance of ZrTe5 and HfTe5. b, Magnetoresistance of HfTe5. 

c, Temperature-dependent resistance of HfTe5 under different magnetic fields. d, 

Temperature-dependent resistance of ZrTe5 under different magnetic fields. 
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Supplementary Figure 17. Temperature-dependent MR of ZrTe5 and HfTe5. a, 

Temperature-dependent MR of ZrTe5.b, Temperature-dependent MR of ZrTe5 under 

high magnetic field. c, Temperature-dependent MR of HfTe5 -1. d, Temperature-

dependent MR of HfTe5 -2. 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

1

2

3

4

5

R
x
x
 (

Ω
)

B (T)

 4 K  

 6 K  

 8 K  

 10 K

 15 K

 20 K

 30 K

-4 -2 0 2 4

0

2

4

R
x
x
 (

Ω
)

B (T)

 2 K  

 3 K  

 8 K  

 10 K

 15 K

 20 K

-10 -8 -6 -4 -2 0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

R
x
x
 (

Ω
)

B (T)

 2 K  

 3 K  

 4 K  

 6 K  

 8 K  

 10 K

 15 K

 20 K

 30 K

0 20 40

0

3

6

9

12

15

R
x
x
 (

Ω
)

B (T)

 4.2K

 20K

 40K

 80 K

a b

c d



 

Supplementary Figure 18. Quantum Hall state accompanied with the FISDW state. 

a-c, the MR and Hall data of three different ZrTe5 samples. b, the MR and Hall data of 

HfTe5. 

 

Supplementary Table 1| Summary of Berry’s phase of different Dirac materials 

Material Intercept Ref. 

BiTeI 0.02 2 

BiTeCl ~±0.125 3 

Ag2Se -0.15±0.05 4 

SrMnBi2 0.1±0.09 5,6 

CaMnBi2 -0.05 7 

SrMnSb2 -0.04 8 

EuMnBi2 -0.12 9 
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Supplementary Note 1. Band structure calculations 

To get an insight into the electronic structure of ZrTe5, we carried out ab initio 

density functional theory calculations. First-principles calculations were performed 

using the Quantum-Espresso package11. Perdew-Burke-Ernzerhof form of the 

exchange-correlation functional was employed12. Plane wave cut-off of 40 Ry was used. 

Brillouin zone was sampled using an 8 × 8 × 4 Monkhorst-Pack k-point mesh for the 

self-consistent calculations. Fermi surface was plotted over a grid of 5577 k-points 

using XCrySDen13. Spin-orbit interactions were included in all computations.  

According to our calculations, there is a gap less than 50 meV at the Γ point if we 

employ the experimental lattice constant in the previous literature1, which is similar to 

the recent theoretical calculations14. Meanwhile, another study shows that the bulk of 

ZrTe5 is semimetal with band inversion15. However, just 1% deviation from the 

experimental parameters can close the band gap (Supplementary Figure 1d-e), which is 

exactly the relaxed lattice constants14. Moreover, we found that the value of the band 

gap is highly tunable by the lattice constants (Supplementary Figure 1c). The evolution 

of Fermi surface verse Fermi energy is also simulated (Supplementary Figure 2). When 

the Fermi level is located in the conduction band, there is a highly anisotropic Fermi 

ellipsoid in the middle of the Brillouin zone, which strongly supports the results that 

we concluded from the analysis of SdH oscillations in the main text. Besides, in the rest 

of the Brillouin zone, there are some open Fermi surfaces which may come from other 

bands. It is also consistent with our Hall analysis in the Supplementary Note 2. 

 

Supplementary Note 2. Multi-carrier transport 

The MR and Hall resistance show exotic temperature-dependent behavior. Three 

types of MR can be classified: in the high temperature regime before the p-n transition 



(160~300 K), the MR exhibits a classical parabolic relation with magnetic field B; in 

the intermediate regime (40~150 K), the MR displays clearly a saturation and then at 

lower temperature (<20 K), the quantum effect dominates and quantum oscillations 

occur (Supplementary Figure 3). 

The temperature-dependent MR suggests a multi-carrier transport. We start with the 

high temperature regime. At 300 K, the MR of ZrTe5 shows a parabolic behavior, and 

the Hall resistance exhibits a positive slope, indicating a hole-dominated transport 

(Supplementary Figure 4). As the temperature decreases, the MR ratio increases and it 

becomes saturated under high magnetic field, meanwhile the linear positive Hall 

resistance gradually changes to an S shape with negative slope at the high-field regime. 

It suggests that two types of carriers begin to contribute to the transport. Indeed, the 

violation of the Kohler’s rule clearly demonstrates the classical multi-carrier transport. 

According to the Kohler’s rule16–18, 

𝑅𝑥𝑥(𝐵,𝑇)

𝑅𝑥𝑥(0,𝑇)
= 𝐹(

𝐵

𝑅𝑥𝑥(0,𝑇)
),                       (1) 

the MR at different temperatures can be rescaled by the Kohler plot. If there is one type 

of carrier with the same scattering time at the Fermi surface everywhere, the 

temperature-dependent Kohler plot of the MR curve would overlap each other. 

