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The pathobiology of the osteoclast
TJ CHAMBERS
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SUMMARY This article reviews recent information concerning the origin of osteoclasts and the
local and systemic regulation of their activity. It appears that much of the environmental respon-

siveness of osteoclasts is mediated by cells of the osteoblastic lineage, which exert a major
influence on the localisation, induction, stimulation, and inhibition of osteoclastic bone resorp-

tion'. Some of the mechanisms by which osteoclast function may be disturbed by inflammatory
and neoplastic diseases are discussed, and it is suggested that many pathological disturbances of
osteoclastic bone resorption may be explicable as mimicry of physiological regulatory mechan-
isms by local hormones introduced into bone as the local regulators of the diseased tissue.

The osteoclast is the effector of bone resorption. Its
activity is normally integrated to the requirements of
skeletal morphogenesis and restructuring and to
those of calcium homeostasis, but its potential for
destruction is shown by the reckless, random resorp-
tion which occurs in Paget's disease and in giant cell
lesions (in which the multinucleate cells are prob-
ably osteoclasts' 2). Less conspicuously, but ulti-
mately with similarly devastating effect, the osteo-
clast is often a party to the development of
osteoporosis, to which it contributes with levels of
osteolysis above those found in unaffected individu-
als;3 the scale of this osteoclastic contribution to dis-
ease in an ageing population is emphasised by the
observation that 30% of all individuals who reach
age 90 have sustained a fractured femoral neck and
50% a collapsed vertebra.4 Osteoclasts act in col-
laboration with pannus in the osteoarticular destruc-
tion of rheumatoid arthritis, and osteoclasts effect
tooth loosening and loss in periodontal disease.
In non-metastatic hypercalcaemia, which commonly
mars and shortens survival irrespective of the extent
of tumour spread, there is release into the circula-
tion by the tumour of stimulators of osteoclastic
bone resorption.56

Despite its central role in these pathological pro-
cesses, and largely due to its inaccessibility, the
osteoclast has been a poorly understood cell. In
recent years, however, new information has been
gleaned concerning the origin of osteoclasts and the
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humoral and cellular control of their resorptive
activity.

Natural history

Osteoclasts form by fusion of mononuclear precur-
sors. Parabiosis experiments, quail-chick chimaeras,
and bone marrow and spleen cell transplantation
experiments have established that while osteoblasts
derive from local mesenchyme, osteoclasts take
origin from a cell which can reach bone via the circu-
lation.7 8
Among circulating cells the mononuclear phago-

cyte initially seemed the most plausible precursor,
similarly specialised for degradation and capable of
fusion.9 Macrophages, however, are unable to cor-
rect the osteoclastic defect, curable by bone marrow,
in osteopetrosis (Chambers, unpublished observa-
tion; JF Loutit, personal communication);'0 they are
also incapable of restoring radiation induced reduc-
tions in osteoclast number and function." Osteo-
clasts lack enzymes such as chloroacetate esterase,'2
present in mononuclear phagocytes, and possess
enzymes, such as tartrate resistant acid phosphat-
ase,'3 absent from mononuclear phagocytes. Cal-
citonin induces cytoplasmic quiescence in osteo-
clasts but not in mono- or multinucleate mac-
rophages.'4 The primary function of osteoclasts is
excavation of bone, and, although mononuclear
phagocytes release calcium and hydroxyproline
from devitalised bone powder, this may reflect
digestion of phagocytosed bone particles,'5 a process
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Fig. 1 Scanning electron
micrograph of osteoclast after 8 h
incubation on a slice ofcortical
human femoral bone. The
osteoclast has formed a resorption
cavity, which it still partly obscures.
x 1200.

quite different from resorption of extracellular bone
surfaces. Both mono- and multinucleated mac-
rophages lack the ruffled border characteristic of
osteoclasts,'5 16 and are without perceptible effect on
bone slices in which osteoclasts, under identical
conditions, rapidly induce deep excavations'7 (Figs.
1-4). Osteoclasts lack Fc and C3 receptors,'8 19 and
all the macrophage specific antigenic markers so far
studied are absent from osteoclasts.' 20-22

