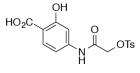

CHEMICAL SYNTHESIS S3I-201 (NSC 74859)

Scheme 1: a. TsCl, Et₃N, CH₃CN, 0°C - rt, 75%; b. 5% aq. NaOH/EtOH (2:1), 97.6%; c. SOCl₂, reflux, 2 h; d. i) 4-amino salicylic acid, THF, Na₂CO₃, ii) Acid chloride in THF, iii) DIPEA/H₂O, 68.9% over 2 steps.

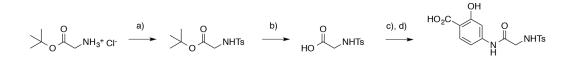
Ethyl 2-(tosyloxy)acetate

909 µL of ethyl glycolate (9.6 mmol) was dissolved in 96 mL acetonitrile over an ice bath at 0°C. To the stirring solution was added 1.6 mL of triethylamine (11.5 mmol) followed by 2.20 g of p-toluene sulfonyl chloride (11.5 mmol). The reaction gradually equilibrated to room temperature and monitored by thin-layer chromatography (25% EtOAc in hexanes), visualized by KMnO₄ staining. The reaction was judged complete by exhaustion of ethyl glycolate ($R_f = 0.23$). The acetonitrile was removed in vacuo, the residue diluted with EtOAc and poured over H₂O. The aqueous layer was extracted with 75 mL portions of EtOAc (x2) and the combined organics washed with 100 mL of H₂O (x2), 100 mL saturated NaCl (x1) and dried over anhydrous Na, SO₄. Excess solvent was removed in vacuo to produce loose yellow oil subsequently adsorbed onto silica gel for flash chromatography (mobile phase: 20% EtOAc in hexanes). Evaporation of eluent for $R_f =$ 0.43 (25% EtOAc in hexanes) gave 1.86 g of yellow oil that solidified on cooling to room temperature. Confirmed by ¹H, ¹³C NMR and LRMS analysis (75.0% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 1.23 (t, *J* = 7.1 Hz, 3H), 2.44 (s, 3H), 4.17 (q, J = 7.1 Hz, 2H), 4.57 (s, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₂) δ 14.1, 21.8, 62.0, 64.8, 128.2, 130.0, 132.8, 145.4, 166.1; LRMS, m/z +ESI calcd for $[C_{11}H_{14}O_5S + H]^+$, 259.30 - found 280.76 [M + Na].


2-(tosyloxy)acetic acid

1.28 g (4.9 mmol) of pale yellow ethyl ester was suspended in 6.0 mL of a 2:1 mix of EtOH/5% aq. NaOH under gentle heating that, when dissolved, was allowed to stir at room temperature. The reaction was assessed via thin layer chromatography (92% CH₂Cl₂, 7% CH₃OH, 1% AcOH) and judged complete by the disappearance of the ethyl ester ($R_f = 0.89$). Excess EtOH was removed *in vacuo* and the solution poured over 5% aq. HCl and extracted with 100 mL portions of EtOAc (x2). The combined organic layers were washed with 75 mL portions of 5% aq. HCl (x2), saturated NaCl (x1) and dried over anhydrous Na₂SO₄. Excess solvent was removed *in vacuo* to give 1.06 g of bright white solid powder with no further purification required. Confirmed by ¹H, ¹³C NMR and LRMS analysis (93% yield). ¹H NMR (400 MHz, Methanol- d_4) δ 2.45 (s, 3H), 4.59 (s, 2H), 7.44 (d, J = 8.1 Hz, 2H), 7.82 (d, J = 8.2 Hz, 2H); ¹³C NMR (101 MHz, MeOD) δ 21.6, 49.0, 65.9, 129.1, 131.1, 134.1, 146.8, 169.4; LRMS, *m/z* -ESI calcd for [C₉H₁₀O₅S - H]⁻, 229.23 - mass not detected.

2-chloro-2-oxoethyl 4-methylbenzenesulfonate


170 mg (0.74 mmol) of the free acid was dissolved in 1.5 mL of thionyl chloride over an oil bath heated to 80 °C and allowed to reflux for 2 h. Excess thionyl chloride was removed *in vacuo* with a saturated NaHCO₃ base trap to give a slightly brown white solid that was carried forward without further purification or characterization.