However, in the high temperature regime (160~300 K), the Kohler’s plot at different 

temperatures falls on different collapsed curves, providing unambiguous evidence of 

multi-carrier transport (Supplementary Figure 4c). Similar analysis can be applied to 

the low temperature and the intermediate temperature regime (2~138 K) after the p-n 

transition. The MR shows quantum effect at around 30 K, where the MR saturation 

behavior tends to be suppressed (Supplementary Figure 5a). At lower temperatures the 

quantum oscillations emerge and its MR behavior is primarily dominated by quantum 

transport rather than the previous classical transport. The Hall resistance shows a 

negative slope when the temperature is lower than 100 K (Supplementary Figure 5b). 

However, the nonlinear Hall resistance and the violation of the Kohler’s rule 

(Supplementary Figure 5c) demonstrate that at low temperatures there are two types of 

electrons contributing to the magneto-transport, as discussed below. 



To quantitatively analyze the multi-carrier transport, two-carrier transport model 

is adopted. For better accuracy, the Rxx and Rxy are converted to conductance Gxy by 

Gxy =
𝑅𝑥𝑦

𝑅𝑥𝑥
2 +𝑅𝑥𝑦

2   and then Gxy at different temperatures are fitted to the two-carrier 

model18,19: Gxy = ∑
𝑛𝑖𝑒𝜇𝑖

2𝐵

[1+(𝜇𝑖𝐵)
2]𝑖 . Here ni and μi denote the carrier density and mobility 

for each carrier, respectively. By preforming the best fit, the carrier density and mobility 

for different carriers can be extracted (Supplementary Figure 6). At low temperatures, 

two types of electrons are found, one with a high mobility up to 50,000 cm2V-1s-1 and 

the other with a low mobility of 5,000 cm2V-1s-1 (Supplementary Figure 7b). The former 

one can be regarded as the origin of the quantum oscillations which hosts the Dirac 

nature as extensively discussed in the main text. The latter one, however, may come 

from a parabolic band and does not cause SdH oscillations owing to a large scattering 

rate or an open orbit16. These experimental observations are consistent with our band 

structure calculations as presented later in the Supplementary Note 1. It should be 

noticed that both the mobility and carrier density of two types of electrons saturate 

below 20 K (Supplementary Figure 7a-b). As a result, their conductance ratio (G=neμ) 

remains almost a constant and high-mobility electrons dominate the transport below 20 

K. As the temperature increases, the low mobility electron gradually dominates the 

transport at ~40 K (the dashed line in Supplementary Figure 7c). Correspondingly, the 

MR feature changes from the quantum oscillations to the classical saturated MR as 

mentioned above (Supplementary Figure 5a). 

The temperature-dependent carrier density clearly shows temperature-dependent 

Fermi level. At low temperatures, the carrier density of the low mobility electrons 

increases with increasing temperature (Supplementary Figure 7a). At about 80 K, the 

carrier density drops abruptly showing that the Fermi level starts to leave the bottom of 

conduction band. Meanwhile, the carrier density of the high mobility electrons has 

almost dropped to zero and then converts to hole carriers continuously (Supplementary 

Figure 8b). The experiments suggest that the Fermi energy shifts from conduction band 

to valence band with increasing temperature, which agrees well with the recent ARPES 

results20,21.  



 

Supplementary Note 3. SdH oscillation analysis 

Different magnetic field orientation was taken to probe the Fermi surface and 

topological phase of ZrTe5. With the similar discussions from the main text, the MR of 

ZrTe5 with magnetic field in a-b plane is shown in Supplementary Figure 9. A highly 

anisotropic MR is also observed (Supplementary Figure 9a). With the Landau fan 

diagram, oscillation frequency and phase factor could be extracted (Supplementary 

Figure 9b-c). Similar to the scenario where B is rotated inside the b-c plane, the 

frequency deviates from the law of cosines as the magnetic field approaches the a-axis. 

Meanwhile, the Berry’s phase shifts from nontrivial to trivial.  