Mature mononuclear phagocytes are thus clearly
quite different from osteoclasts. Nevertheless,
special environmental conditions might induce the
osteoclastic phenotype in immature mononuclear
phagocytes. It has been proposed that 1, 25 dihyd-
roxyvitamin D3, which stimulates osteoclastic bone
resorption, may induce mononuclear phagocytes to
become osteoclastic. This view is based on the
ability of the hormone to induce maturation in
immature monocytoid cells, in which it elicits the
expression of Fc and C3 receptors and macrophage
specific antigens, enhances phagocytic potential, and
engenders a tendency to giant cell formation.2324
But induction of fusion in mononuclear phagocytes
is certainly no proof of osteoclastic differentiation;
the development of Fc and C3 receptors and mac-
rophage antigens seems to make these cells less,
not more, like osteoclasts, and such cells remain
incapable of bone excavation.'7 The proposal
is also difficult to reconcile with the absence from

osteoclasts of either receptors for25 or direct
responsiveness to26 this hormone.
A second proposal is that bone itself induces

osteoclastic differentiation in immature mononuc-
lear phagocytes. Osteoclasts develop in viable bone
explants, taken from embryos before osteoclasts are
present, if the explants are co-cultured with pro-
liferative bone marrow cells composed predomin-
antly of macrophage precursors.27 28 Because neither
mature macrophages nor dead bone could substi-
tute, it was argued that live bone had induced the
immature mononuclear phagocytes to osteoclastic
differentiation. An alternative explanation would be
the converse: that the marrow cells induced osteo-
clastic differentiation among explant cells, analog-
ous to the stimulation of osteoclast formation by
parathyroid hormone (PTIl) in similar bone rudiments'9
(and perhaps mediated by prostaglandins or inter-
leukin 1, both of which are produced by mononuc-
lear phagocytes and both of which have PTH like
effects on bone (see below)). Thymidine labelling of
the marrow cells before co-culture30 yielded
equivocal results: 89% of osteoclast nuclei were
labelled after co-culture but only 1% were labelled
heavily (26% of mononuclear phagocytes were
labelled heavily). Osteoclasts may have originated
either by proliferation of a subpopulation of heavily
prelabelled marrow cells or even a minor population
of non-haemopoietic cells contained in the bone
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Fig. 2 Higher magnification of
Fig. 1, which shows abrupt edge of
excavation, the wall consisting of
blind ending fibrils. The
osteoclastic surface is typically
domed and covered by a dense mat
ofmicrovilli. x 24d0.

marrow cultures (see below) or by proliferation of
bone explant cells during (thymidine contaminated)
co-culture.
Although individual antigens commonly disap-

pear, emergence of a subpopulation does not gener-

ally result in the complete loss of lineage specific
antigenic markers mentioned above.' 21 22 Especially
surprising, if osteoclasts were derived from imma-
ture mononuclear phagocytes, is the absence of
common leucocyte antigens from osteoclasts.' 21 22