2-hydroxy-4-(2-(tosyloxy)acetamido)benzoic acid

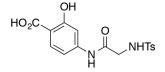
113 mg (0.74 mmol) of 4-amino salicylic acid was mixed with 91 mg (0.74 mmol) of Na_2CO_3 . This mixture was then taken up in 1.5 mL of THF to give a stirring suspension held under an atmosphere of N_2 . Separately, the acid chloride was dissolved in 1.5 mL of THF and introduced directly to the stirring solution, giving a brown suspension. After several hours 128 μ L (0.74 mmol) of DIPEA was added, followed by H₂O drop wise to clear the suspension. The solution was then poured over 50 mL of 1.0 M HCl and extracted with 25 mL portions of EtOAc (x3). The combined organics were washed with 25 mL portions of 1.0 M HCl (x2), dried over anhydrous Na₂SO₄, filtered and evaporated *in vacuo* to give 186 mg of light brown solid (68.9% crude yield). 86 mg was taken up in CH₃CN (with 4 drops DMSO) and purified by reverse phase HPLC and lyophilized to give 38 mg of white solid powder. ¹H NMR (400 MHz, DMSO- d_6) & 2.40 (s, 3H), 4.70 (s, 2H), 6.98 (dd, J = 8.7, 1.8 Hz, 1H), 7.23 (d, J =1.7 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.72 (d, J = 8.7Hz, 1H), 7.83 (d, J = 8.2 Hz, 2H), 10.36 (s, 1H), 11.35 (s, 1H); ¹³C NMR (101 MHz, DMSO) & 21.1, 67.3, 106.3, 108.3, 110.4, 127.8, 130.2, 131.1, 132.0, 144.3, 145.4, 161.9, 163.9, 171.5; LRMS, m/z +ESI calcd for [C₁₆H₁₅NO₇S + H]⁺, 366.06 - found 366.08; LRMS, m/zz-ESI calcd [C₁₆H₁₅NO₇S - H]⁻, 364.05 - found 364.04; 68.9% crude yield, 14% isolated yield.

CHEMICAL SYNTHESIS OF SULFONAMIDE DB-5-112

Scheme 2: a. TsCl, Et₃N, CH₃CN, 0°C - rt, 90.8%; b. TFA/CH₂Cl₂ (1:2), 30 min, 51.9%; c. SOCl₂, reflux, 2 h; d. i) 4-amino salicylic acid, THF, Na₂CO₃, ii) Acid chloride in THF, iii) DIPEA/H₂O, 48.8% over 2 steps.

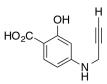
Tert-butyl tosylglycine

750 mg (4.5 mmol) of glycine tert-butyl ester hydrochloride was dissolved in 40.0 mL CH₃CN to give a stirring clear, colorless solution. To this, was added 2.0 mL (14.8 mmol) triethylamine prompting a white solid to separate from solution. Separately, 938 mg (4.9 mmol) ptoluene sulfonyl chloride was dissolved in 5.0 mL CH₂CN and added drop wise to the stirring suspension. The mixture was allowed to stir for 3 h observing the formation of product ($R_f = 0.41$, 25% EtOAc in hexanes) by thin-layer chromatography of the reaction mixture, visualized with KMNO₄ staining. Excess CH₃CN solvent was evaporated in vacuo, taken up in EtOAc and poured over 50 mL H₂O in a separatory funnel. This solution was extracted with 50 mL portions of EtOAc (x3), washed with 50 mL portions of H₂O (x2), 50 mL sat. NaCl (x1) and dried over anhydrous Na₂SO₄. On evaporation in vacuo the residue was adsorbed onto silica and columned isocratically in 25% EtOAc in hexanes to isolate the product as 1.21 g of white solid. Confirmed by ¹H, ¹³C NMR and LRMS analysis (94.5% yield). ¹H NMR (400 MHz, Chloroform-d) δ 1.32 (s, 9H), 2.40 (s, 3H), 3.65 (d, J = 5.5 Hz, 2H), 5.10 (t, J = 5.1 Hz, 1H), 7.29 (d, J =8.1 Hz, 2H), 7.73 (d, J = 8.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl.) 8 21.4, 27.7, 44.6, 82.7, 127.2, 129.6, 136.1, 143.5, 167.6; LRMS, m/z +ESI calcd for $[C_{12}H_{10}NO_4S + H]^+$, 286.11 - found: 308.01 (M + Na), 324.13 (M + K).