It is worth noting that the positive MR and quantum oscillations are observed with 

magnetic field parallel to the a-axis, i.e., the direction of the applied current 

(Supplementary Figure 10a). With this geometry, chiral magnetic effect was observed 

in previous transport experiments22. The absence of negative MR is probably because 

of the high Fermi level in our crystals, which also leads to detectable Fermi area and 

visible quantum oscillations (Supplementary Figure 10b). As discussed in the main text, 

effective mass can be obtained by fitting the temperature-dependent oscillation 

amplitude to the temperature smearing factor RT (Supplementary Figure 10d). And the 

quantum lifetime can be acquired for the Dingle factor RD ~e-D, where 𝐷 =
𝜋𝑚∗

𝑒𝐵𝜏
 and 

𝜏 is the quantum lifetime. Using ∆𝑅 ∝ 𝑒−𝐷𝜆(𝑇)/𝑠𝑖𝑛ℎ𝜆(𝑇), we can obtain D from the 

slope of linear fit to ln⁡[∆𝑅𝐵𝑠𝑖𝑛ℎ𝜆(𝑇)] as a function of 1/B (Supplementary Figure 

10c; Supplementary Figure 11c-d). The lifetime is around 0.2 ps for three principle axes, 

much lower than the transport lifetime which is determined by the Hall mobility. Such 

a relationship is also observed in the Dirac semimetal Cd3As2
23,24. This is because the 

small angle scattering dominates in the low-temperature magneto-transport. 

The band structure parameters extracted from the SdH oscillations are summarized 

in Table 1 in the main text.  



In the previous reports25–27, both multi-frequency and single-frequency quantum 

oscillations have been reported. Recently, several papers concerning the low-field 

transport of ZrTe5 bulk nanostructures also claimed the single-frequency quantum 

oscillations28,29. These experimental results nicely suggest that in most cases single-

frequency quantum oscillations are observable which is the result of Fermi level 

position. Recently, ARPES data show that the band structure of ZrTe5 highly depends 

on the temperature and the Fermi energy21,30,22. As the temperature decreases below the 

temperature-anomaly point, Fermi level moves from the valence band into the 

conduction band. Further reducing the temperature moves the Fermi level deeper into 

the conduction band. The topology of the Fermi surface can vary with different Fermi 

energy. It is worth noting that the multi-frequency quantum oscillations were observed 

on the sample showing resistivity anomaly at 170 K in Ref. 27, which is much higher 

than that of the single-frequency case. This means that the p-n transition occurs at 

higher temperature with a deeper Fermi level into the conduction band at low 

temperature. With such a high Fermi energy, it is indeed possible to involve multiple 

bands to contribute to the quantum oscillations. And in our case, the resistivity anomaly 

occurs at 138 K, indicating the lower Fermi energy at low temperature. Thus, unlike 

the previous research in Ref. 27, we observed single-frequency quantum oscillations. In 

short, the different Fermi levels will result in distinct quantum oscillation behavior. 

It worth noting that the intercept γ for the non-trivial state is around 0.14, which is 

deviated from 0, the value for strictly perfect 2D case. However, it is not contradicted 

to the quasi-2D feature of ZrTe5. For ZrTe5, because of its weak interlayer interaction14, 

it is reasonable to obtain a highly anisotropic Fermi surface, which gives us a property 

of quasi-two dimensional. And the quasi-2D Dirac feature have been unambiguously 

demonstrated by several evidence in our manuscript: 

(1) Our angular-dependent magneto-transport results suggest that the quasi-2D 

feature survives up to 70° even under high magnetic field (Fig. 2c and Fig. 4b in the 

manuscript). The periodicity of the angular quantum oscillations depends on the law of 

cosines (the inset of Fig. 2c in the manuscript and Supplementary Figure 9c). Within 



70°, the Berry’s phase remains close to the non-trivial π Berry’s phase, suggesting the 

Dirac fermion with a strong quasi-2D feature.  

(2) Another very important evidence is the layered-transport and the quantum Hall 

effect, as shown in Fig. 2f. Recently, such behavior was also observed in EuMnBi2
9, 

which was believed to originate from the 2D Dirac fermion. We have carefully read the 

reference 9. In fact, the gamma for EuMnBi2 in that reference varies from 0.08 to 0.12, 

closed to 1/8, rather than strictly 0. 

(3) The high-field measurements also confirm the quasi-2D feature (Fig. 4b). 

Under the ultra-high magnetic field, the quasi-2D feature is still robust.  

All these results support that we observe a quasi-2D Dirac fermion in a-c plane. 

However, once we further tilted the magnetic field beyond 70°, the oscillations behavior 

significantly deviated from the 2D case. From our experiments, we observe quantum 

oscillations when the magnetic field is along three principle axes which indicate the 3D 

Fermi surface topology of our ZrTe5 sample, instead of a perfect 2D Fermi surface. 

However, this is not contradictory to our claim of ZrTe5 being as a quasi-two-

dimensional Dirac material. As the magnetic is rotated towards the a-axis or c-axis, the 

Berry’s phase turns to be trivial (Fig. 2 and Supplementary Figure 9). The gamma is 

0.5 when the magnetic field is along a-axis or c-axis, suggesting the trivial state. In 

other words, non-trivial Berry’s phase is only observed within 70° where the quasi-2D 

feature is present. Thus, we would like to clearly state that based on our experiments 

ZrTe5 has a highly anisotropic 3D Fermi surface topology, but it has quasi-2D Dirac 

feature in a-c plane as evidenced by the nontrivial Berry phase whereas along the a-

axis or c-axis it turns to a trivial Berry phase, indicating the non-Dirac property.  