Fig. 3 Part ofan osteoclast with
associated resorption lacuna. The
pit base consists ofpartially

~~~~a..~demineralised organic fibrils. In the
pit wall are seen blind ending
organic fibrils, the continuity of
which has clearly been interrupted
during resorption. Osteoclasts
resorb both mineral and organic
components ofbone unaided by

-je > s, other cell types. x 3000.

w.s <~~ot
'\, t tt^ > * z.,h~~~~~~~~~~~~~~~~~It
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Fig. 4 Ifosteoclasts are removed
with detergent after incubation the
entire excavation can be visualised.
Note sharp edge between
unresorbed and resorbed bone.
Debris marks the peripheral extent
ofosteoclast cytoplasm. The clear
zone thus occupied the band
between the peripheral debris and
the excavation margin. Bone
beneath the osteoclastic peripheral
clear zone has remained completely
unaffected, while inside this, bone
has been resorbed. This
appearance strongly suggests that
the clear zone represents a
non-resorptive circumferential seal
which could enable the formation
ofan inner micro-environment in
which lysosomal enzymes act at an
unusually low (for an extracellular
space) pH. x 3500.

These are expressed on all the known nucleated
progeny of the haemopoietic stem cell, irrespective
of degree or direction of differentiation, and their
absence from osteoclasts implies that osteoclasts
derive from a transplantable cell distinct from the
haemopoietic stem cell, a possibility favoured by
bone marrow transplantation experiments.3' Osteo-
clasts may derive not from haemopoietic cells at all,
but from the, stromal cells of the haemopoietic mic-
roenvironment recently shown to accompany mar-
row transplants.32 33

Osteoclasts are reliably recognised on bone sur-
faces only by their multinuclear state, but mononuc-
lear equivalents also probably exist. We have noted
that a proportion of the mononuclear cells disaggre-
gated with osteoclasts from neonatal bone show a
hormonal response to calcitonin indistinguishable
from that of (multinucleate) osteoclasts.'4 Kaye34
found that 45% of acid phosphatase positive cells,

mononuclear on serial section, were associated with
resorption lacunae and that lacunae were equally
common beneath mono- and multinucleate acid
phosphatase positive cells. Bone resorption by
mononuclear cells, suggested by these results,
implies that the mononuclear cells are functionally
competent osteoclasts.
The life span of osteoclasts in vivo appears to be

up to seven weeks, with a half life of around 6-10
days.3537 There is little information concerning the
fate of these cells in vivo. Cessation of bone resorp-
tion, either during remodelling,38 after calcitonin
administration,39 or after calcium deficiency,40 is
associated with disappearance of osteoclasts from
endosteal surfaces. Individual nuclei may be shed to
resume a mononuclear existence.39 Centrioles are
pooled in osteoclasts as a group distanced from the
nuclei,8 and separation would be a complex affair.
During bone repletion abrupt cessation of bone
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resorption is associated with migration of osteoclasts
from endosteal surfaces into adjacent marrow
spaces, where they do not transform into mononuc-
lear cells but degenerate and disintegrate.40 We have
never seen a nucleocytoplasmic unit separate from
an osteoclast in vitro: each polykaryon survives for
hours or days before an abrupt demise.

Systemic regulation

The bone apposed surface of osteoclasts actively
engaged in resorption reveals a distinctive appear-
ance. The central area is elaborately folded (ruffled
border) and interdigitates with bone crystals and
with frayed collagen fibrils. This is surrounded by a
clear zone, rich in actin filaments and free from
organelles, of close apposition of osteoclast to the
bone, which probably serves as a peripheral seal
confining an inner micro-environment into which
lysosomal enzymes are extruded.4'-43

Administration of PTH in vivo is followed within
minutes by an increase in the proportion of osteo-
clasts which show a ruffled border, in the extent of
the ruffled border on each cell, and within a few
hours, in the overall number of osteoclasts.44-47 Cal-
citonin has the opposite effects.4849 The advent of
techniques for organ culture of bone505' has enabled
identification of these hormonal effects as direct
actions on bone.52

Calcitonin appears to act directly on osteoclasts;