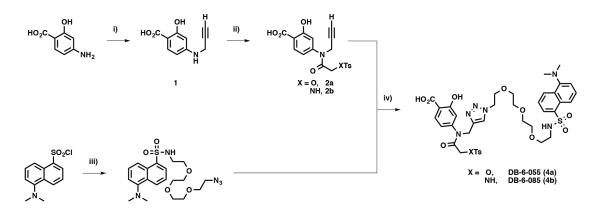

Tosylglycine

1.05 g (3.7 mmol) of the tert-butyl ester sulfonamide was dissolved in 10.0 mL CH₂Cl₂. To this was added 5.0 mL of TFA. The solution was allowed to stir at room temperature for 30 min and judged complete by depletion of $R_f = 0.76$ (50% EtOAc in hexanes, KMnO₄ visualization) starting material with formation of $R_f = 0.30$ spot. Excess CH₂Cl₂ was evaporated in vacuo and the residue triturated with Et_oO to give 577 mg of pure white solid. Confirmed by ¹H, ¹³C NMR (68.2% yield). ¹H NMR (400 MHz, DMSO- d_6) δ 2.37 (s, 3H), 3.55 (d, J = 6.1 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.94 $(t, J = 6.1 \text{ Hz}, 1\text{H}), 12.67 \text{ (s}, 1\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, 100 \text{ MHz})$ DMSO) & 21.3, 44.1, 126.8, 129.8, 138.1, 142.9, 170.5; LRMS, m/z +ESI calcd for $[C_0H_{11}NO_4S + H]^+$, 230.05 - found 252.05.

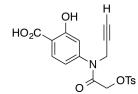
Tosylglycine chloride


88 mg (0.4 mmol) of the free acid was dissolved in 2.0 mL of thionyl chloride over an oil bath heated to 80 °C and allowed to reflux for 2 h. Excess thionyl chloride was removed *in vacuo* with a saturated NaHCO₃ base

trap to give a slightly brown white solid that was carried forward to the next reaction without further purification or characterization.

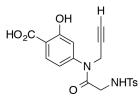

2-hydroxy-4-(2(4-methylphenyl)sulfonamido) acetamido)benzoic acid, d)

58 mg (0.4 mmol) of 4-amino salicylic acid was mixed with 47 mg (0.4 mmol) of Na₂CO₂. This mixture was then taken up in 1.5 mL of THF to give a stirring suspension held under an atmosphere of N2. Separately, the acid chloride was dissolved in 1.5 mL of THF and introduced directly to the stirring solution, producing a cloudy, yelloworange suspension. After several hours 66 µL (0.4 mmol) of DIPEA was added, followed by H₂O drop wise to clear the suspension to a brown solution. The solution was then poured over 50 mL of 1.0 M HCl and extracted with 25 mL portions of EtOAc (x4). The combined organics were washed with 25 mL portions of 1.0 M HCl (x2), a 25 mL portion of saturated NaCl, dried over anhydrous Na₂SO₄, filtered and evaporated *in vacuo* to give an orange brown residue. This residue was purified by reverse phase HPLC and lyophilized to give 68 mg of off-white solid powder. Confirmed by ¹H, ¹³C NMR and LRMS analysis (48.8% isolated yield). ¹H NMR (400 MHz, DMSO- d_{6}) δ 2.35 (s, 3H), 3.66 (d, J = 6.1 Hz, 2H), 6.95 (dd, J = 8.7, 1.9 Hz, 1H), 7.23 (d, J = 1.9 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.2 Hz, 3H), 8.01 (t, J = 6.2 Hz, 1H), 10.15 (s, 1H), 11.34 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 20.9, 45.9, 106.0, 107.8, 110.2, 126.6, 129.5, 131.0, 137.5, 142.7, 144.9, 162.0, 167.0, 171.5; LRMS, m/z +ESI for $[C_{16}H_{16}N_2O_6S +$ H]⁺, calcd 365.08 - found 365.17.