In terms of the intercept gamma with respect to the dimensionality of the Fermi 

surface, it is a debatable method to determine the dimensionality by Berry’s phase 

experimentally. Recently such kind of quasi-two dimensional Fermi surface was also 

reported in other Dirac materials such as BiTeI2, BiTeCl3, Ag2Se4, TaAs31, NbAs32, 

SrMnBi2
5,6, CaMnBi2

7, SrMnSb2
8, EuMnBi2

9 and YbMnBi2
10. However, their 

intercepts of Landau fan diagram vary significantly, rather than strictly 0, as 

summarized in the Supplementary Table 1. There are substantial interactions that 



influence the Berry’s phase. The spin-orbit coupling effect, the Zeeman effect, the non-

ideal Dirac nature, nested Fermi surface or the broken particle-hole symmetry would 

generate the deviation of Berry’ phase from non-trivial π. The 3D Fermi surface 

topology rather than strictly perfect 2D Fermi surface of ZrTe5 is possible to cause some 

deviation of Berry’s phase. And the prominent Zeeman effect could also make the 

gamma deviated from 0. Here we would like to summarize the intercept of the Landau 

diagram for various materials reported recently.  

Therefore, overall ZrTe5 has a highly anisotropic 3D Fermi surface topology, but 

in a wide range of angle, it shows a 2D Dirac feature. Thus we can describe it as a quasi-

two dimensional Dirac material. The observation of a non-zero gamma value is not 

contradictory to the claim of the quasi-2D Dirac feature as it can be influenced by other 

factors.  

 

Supplementary Note 4. Zeeman splitting of Rxx and Rxy  

The Zeeman effect here will not affect our previous analysis of SdH oscillations. 

To be explicit, we start with the general features of the SdH oscillations from our 

experiments: (1) The Zeeman effect can be observed distinctly at low temperature 

below 3 K. (2) Above 2 K, only the Zeeman splitting of 2nd Landau levels can be 

distinguished from the Rxx signals. The 3th and higher Landau levels do not exhibit 

sizable Zeeman splitting. (3) To observe the Zeeman effect clearly, we have to reduce 

the temperature down to 400 mK. 

When we extracted the carrier transport parameters, it was necessary to neglect the 

influence from the Zeeman effect. We focused on the Landau levels higher than 3rd, 

where the Zeeman effect was negligible. Also, the temperature is higher than 2 K to 

reduce the influence from Zeeman effect. Subsequently, the effective mass was 

extracted by the SdH oscillations in Fig. 2d at 1.72 T, 1.45 T and 1.25 T, respectively. 

And the Zeeman factor Rs doesn’t affect the analysis at this stage, as shown by the 

eq.(1). 



When we analyzed the Zeeman effect, however, we needed to reduce the system 

temperature to milikelvin range and focus on the lower Landau levels which exhibited 

a prominent Zeeman effect. For the sake of simplicity, the Zeeman factor 
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where 

*

02

gm

m
  . The final equation is shown in eq.(2). So eq.(1) and eq.(2) are equal 

to each other mathematically.  

 

Supplementary Note 5. Explicit Landau level wavefunctions  

According to symmetry considerations14,33, a low-energy Hamiltonian (without 

magnetic field) for ZrTe5 is  

 
0 ( ) ( ) ,x x x z y y y z z x x zH v k v k v k m        k   (1) 

where the Pauli matrices 
, ,x y z   refer to certain orbital degrees of freedom, while 

, ,x y z   refers to the electron spin. The , ,x y z  axes correspond to , ,a c b  axes of the 

crystal, respectively. 

Suppose that the g-factor of the 1z     orbital is g g g   , the Zeeman 

coupling reads 



 
Zeeman ( )

2

z
B zH g g B


       (2) 

Since ZrTe5 is a highly quasi-two-dimensional system, the Landau level formation 

in the magnetic field is most significant in the xy plane, therefore, we first study the 

Landau level induced by a magnetic field zBB e  , using the Landau gauge 

( ,0,0)By A . 

Now we solve the Landau levels for the full Hamiltonian 0 Zeeman( ) ( )H H H k k .  

The Landau level problem for magnetic field along z direction has also been solved in 

Ref. 33, while we shall solve it in a way convenient for our problem. Let us take the 

standard replacement ˆ
i i i ik i eA p     for ,i x y . These operators satisfy the 

commutation relation ˆ ˆ[ , ]x yp p i eB  . The Hamiltonian in the presence of magnetic 

field takes the form of    

 

ˆ ˆ0

ˆ ˆ0
,

ˆ ˆ 0

ˆ ˆ 0

z z x x y y k

z z k x x y y

x x y y k z z

k x x y y z z

m E E v p iv p E

m E E E v p iv p
H

v p iv p E m E E

E v p iv p m E E









   
 

   
 
    
 

      