these cells possess calcitonin receptors'4 53 54 and cal-
citonin inhibits disaggregated osteoclasts from bone
resorption.226 The exquisite sensitivity of osteo-
clastic bone resorption to inhibition by calcitonin,26
the rapidity with which osteoclastic resorption is
altered by both PTH and calcitonin, and the obser-
vation that animals with defective osteoclasts have a
severely restricted ability to respond to PTH with a
rise in plasma calcium,4' suggest that changes in
osteoclastic resorptive activity may largely account
for the contribution of bone to the hormonal regula-
tion of plasma calcium concentrations.
The mechanism by which calcitonin inhibits bone

resorption may be through inhibition of cytoplasmic
motility, presumably essential for enzyme exocytosis
and endocytosis: motility is abolished by picomolar
concentrations of calcitonin, and reduced within the
physiological range;55 and cytochalasin B, an
inhibitor of microfilament assembly, induces an
identical state of cytoplasmic quiescence in osteo-
clasts and similarly inhibits osteoclastic bone resorp-
tion.56 Cyclic AMP has been implicated as a second
messenger in calcitonin responsiveness: analogues
of cyclic AMP inhibit both motility and bone resorp-
tion in isolated osteoclasts.26 Furthermore, agents
which reduce cyclic AMP degradation enhance cal-
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citonin responsiveness,57 and calcitonin is known to
increase cyclic AMP concentrations in bone.5859

Although PTH stimulates osteoclastic resorption
in intact bone, several studies have failed to show
PTH receptors on osteoclasts.60 PTH is also with-
out influence on either the motility of or bone
resorption by isolated osteoclasts.2 2662 This implies
that PTH stimulates osteoclastic resorption through
a primary effect on another cell type. The most
likely candidate for this role is the osteoblast (see
footnote).* These cells possess PTH receptors and
are induced to a variety of functional changes,
including cyclic AMP production, by the hormone.63
One mechanism by which osteoblasts stimulate

osteoclastic bone resorption appears to be through
mineral exposure.7 All bone surfaces, except in
areas of osteoclastic resorption, are lined by a layer
of unmineralised osteoid.64-66 This is readily visible
by light microscopy during bone formation. When
formation ceases mineralisation continues for a
while but is arrested within a few hundred nano-
meters of the bone surface, at the level of the lamina
limitans; this is a zone of altered staining properties,
the specific function of which may be to inhibit pro-
gression of the mineralising front to the bone sur-
face.67
We have found that osteoclasts do not resorb

bone if the osteoid layer is intact (nor do they resorb
demineralised slices of cortical bone) but do so if the
osteoid is first removed by collagenase.ss Since
osteoclasts are clearly capable of destruction of all
the components of bone56 (Figs. 1-4), this indicates
that contact with bone mineral, but not osteoid,
induces osteoclasts to resorptive activity. We also
found69 that osteoblasts are able to remove the sur-
face osteoid layer in vitro, to expose (but seem
incapable of resorption of) adjacent mineral; that

*Footnote
Osteoblasts are strictly the cells which synthesise osteoid. During
bone formation some cease osteoid production and become inter-
red in bone as osteocytes. When bone formation ceases osteoblasts
take up an inactive appearance and become flattened "resting
osteoblasts" or "surface osteocytes". The extent to which these
processes are reversible, and to which osteoblasts, resting osteo-
blasts, and osteocytes share properties and potentialities in
common, is not known. In vivo, bone resorption is generally seen in
areas adjacent to resting osteoblasts and, accordingly, these cells
are generally the candidates as osteoclast stimulators. When
environmental circumstances change, however, osteoclastic
resorption may be initiated in areas where osteoblasts are actively
forming bone.70 The cells of the (osteoblastic) lineage which line
bone surfaces may represent a population of flexible phenotype and
similar potentialities, each member of which can either form bone,
induce osteoclastic resorption, or do neither as appropriate to
systemic and local stimuli. Despite this possibility, when a property
is ascribed to osteoblasts in this review, this should be taken to