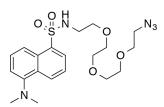


2-hydroxy-4-(prop-2-yn-1-ylamino)benzoic acid, (1)

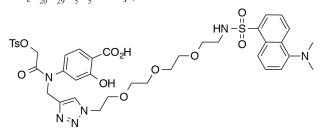
1.83 g (11.9 mmol) of 4-amino salicylic acid was dissolved in 50 mL DMF in a 500 mL round-bottom flask, placed over an ice-bath, fitted with a 250 mL addition funnel. To this stirring solution was added 3.89 g (11.9 mmol) caesium carbonate. The propargyl bromide, diluted in 100 mL DMF was transferred to the addition funnel, followed by drop wise addition to the stirring solution. A remaining 50 mL of DMF was required to wash the contents from the funnel and the solution allowed to equilibrate to room temperature. The reaction progress was tracked by thin layer chromatography (98% CH₂Cl₂, 1.75% CH₂OH, 0.25% CH₂CO₂H) by the disappearance of 4-amino salicylic acid starting material ($R_f = 0.09$) and concomitant formation of the product spot ($R_e = 0.69$). The reaction contents were then poured over 100 mL 1.0 M HCl and extracted with 75 mL portions of EtOAc (x4). The combined organics were then washed with 1.0 M HCl (x3), saturated NaCl (x1) and dried over anhydrous Na_2SO_4 and the solvent removed *in vacuo*. The residue was then adsorbed onto silica and columned isocratically in 98.4% CH₂Cl₂, 1.4% CH₂OH, 0.2% CH₂CO₂H to isolate the identified $R_f = 0.69$ spot cleanly as 1.524 g of pale yellow solid. Confirmed by 1H, 13C NMR and LRMS analysis (83.6% yield). ¹H NMR (400 MHz, DMSO- d_{c}) δ 3.53 (s, 1H), 4.85 (s, 2H), 5.98 (s, 1H), 6.11 (d, J = 8.8Hz, 1H), 6.17 (s, 2H), 7.42 (d, J = 8.8 Hz, 1H), 10.51 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 51.8, 77.8, 78.6, 98.6, 99.0, 106.8, 131.2, 156.4, 163.0, 168.4; LRMS, m/z -ESI for $[C_{10}H_9NO_3 - H]^2$, calcd: 190.05 – found 189.94.



Scheme 3: i. Cs_2CO_3 , 80 wt% propargyl bromide, DMF, 0°C – rt; **ii.** 1) Na₂CO₃, THF; 2) 2-Chloro-2-oxoethyl 4-methylbenzenesulfonate or tosylglycine, THF; 3) DIPEA/H₂O; **iii.** 11-azido-3,6,9-trioxaundecane-1-amine, CH₂Cl₂, DIPEA, 0°C – rt; **iv.** CuSO₄, sodium ascorbate, H₂O/THF, rt.

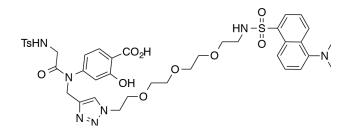

2-hydroxy-4-(*N*-(prop-2-yn-1-yl)-2-(tosyloxy) acetamido)benzoic acid, (2a)