  (3) 

in which we have defined several shorthand notations / 2z BE gB , / 2z BE gB   , 

and k z z z zE v k v p   (to simplify notations, hereafter we shall denote zk  as k). Now 

we have the commutation relation 

 ˆ ˆ ˆ ˆ[ , ] 2 ,x x y y x x y y x yv p iv p v p iv p v v eB     (4) 

therefore, we can define the ladder operators  

 
†

ˆ ˆ( ) / ,

ˆ ˆ( ) / ,

x x y y B

x x y y B

b v p iv p E

b v p iv p E

 

 
  (5) 

with 2B x yE v v eB   (we have supposed that 0x yv v B   , and the 0x yv v B    case is 

similar; from our data, we have 2 19.0 meVB x yE v v eB B  ), such that 

 
†[ , ] 1.b b    (6) 

With this notation, the Hamiltonian becomes   



 

†

†

0

0
,

0
 

0

z z B k

z z k B

B k z z

k B z z

m E E E b E

m E E E E b
H

E b E m E E

E E b m E E









  
 

  
 
   
 

    

  (7) 

Let us denote the eigenfunction of †b b   with eigenvalue n as n  . The Landau 

levels can be solved as follows. We take the ansatz

1 1
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 
 
 
 
 
 

 , thus the Schrodinger 

equation becomes  

 

1 1

2 2

3 3

4 4

0

0
.

0

0

 

z z B k

z z k B

B k z z

k B z z

m E E E n E a a

m E E E E n a a
E

a aE n E m E E

a aE E n m E E









      
     

                   
         

  (8) 

 

The m term is known to be tiny, and the Zeeman splitting can be accounted for by the 

Ez term, thus it is reasonable to discard the m and zE  terms, which enables simpler 

analytic solutions. The 0n    Landau levels have two instead of four energy 

eigenvalues  

 
2 2

0,  ,s k BE s E E    (9) 

where 1s   . For the 1s    mode, the wavefunction is  

 0, 1 0

0

cos( / 2)
,
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0
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n s
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 
 

  (10) 

while for the 1s    mode, the wavefunction is  

 0, 1 0

0

sin( / 2)
,

cos( 2
 

/ )

0

k

n s

k


 
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 
 
 
 

  (11) 

where k  satisfies tan /k k zE E  . 



The Landau levels energy eigenvalues for 0n   are  

 2 2

, , ( )  ,n s k B zE E E n sE      (12) 

with 1     and 1s    . By explicitly solving the equations, we can also see that 

1s    corresponds to 1x  . The eigenfunctions of the 1s    modes are 

 

, 1 , 1

, ,

, 1, 1 , 1, 1
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, 1 , 1
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;
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  (13) 

where 
,k n  is defined by  

 ,tan / ( )  .k n k B zE E n E     (14) 

Similarly, the eigenfunctions for the 1s    modes are  
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, ,
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, ,
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sin( / 2) cos( / 2)
; .
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    
   
         

  (15) 

The explicit Landau level wavefunctions will be useful in determining the form of 

density wave to be discussed below. 

 

Now let us calculate the Landau levels for magnetic field along the x direction. To 

simplify the calculation, it is convenient to rotate the spin as  

 , ,  x z z x      (16) 

such that the Hamiltonian takes the form of 

 ( ) .x x x x y y y z z x z z z zH v k v k v k m E              (17) 

Note that we have included the Zeeman term, which takes the form of z xE   in the 

original basis, and z zE   in the spin-rotated basis. 

Let us follow the notations of the previous section. The momentum operators 

satisfy the commutation relation ˆ ˆ[ , ]y zp p i eB  . The Hamiltonian in the presence of 

magnetic field takes the form of    



 

ˆ ˆ0

ˆ ˆ0
,

ˆ
 

ˆ 0

ˆ ˆ 0

z z z y y k

z k z z y y

z z y y k z

k z z y y z

m E v p iv p E

m E E v p iv p
H

v p iv p E m E

E v p iv p m E
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   
 
    
 

      

  (18) 

in which we have defined several shorthand notations / 2z BE gB  ,  and 

k x x x xE v k v p  (to simplify notations, hereafter in this section we shall denote kx as 

k). Now we have the commutation relation  

 ˆ ˆ ˆ ˆ[ , ] 2 ,z z y y z z y y x yv p iv p v p iv p v v eB      (19) 

therefore, we can define the ladder operators  

 
†

ˆ ˆ( ) / ,

ˆ ˆ( ) / ,

z z y y B

z z y y B

b v p iv p E

b v p iv p E

 
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  (20) 

with 2B y zE v v eB  (we have supposed that 0y zv v B   , and the 0y zv v B    case is 

similar), such that  

 
†[ , ] 1. b b    (21) 

With this notation, the Hamiltonian becomes 

 

†

†
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0
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  (22) 

Let us denote the eigenfunction of †b b  with eigenvalue n as n . The Landau levels 

can be solved as follows. We take the ansatz
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 , thus the Schrodinger 

equation becomes  
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  (23) 

Let us omit the tiny m term. The n = 0 Landau levels have two instead of four energy 



eigenvalues  

 
2 2

0, ,s k BE s E E    (24) 

where 1s   . We shall not be concerned with the wavefunctions for magnetic field 

along x direction. 