mean only that at least some cells of the lineage defined above
possess that property, and does not necessarily imply that all
members, or any particular member, possess the stated property.



246

PTH accelerates this process; that bone so modified
has an increased susceptibility to osteoclastic resorp-
tion; and that this susceptibility is abrogated by
demineralisation.
Do these experimental results reflect physiologi-

cal processes? They would certainly account for the
otherwise unexplained apparently universal pres-
ence of osteoid on non-resorptive surfaces; mineral
exposed surfaces have been described only in
association with osteoclastic resorption in vivo, pre-
sumably because osteoclastic resorption rapidly suc-
ceeds osteoid removal. In an in vivo system, how-
ever, in which many osteoclasts can be induced to
resorb bone in a well defined temporospatial se-
quence, the earliest observation, immediately pre-
ceding the appearances of multinucleate cells, is ex-
posure of mineral on to the bone surface.'0 Also
consistent with a role for mineral contact as a
stimulus to osteocl,astic resorption in vivo is the well
recognised preference of osteoclasts for mineralised
compared with poorly mineralised bone in
osteomalacia, and the failure of osteoclasts to resorb
demineralised, but not mineralised, bone implants.7'
This model could also explain the finding that PTH
causes collagen destruction in bone despite inhibi-
tion of osteoclastic resorption by acetazolamide, or
incompetence of osteoclasts in osteopetrosis: in such
circumstances collagen but not mineral is dissol-
ved.7273 Osteoblasts produce collagenase and tissue
plasminogen activator and secrete increased
amounts in response to PTH.'4-" I strongly suspect
that this proteolytic enzyme secretion does not rep-
resent the ability of osteoblasts to act as alternative
bone resorbing cells, but rather represents the
mechanism by which these cells initiate osteoclastic
bone resorption.

Osteoblasts may induce osteoclastic resorption
not only through mineral exposure but also through
an independent mechanism. If disaggregated osteo-
clasts are incubated on slices of devitalised cortical
bone (in which mineral is artificially exposed during
cutting) PTH is without effect; but if osteoblasts and
osteoclasts are cultured together on the same slice
PTH increases osteoclastic resorption of the sub-
strate (McSheehy JAP, Chambers TJ; unpublished
observations). PTH similarly enhances osteoclastic
motility and spreading, in the absence of bone, only
in the simultaneous presence of osteoblasts.78
Osteoclastic stimulation occurred only if the two cell
types were in contact and could not be transferred
by supernatants of osteoblast cultures; it was unim-
paired by indomethacin, a prostaglandin sythetase
inhibitor. Stimulation seemed to depend on either a
short range/unstable transmitter or osteoblast osteo-
clast contact.
Among the actions of PTH on osteoblasts, one of

Chambe'rs
the most hormonally sensitive is the rapid induction
of a stellate configuration in the normally cuboidal
cells.79 The small diameter of the cytoplasmic pro-
cesses so formed may facilitate close approach to
osteoclasts, an event which may alter membrane
properties such as permeability80 and induce
electrostatic displacements of membrane calcium8'
in the osteoclast. Alternatively, the shape change
may be associated with the exposure of cell surface
effector molecules, as occurs during the platelet
shape change (which exposes platelet factor 3, to
catalyse the critical initial step of the clotting cas-
cade82). The osteoblastic shape change may, how-
ever, reflect other functions, unrelated to osteoclas-
tic stimulation. Fibre forming cells exert traction on
their substrate, which induces newly formed col-
lagen fibres to align parallel to the long axis of the
cell;83 collagen traction requires cytoplasmic motility
and is suppressed by cytochalasin B.84 Cytochalasin
B induces an identical change in osteoblastic shape
to that caused by PTH.'9 Since PTH acutely inhibits
new bone formation, the shape change may merely
reflect cessation of collagen deposition and align-
ment.
The actions of vitamin D metabolites on bone and

bone cells are complex.8587 Production of the most
active metabolite, 1, 25 dihydroxyvitamin D, is
under hormonal control. This compound assists
mineralisation of osteoid, probably through its effect