124 mg (0.5 mmol) of 2-(tosyloxy)acetic acid was dissolved in 5.0 mL of thionyl chloride over an oil bath heated to 80°C and allowed to reflux for 2 h. Excess thionyl chloride was removed *in vacuo* with a saturated NaHCO₂ base trap to give a slightly brown white solid acid chloride that was carried forward to the next reaction without further purification or characterization. Separately, 103 mg (0.5 mmol) of N-alkynylated salicylic acid was dissolved with 5 mL THF and 67 mg (0.5 mmol) Na₂CO₃ added, along with the acid chloride (dissolved in 1.0 mL THF) to give a stirring yellow suspension. After several hours 94 µL(0.5 mmol) DIPEA was added, followed by H₂O drop wise to clear the suspension. The reaction was judged complete by thin layer chromatography ($R_c = 0.68, 99.6\%$ CH₂Cl₂, 0.35% CH₂OH, 0.05% CH₂CO₂H). The solution was then poured over 50 mL 1.0 M HCl and extracted with 50 mL portions of EtOAc (x2). The combined organic layers were then washed with 25 mL portions of 1.0 M HCl (x1), saturated NaCl (x1), and dried over anhydrous Na₂SO₄ to obtain a brown, viscous oil after evaporation in vacuo. The residue was adsorbed onto silica and columned isocratically in 99.2% CH₂Cl₂, 0.70% CH₂OH, 0.10% CH₃CO₂H to isolate R_f = 0.68 spot as 173.0 mg of fluffy white solid. Confirmed by ¹H, ¹³C NMR (79.4% yield). ¹H NMR (400 MHz, DMSO- d_c) δ 2.40 (s, 3H), 3.64 (t, J = 2.0 Hz, 1H), 4.71 (s, 2H), 4.95 (d, J = 2.1 Hz)2H), 7.00 (dd, J = 8.9, 1.5 Hz, 1H), 7.30 (d, J = 1.3 Hz, 1H), 7.49 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 8.1 Hz, 2H), 10.40 (s, 1H), 10.43 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 21.1, 52.5, 67.3, 78.2, 78.2, 106.6, 108.0, 110.6, 127.8, 130.2, 131.1, 132.0, 144.5, 145.4, 161.0, 164.0, 167.1; LRMS, *m/z*+ESI for $[C_{10}H_{17}NO_{7}S + H]^{+}$, calcd: 404.08 – found 404.13 (M + H), 426.13 (M + Na); LRMS, m/z -ESI for $[C_{10}H_{17}NO_{3}S H^{-}_{, calcd}$: 402.07 – found 402.15.


2-hydroxy-4-(2-((4-methylphenyl)sulfonamide)-N-(prop-2-yn-1-yl)acetamido)benzoic acid, (2b)

454 mg (2.0 mmol) of the free acid (made previously in synthesis 2b) was dissolved in 5.0 mL of thionyl chloride over an oil bath heated to 80°C and allowed to reflux for 2 h. Excess thionyl chloride was removed in vacuo with a saturated NaHCO₂ base trap to give a slightly brown white solid acid chloride that was carried forward to the next reaction without further purification or characterization. Separately, 388 mg (2.0 mmol) of N-alkynylated salicylic acid was dissolved with 15 mL THF and 246 mg (2.0 mmol) Na₂CO₂ added, along with the acid chloride (dissolved in 3.0 mL THF) to give a stirring yellow suspension. After several hours 690 µL (4.0 mmol) DIPEA was added, followed by H₂O drop wise to clear the suspension. The reaction was judged complete by thin layer chromatography ($R_c = 0.19$, 98% CH₂Cl₂, 1.75% CH₂OH, 0.25% CH₂CO₂H). The solution was then poured over 75 mL 1.0 M HCl and extracted with 50 mL portions of EtOAc (x3). The combined organic layers were then washed with 50 mL portions of 1.0 M HCl (x2), saturated NaCl (x1) and dried over anhydrous Na₂SO₄ to obtain a yellow residue after evaporation in vacuo. The residue was adsorbed onto silica and columned isocratically in 98% CH₂Cl₂, 1.75% CH₂OH, 0.25% CH₂CO₂H to isolate the $R_{f} = 0.19$ spot as 538 mg of light brown solid. Confirmed by ¹H, ¹³C NMR and LRMS (67.5% yield). ¹H NMR (400 MHz, DMSO- d_{c}) δ 2.35 (s, 3H), 3.64 (d, J = 1.9 Hz, 1H), 3.67 (d, J = 5.8 Hz, 2H), 4.95 (s, 2H), 6.98 (d, J = 8.8 Hz, 1H), 7.31 (s, 1H), 7.36 (d, J = 7.8 Hz, 2H), 7.67 - 7.74 (m, 3H), 8.02 (t, J = 5.8 Hz, 1H), 10.20 (s, 1H), 10.42 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 20.9, 46.0, 52.5, 78.2, 106.3, 107.4, 110.5, 126.6, 129.5, 131.0, 137.5, 142.7, 145.1, 161.1, 167.1, 167.3; LRMS, *m/z* +ESI for $[C_{10}H_{10}N_{2}O_{6}S + H]^{+}$, calcd: 403.10 – found 403.18 (M + H), 425.11 (M + Na), 440.97 (M + K).