The Landau levels energy eigenvalues for 0n  are  

 2 2

, , ( ) ,n s k B zE E E n sE      (25) 

with 1     and 1s    . By explicitly solving the equations, we can also see that 

1s    corresponds to 1x  . From the energy eigenvalues of the Landau levels, we 

can see that there is Zeeman splitting, which is observable in the transport experiment. 

 

Finally let us calculate the Landau levels for magnetic field along the y direction. 

To simplify the calculation, it is convenient to rotate the spin as  

 , ,y z z y       (26) 

such that the Hamiltonian takes the form of  

 ( ) .x x x y y y y z z x x z z zH v k v p v k m E              (27) 

Note that we have included the Zeeman term, which takes the form of 
z yE   in the 

original basis, and z zE   in the spin-rotated basis. 

Let us follow the notations of the previous section. The momentum operators 

satisfy the commutation relation ˆ ˆ[ , ]z xp p i eB  . The Hamiltonian in the presence of 

magnetic field takes the form of  
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k x x z z z

x x z z k z

m E iE iv p v p

m E iv p v p iE
H
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  (28) 

in which we have defined several shorthand notations / 2z BE gB  , and

k y y y yE v k v p  (to simplify notations, hereafter in this section we shall denote ky as 

k). Now we have the commutation relation  



 ˆ ˆ ˆ ˆ[ , ] 2 ,z z x x z z x x x yv p iv p v p iv p v v eB     (29) 

therefore, we can define the ladder operators  

 
†
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ˆ ˆ( ) / ,

z z x x B

z z x x B
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 
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  (30) 

with 2B x zE v v eB  (we have supposed that 0x zv v B   , and the 0x zv v B    case is 

similar), such that  

 
†[ , ] 1. b b    (31) 

With this notation, the Hamiltonian becomes   
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  (32) 

Let us denote the eigenfunction of †b b  with eigenvalue n as n . The Landau levels 

can be solved as follows. We take the ansatz
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 , thus the Schrodinger 

equation becomes  
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  (33) 

Let us omit the tiny m term. The n = 0 Landau levels have two instead of four energy 

eigenvalues 

 
0,  ,  s k zE sE E    (34) 

where 1s     are identical to the
y   eigenvalues. The wavefunctions of the n = 0 

Landau levels have 1z   . We shall not be concerned with the explicit form of the 

wavefunctions for magnetic field along y direction. 

The Landau levels energy eigenvalues for 0n  are  



 
2 2

, , ( ) ,  n s B k zE nE E sE      (35) 

with 1    and 1s   . From this spectrum we can see that the presence of Zeeman 

term Ez merely shifts the spectrum, without causing Zeeman splitting in the SdH 

oscillations. This is in sharp contrast to the cases of magnetic field along x or z direction, 

for which we have the combination “ B znE sE ” instead of “ k zE sE ”. 

 

Supplementary Note 6. High-field measurements 

The high-field measurements were carried out under the pulsed magnetic field up 

to 60 T. Several samples have been measured, as shown in Supplementary Figure 14. 

Similar transport behavior has been observed as described in the main text. When the 

magnetic field is applied along a-axis, Zeeman splitting is also observed 

(Supplementary Figure 13). And the g-factor is estimated to be 3.19 by the same method 

as described in the main text.  

As the ZrTe5 single-crystals have a long and narrow shape, it is challenging to 

prepare Hall electrodes for the pulsed high magnetic field measurements. To attain the 

Hall signals, we have made extensive efforts to measure samples with Hall electrodes. 

Consistent with the layered-transport in the low field regime as discussed in the main 

text, the Hall resistance shows large plateaus (Supplementary Figure 14), indicating the 

bulk quantum Hall effect9. It is well known that the quantum Hall effect is accompanied 

by a cascade of field-induced density wave state in a mount of quasi-1D organic 

conductors34. As the field changes, the system experiences a cascade of phase 

transitions between the field-induced density wave states and the different index of 

quantum Hall states. As a result, a series of quantum Hall plateaus will be separated by 

phase transitions. In our scenario, we observed the distinct plateaus within the reentrant 

regime between ~12 T and ~22 T, which is also the regime between two field-induced 

density wave states as indicated by the abrupt resistivity increase. So the high-field Hall 

data also support our explanations of field-induced density wave in ZrTe5. 