on plasma calcium and phosphate concentrations.88
It also has a direct effect on bone in organ culture as
a stimulator of osteoclastic bone resorption.89 While
osteoclasts possess neither receptors for25 nor direct
responsiveness to26 the hormone, osteoblasts do
possess receptors90 and, like PTH, the hormone
stimulates tissue plasminogen activator activity in
osteoblasts.76

LOCAL REGULATION
While the overall activity of osteoclasts is regulated
in accordance with the role of bone as a reservoir of
mineral for plasma calcium homeostasis, local
osteoclastic activity is determined by the function of
bone as a mechanical support. The shapes and struc-
tures on which this function depends are the result
of complex and dynamic patterns of osteoclastic
bone resorption during morphogenesis and remodel-
ling. It is difficult to envisage how osteoclasts,
derived from an immigrant cell, could achieve such
intricate patterns without some form of instruction
from locally resident bone cells. Bone lining cells
(active and resting osteoblasts) make junctional
communications with each other and through
canaliculi contact underlying osteocytes to form a
three dimensioi!al network of cells, which seems
well placed to sense the shape of bone and its reac-
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Fig. 5 Diagrammatic representation ofworking hypothesis

for the local and systemic regulation ofbone resorption.

Local concentrations ofprostaglandins (broken line) and

osteoclastic stimulation (continuous line) are represented as

lines above bone surface; unmineralised osteoid is shown

hatched (resting seam). Under circumstances in which

neither bone formation nor resorption is occurring (a) levels

ofstimulator and inhibitor are equivalent and the osteoid

seam remains intact. Osteoblastic homeostasis is perturbed

(b) by large and small local stimuli (morphogenetic, or

generated as a response ofbone to physical stress and strain)

(represented as subjacent oval shapes). Such stimuli may be

transmitted from underlying osteocytes or detected directly
by bone lining cells, and induce deviation of osteoblast

homeostasis firom a neutral and towards a bone resorption

inductive state (osteoid destruction, reduced prostaglandin

production) (prostaglandin E,production by the underlying

osteocytes would have this effect on surface lining

osteoblastic cells and may represent the signal to the surface

cells -cf the interesting but unexplained inverse sensitivities

of osteoclasts and osteoblasts to prostaglandin E, and

prostacyclin57 '"1. This signal might alternatively be a

cytokine-see last paragraph). This results in gradients of

osteokinetic agents and zones ofnet stimulation into which

osteoclasts would tend to localise (chemotaxis). Small net

stimuli may result in non-resorptive localisation, while

larger stimuli may be sufficient to expose bone mineral and

initiate osteoclastic resorption (c). The effect ofsystemic

-hormones-for example, parathyroid hormone (P-TH) is

-superimposed on these local patter'n's, such. that (d) the

general osteoblastic setting is modified.' Without changing

the gradients which determnine localisation. of osteoclastic
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resorption, PTH increases the divergence ofosteokinetic
agents over the whole bone surface, causing enhanced
stimulation ofthose osteoclasts already resorbing bone, and
recruitment ofosteolytic activity in previously
non-resorpiive osteoclasts.

tion to stress and strain and to transmit these sensa-
tions as signals to the bone surface, where new bone
formation or resorption is possible.

Osteoblasts respond to mechanical forces and
electric potentials (known to be generated by
mechanical forces acting on bone9' 92) with increased
cyclic AMP concentrations and prostaglandin pro-
duction.9395 We have found that prostaglandin E,
prostaglandin E2, and prostacyclin have an effect on
osteoclastic motility indistinguishable from that of
calcitonin; osteoclastic responsiveness is receptor
mediated, with relatively rapid tachyphylaxis, and
seems, like calcitonin, to involve cyclic AMP.57 The
same prostaglandins inhibit bone resorption by dis-
aggregated osteoclasts.26 The low concentrations of
prostaglandins required suggests that prostaglandins
produced by osteoblasts96 97 may play a physiological
role as agents of local inhibition of osteoclastic bone