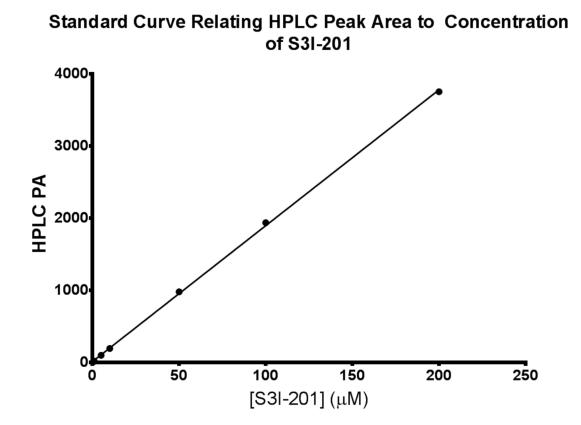
N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-5-(dimethylamino)naphthalene-1-sulfonamide, (3)


291 mg (1.1 mmol) Dansyl chloride was dissolved in 5.0 mL CH₂Cl₂ in a 20 mL reaction vial wrapped in Aluminum foil, over an ice bath followed by the addition of 207 μ L (1.2 mmol) DIPEA. To the stirring solution was added 283 mg (1.3 mmol) 11-azido-3,6,9-trioxaundecane-1-amine pre-dissolved in 5.0 mL CH₂Cl₂ drop wise. The solution was allowed to stir at room temperature for 10 hours and visualized by thin layer chromatography (50% EtOAc in heptane) to observe the depletion of dansyl chloride ($R_{e} = 0.63$) and formation of new, fluorescent product spot ($R_{e} = 0.18$). The excess CH₂Cl₂ was removed in vacuo and the residue adsorbed directly onto silica for flash chromatography in 40% heptane in EtOAc to isolate the $R_f = 0.18$ spot as 431 mg of translucent green oil. Confirmed by ¹H, ¹³C NMR and LRMS analysis (88.3% yield). ¹H NMR (400 MHz, Chloroform-d) δ 2.87 (s, 6H), 3.09 (q, J = 5.2 Hz, 2H), 3.36 (t, J = 4.6 Hz, 6H), 3.46 -3.52 (m, 2H), 3.57 - 3.62 (m, 2H), 3.62 - 3.69 (m, 4H), 5.50 (t, J = 5.7 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 7.5J = 7.9 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 8.23 (d, J = 7.3Hz, 1H), 8.30 (d, J = 8.7 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₂) δ 34.3, 43.2, 45.5, 50.7, 69.3, 70.1, 70.3, 70.5, 70.7, 70.7, 115.3, 119.0, 123.3, 128.4, 129.4, 129.7, 123.0, 130.4, 135.2, 152.0; LRMS, *m/z* +ESI for $[C_{20}H_{20}N_{5}O_{5}S + H]^{+}$, calcd: 452.20 – found 452.20.