It worth noting that in the previous published paper, they observed negative MR 

when the magnetic field is along the current direction22. The key difference of these 

two cases lies in the dissimilar Fermi levels of ZrTe5 crystals resulting from two 

different growth approaches. In Ref. 22, they observe the chiral anomaly from the ZrTe5 

crystal that has a temperature anomaly peak at around 60 K in the R-T curve 

(Supplementary Figure 13c). This clearly indicates that their sample has a very low 

Fermi energy at low temperatures. Therefore, a large magnetoresistance is claimed 

without the presence of any quantum oscillations when the magnetic field is applied 

perpendicularly to the sample surface. With such a low Fermi energy, they could further 

observe the chiral anomaly as suggested by the negative magnetoresistance. However, 

in our case, the ZrTe5 crystal shows temperature anomaly at 138 K. Owing to a 

relatively high Fermi energy with a tiny Fermi ellipsoid, we can observe clear quantum 

oscillations with positive magnetoresistance (MR) instead of negative one.  

Another important factor is the zero-field resistivity. As mentioned in Ref. 22, it is 

easier to observe the chiral magnetic effect in materials that have a relatively large zero-

field resistivity. In contrast, because of the high Fermi level, our sample has a relatively 

large residual resistance ratio (RRR). So it is difficult to observe the negative 

longitudinal MR at low temperature. However, as the temperature increases, the zero 

field resistivity will increase. Therefore, at higher temperatures, we are able to observe 

the enhancement of the negative longitudinal MR (Supplementary Figure 13d). 

 

Supplementary Note 7. Density wave transitions inferred from the data and the 

explicit form of density waves in ZrTe5 

Now we analyze the data of high field transport. There is a sharp peak around B = 

8 T and a sharp shoulder-like behavior at B = 30 T. We interpret them as possible density 

wave transitions in the n = 1 and n = 0 Landau levels, respectively. 

First let us discuss the possible origin of the large peak of Rxx around B = 8 T. 

According to extrapolation of the locations of peaks and valleys (for 2n  ) in SdH 



oscillation curve, the nominal n = 1 peak and valley, which is overwhelmed by the large 

peak around B = 8 T, is around 5.6 T and 13.6 T, respectively, therefore, the 8T peak is 

likely due to an instability in the n = 1 Landau level. A density wave formation within 

the n = 1 Landau level can gap out the carriers in the two n = 1 Landau levels, leaving 

a single n = 0 Landau level gapless, thus significantly enhancing the resistivity. We 

believe that this is the most possible explanation of the 8T peak. 

This interpretation is supported by the resistivity data in stronger field. The 

resistivity drops to a much lower value around B = 14 T, which is an indication of the 

reentrant phenomenon35. In fact, if we adopt the crude BCS-type estimation, the density 

wave transition temperature is  

 
1

1.14( )exp( ),
(0)

 B c F Bk T E E
N V

     (36) 

where N(0) is the density of states at the Fermi level, while V  is an interaction 

parameter. As we increase B, both kF and EF decrease. When EF decreases to EB, Tc is 

suppressed to 0, namely, the density wave in the n = 1 Landau level is destroyed as we 

increase B. This is perfectly consistent with our experimental data. This is analogous to 

the reentrant transition observed in graphite35. 

Further increasing B enhances the density of states in the n = 0 Landau level, thus 

enhances the instability towards density wave transition in the n = 0 Landau level. An 

illustration of the Landau level and the location of Fermi level in this regime is given 

in Fig. 4d. Experimentally, a sharp shoulder-like increasing in Rxx at 30B T  is found. 

This is likely due to a density wave transition coming from the nesting in the n = 0 

Landau level. 

The possible density waves exhibit interesting features in the Dirac and Weyl 

semimetals36. Following the theoretical formalism in Ref. 36, we now calculate the 

forms of density wave in ZrTe5. 

First we study the simpler one of the two types of density waves, namely, the one 

from the n = 0 Landau level. The z-component of the spin density is 

 
0 0, 1, 0, 1,  exp(2 ) | | . .
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where 0  is a constant phase angle, and the Landau level wavefunctions are 
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  (38) 

therefore, we have  

 0 0cos(2 ),z Fm k z      (39) 

where the constant m0 can be taken as the order parameter of the density wave. An 

illustration of this spin density wave is given in Supplementary Figure 15. 

Similarly, the charge density wave is 

 
0 0, 1, 0, 1,exp(2  ) | . .,

F FF n s k k n s k kik z i h c               (40) 

or more explicitly,  
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  (41) 

In our material, Ez is generally much smaller than Ek, thus z       , in other words, 

we have the spin instead of charge density wave36. 

We have also calculated the forms of density waves from the transition in the n = 

1 Landau levels, and found them to be similar to that from the n = 0 Landau levels 

(Certainly, the wavevector 2kF is different for them). For the s = +1 channel, the relevant 

wavefunctions are 
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  (42) 

The density wave again takes the form of 0~ cos(2 )z Fk z    (the values of 

kF and 0  are different from that of the n = 0 Landau level). For the s = -1 channel, 

the resultant density wave takes the similar form, with a kF only slightly different. 



Supplementary Note 8. Evidences for density wave behavior 

To confirm the density wave behavior, several important evidences are provided 

as follows.  