resorption. Osteoblasts thus have the capacity to
either suppress (though prostaglandin production)
or stimulate (through mineral exposure and
enhancement of osteoclastic motility) osteoclastic
resorption.

Paradoxically, addition of prostaglandins to bone
tissue in organ culture stimulates osteoclasts.91-'00
This implies that the prostaglandins increase resorp-
tion in intact bone indirectly, through a cell type
effectively absent from cultures of disaggregated
osteoclasts, which is induced by prostaglandins to
stimulate osteoclasts. Osteoblasts may be respon-
sible: prostaglandins have several actions on osteo-
blasts in common with PTH-for example, they
increase osteoblastic cyclic AMP'0'- 103 and col-
lagenase and tissue plasminogen activator secre-
tion76 77 and cause osteoblasts to stimulate osteoclas-
tic motility.'04 One hypothesis consistent with the
above data is that the PTH like effects of prosta-
glandins represent attempted homeostasis by osteo-
blasts: the homeostatic response appropriate to the
perceived (via osteoblastic cyclic AMP) production
of osteoclast inhibitor is a tendency towards osteo-
clast stimulation and away from prostaglandin pro-
duction. Endothelial cells may show analogous
cyclic AMP mediated negative feedback regulation
of prostacyclin production.'05 Such a homeostatic
system would be disturbed when prostaglandins
reach bone from an external (non-osseous) source
(as occurs with prostaglandin addition to organ cul-
tures and when prostaglandins are produced by
neoplastic or inflammatory cells in bone): osteo-
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clasts would be both directly inhibited (by extrane-
ous prostaglandins) and indirectly stimulated
(through osteoblasts). Because osteoclasts become
refractory to prostaglandin inhibition,57 the net
effect of such abnormal conditions would be
increased bone resorption.
A working model for the local and systemic

physiological regulation of bone resorption, consis-
tent with the above observations, is shown in fig. 5.

DISORDERED REGULATION
The vast majority of tumour metastases elicit both
formation and resorption in adjacent bone.'06 Bone
resorption generally predominates and the lesion
appears osteolytic. The propensity of tumours to
metastasise to bone seems unlikely to be related to
their osteolytic potential: metastasis is to the medul-
lary cavity, particularly to haemopoietic marrow,
where the loose tissue affords ample opportunity for
metastatic establishment and considerable expan-
sion without obvious requirement for osteolysis. Nor
is there any relation between metastatic osteolysis
and hypercalcaemia. Hypercalcaemia is equally
common in patients with and without bony
metastases,'07 presumably because physiological
mechanisms of calcium homeostasis are capable of
maintaining normal plasma calcium despite tumour
osteolysis. The major clinical significance of the
osteolytic potential of tumour metastases is predis-
position of bone to fracture.

Local osteolysis by tumours is associated with
increased osteoclastic resorption of bone trabeculae
beyond the advancing tumour front, often with
intervening stroma.'08-"0 Later, residual spicules of
bone may find themselves surrounded by tumour
cells, with osteoclasts apparently absent. It has been
suggested, on the basis of morphological observa-
tions, that these spicules are resorbed by the tumour
cells themselves.'09 111112 Direct evidence that
tumour cells are able to resorb bone without osteo-
clasts is scarce: as indirect evidence, many tumours
are known to produce proteolytic enzymes, and
supernatants of cultures of tumour cell lines cause
hydroxyproline and calcium release from devitalised
bone"3 114
The osteoclastic activity found beyond the

advancing front of the tumour indicates that tumour
cells in some way stimulate osteoclastic resorption.
It is conceivable that this may at least in part reflect
initiation of remodelling consequent on mechanical
deformation by the tumour of bone trabeculae, with
subsequent reformation impaired by the advancing
tumour cells. Tumour cells, however, are known to
produce several substances which are capable of
inducing osteoclastic bone resorption.
One such substance is prostaglandin E2, a local

Chambers
hormone and one known to stimulate bone resorp-
tion (see above), produced in a variety of
tumours.' 15-1I8 Inhibitors of prostaglandin synthesis