First, let us carefully examine the transport data shown in Supplementary Figure 

16. We found that the properties of HfTe5 are similar to that of ZrTe5, and thus it is 

reasonable to observe density wave transitions in HfTe5. In general, HfTe5 has a much 

smaller Fermi surface than ZrTe5, as shown in Supplementary Figure 16. Two HfTe5 

samples have been measured with the anomaly peaks located at 72 K and 61 K, 

respectively (Supplementary Figure 16a). The analysis of SdH oscillations suggests that 

the Fermi surface of HfTe5 in the a-c plane is 1.5 T, and exhibits the nontrivial Berry’s 

phase as indicated by the intercept of ~0.15 extracted from the Landau fan diagram. 

The resistance peak of HfTe5 at 2 T is the result of FISDW (Supplementary Figure 16b), 

which is similar to the peak at 8 T for ZrTe5. Several details are worth noting. The 

anomaly temperature of HfTe5 is much lower than that of the ZrTe5, which is 138 K in 

our manuscript. This suggests a reduced carrier density in HfTe5, and the analysis of 

the SdH oscillations gives the Fermi surface of 1.5 T, which is almost one third of the 

ZrTe5. As a result, the FISDW of the two HfTe5 samples can be observed at lower fields 

than ZrTe5, which are 1.9 T and 1.6 T, respectively. With such a lower carrier density, 

the interaction is thus reduced, leading to a smaller amplitude of the spin density wave 

(Supplementary Figure 16b). It is obvious that the amplitude of FISDW in HfTe5 is 

much smaller than that in ZrTe5. And between these two HfTe5 samples, the HfTe5 -1 

sample has a larger amplitude than HfTe5 -2 (sample No.1 has a higher anomaly 

temperature and a higher field for density wave transition). This phenomenon supports 

our conclusion of interaction-induced density wave transition. 

Another important evidence is the temperature-dependent resistance (R-T) under 

magnetic field. As shown in Supplementary Figure 16c, the R-T curves show a metallic 

behavior with small magnetic field less than 1 T. However, with larger magnetic fields, 

the FISDW transition takes place and the R-T curves exhibit insulating behavior (B=1.5 

T and 2 T). Later, the R-T curves exhibit the metallic behavior again with increasing 



magnetic field (B>3 T). The insulating behavior occurs between 1.5 T and 2 T, where 

is the regime of anomalous MR peak induced by the FISDW (Supplementary Figure 

16b). And after passing this regime, the system has a reentry into the metallic state, thus 

the R-T curves shows metallic behavior. Such reentrance behavior is also observed in 

other field-induced density wave systems such as graphite37 and organic conductors34,38. 

And for ZrTe5, a similar evolution is also observed. The R-T curves show metallic 

behavior with magnetic field less than 3 T, and the insulting state with magnetic larger 

than 5 T. The evolution of R-T curves under magnetic field demonstrates the process of 

metal-to-FISDW transition and the reentrance from FISDW to metal. And the 

insulating behavior of R-T also suggests the gap opening, which is consistent with the 

conclusion of FISDW. 

 

The temperature-dependent MR can also support our conclusion of FISDW 

(Supplementary Figure 17). The amplitude reduces a lot as increasing the temperature. 

With higher temperature, the peak position of the FISDW shifts towards higher field, 

which can be observed in both ZrTe5 and HfTe5. For SdH oscillations, the peak 

positions for Landau levels should not shift as the temperature changes. Such sensitive 

temperature-dependent behavior is another proof for the field-induced density wave37,39.  

 

From the Hall resistance we can find the evidence for the FISDW. Consistent with 

the layered-transport in the low field regime as discussed in the manuscript, the Hall 

resistance shows large plateaus (Supplementary Figure 18), indicating the bulk 

quantum Hall effect34. It is well known that the quantum Hall effect is accompanied by 

a cascade of field-induced density wave state in a mount of organic Bechgaard salts40–

42. As the field changes, the system experiences a cascade of phase transitions between 

the field-induced density wave states and the different index of quantum Hall states. As 

a result, a series of quantum Hall plateaus will be separated by phase transitions. In our 

scenario, we observed the distinct plateaus within the reentrant regime between ~12 T 

and ~22 T, which is also the regime between two field-induced density wave states as 

indicated by the abrupt resistivity increase. So the high-field Hall data also support our 



explanations of field-induced density wave in ZrTe5. And the Hall data of HfTe5 is 

much more remarkable to witness such quantum Hall state accompanied by the FISDW 

transition.  

 

To summarize, several evidences can support our conclusion of FISDW including 

1) the increase of resistance under high magnetic field, whose amplitude is far beyond 

the level of quantum oscillations; 2) the evolution of R-T curves under magnetic field. 

In the FISDW regime the R-T shows insulating behavior; 3) sensitive temperature 

dependence of the peak position caused by FISDW; 4) quantum Hall states 

accompanied with a cascade of FISDW states.  
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