reduce bone resorption by some tumours,"'0 115 119 120
although this might be the result of an effect on
tumour growth.'2'
A second potential mediator of local osteoclasis is

osteoclast activating factor (OAF),'22 a lymphokine
produced by mitogen stimulated lymphocytes
(probably T helper cells) in the presence of mac-
rophages,'23 which stimulates bone resorption in
organ culture. Similar material is produced in some
solid tumours'24 and in myeloma,'25 126 where it may
explain the increased osteoclast mediated osteolysis
found adjacent to myeloma cells in bone.'25 127 Like
prostaglandin E2 it may act as a bone resorption
stimulator through a primary action on osteo-
blasts'28 (but see reference 126).

In addition to their potential for local osteolysis,
some human tumours produce a combination of sys-
temic osteolysis with hypercalcaemia, which is unre-
lated to the presence of metastases in bone.5 6107 129
Prostaglandin E2 has been invoked as a possible
mediator: 30 it stimulates resorption; infusion into
laboratory animals causes hypercalcaemia;"9 and it
is implicated in some animal models of non-
metastatic hypercalcaemia."9 The experience of
most workers, however, is that a response in man to
drugs which inhibit prostaglandin synthetase is
UUU .131 132unusual.'3 3
OAF and related substances may underly the

hypercalcaemia which occurs in some haematologi-
cal malignancies, including T cell lymphomas, in
which hypercalcaemia is a common feature.'33
Most cases of non-metastatic hypercalcaemia

occur in patients with renal and urothelial tumours
and squamous carcinomas of the head, neck, and
bronchus. These patients form a group in whom
hypercalcaemia is associated with systemic
osteolysis and changes in renal physiology similar to,
but not identical with, those caused by PTH.5 134
Ectopic PTH synthesis was once thought to be
responsible for this syndrome, but the different
renal physiology and low-normal circulating PTH
concentrations detected by improved PTH assays in
these patients is taken as evidence for the presence
of a PTH like humoral mediator of unknown iden-
tity. The consensus based on currently available evi-
dence is that neither PTH, vitamin D metabolites,
nor prostaglandins are involved in non-metastatic
humoral hypercalcaemia in other than rare
cases.'35 136

Little is known of the mechanisms by which
osteolysis occurs in inflammatory lesions such as
rheumatoid arthritis and periodontal disease,
although several potential mediators have been
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identified.'37 - '39 Prostaglandins are present in
inflammatory tissue; macrophages may represent
the source. A second group of agents which may
mediate inflammatory osteolysis are the cytokines, a
group of polypeptide hormones which regulate the
behaviour of cells in inflammation.'40 The cytokines
probably represent a family of local hormones, each
of which may be produced by a variety of cells for
local action on a range of target cells: as with pros-
taglandins, their specificity may depend more on
localisation of secretion than on uniqueness of struc-
ture: cytokines are produced by bone cells and have
actions on bone cells.'4' Among this generally as yet
poorly characterised group of factors OAF and
interleukin 1 have been shown to stimulate osteo-
clastic bone resorption'42 (interleukin 1 acts, like
PTH and prostaglandins, through a primary effect
on osteoblasts (Thomson BM, Chambers TC;
unpublished observations)). Because macrophages
produce interleukin 1, and lymphocytes produce
OAF, these factors have been implicated in inflam-
matory osteolysis. It is difficult to discern a clear
adaptive role for osteolysis in inflammation; it also
seems unlikely that wandering inflammatory cells
direct physiological skeletal remodelling through
production of these local hormones. More likely,
stimulation of bone resorption by OAF and inter-
leukin 1 suggests that these factors, produced by
non-inflammatory cells, play a part in the physiolog-
ical control of local bone resorption and also
emphasises a general rule, that many disturbances of
bone resorption may represent mimicry of the local
hormonal mechanisms of skeletal remodelling by
local hormones introduced into bone as the local
regulators of the diseased tissue.

I am grateful to Dr JAS Pringle and Dr MJ Wilkin-
son for allowing me to use Fig. 4.
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