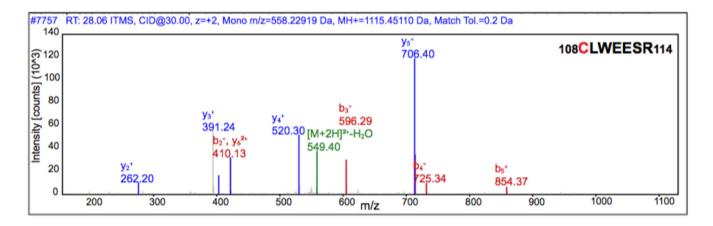
4-(*N*-((1-(2-(2-(2-((5-(dimethylamino)naphthalene)-1-sulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1*H*-1,2,3-triazol-4-yl)methyl)-2-(tosyloxy)acetamido)-2hydroxybenzoic acid (4a)

75 mg (0.2 mmol) of the fluorescent azide (N-(2-(2-(2-(2-azidoethoxy)ethoxy)ethoxy)ethyl)-5-(dimethylamino)naphthalene-1-sulfonamide) was measure and dissolved in 330 µL THF in a 2.0 mL reaction vial wrapped in Aluminum foil followed by 67 mg (0.2 mmol) of the tosylated alkyne transferred to the stirring solution. Separately, 6.5 mg (0.03 mmol) sodium ascorbate was dissolved in 330 µL H₂O and introduced to the reaction mixture. Finally, 0.5 mg (0.003 mmol) copper (II) sulfate was added. The reaction was capped, protected from light and allowed to react overnight. Thin layer chromatography (10% CH₃OH in CH₂Cl₂) revealed the depletion of the alkyne starting material ($R_c = 0.92$), the fluorescent azide $(R_f = 0.88)$ and the formation of an intensely fluorescent new spot ($R_f = 0.76$). The reaction was diluted with EtOAc, poured over 25.0 mL H₂O and extracted with 20.0 mL portions of EtOAc (x3). The combined organics were washed with $H_2O(x3)$, saturated NaCl (x1) followed by drying over anhydrous Na₂SO₄. Evaporation in vacuo gave 166 mg of crude green oil that was purified by reverse phase HPLC and lyophilized to 62 mg of slightly green white powder. Confirmed by ¹H, ¹³C, HSQC, HMBC, TOCSY NMR and LRMS analysis. (44.2% isolated yield).

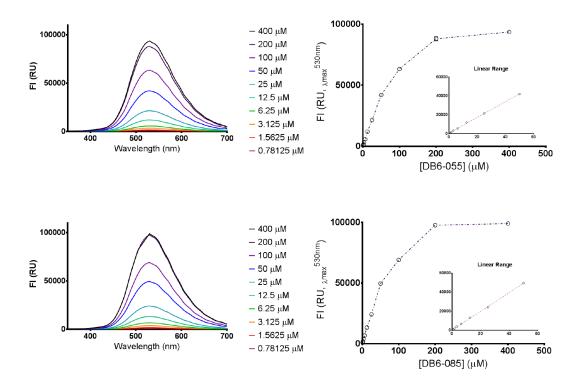
¹H NMR (500 MHz, DMSO- d_6) δ 2.37 (s, 3H), 2.83 (s, 6H), 2.93 (q, J = 5.8 Hz, 2H), 3.18 – 3.29 (m, 6H), 3.36 (dd, J = 5.7, 3.7 Hz, 2H), 3.45 (dd, J = 5.8, 3.6 Hz, 2H),3.78 (t, J = 5.2 Hz, 2H), 4.51 (t, J = 5.2 Hz, 2H), 4.69 (s, 2H), 5.38 (s, 2H), 6.96 (dd, J = 8.8, 2.0 Hz, 1H), 7.26 – 7.30 (m, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.55 – 7.59 (m, 1H), 7.59 - 7.62 (m, 1H), 7.68 (s, 1H), 7.81 (d, J = 8.3 Hz, 2H), 7.98 (t, J = 5.8 Hz, 1H), 8.10 (dd, J = 7.3, 1.0 Hz, 1H), 8.18 (s, 1H), 8.31 (d, J = 8.7 Hz, 1H), 8.43 (d, J = 8.5 Hz, 1H), 10.38 (s, 1H), 10.55 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 20.7, 21.0, 40.1, 42.2, 45.1, 49.4, 58.0, 67.2, 68.5, 68.9, 69.4, 69.4, 69.4, 69.5, 106.5, 107.9, 110.6, 115.2, 119.5, 123.6, 125.3, 125.4, 127.7, 127.8, 128.0, 128.0, 128.9, 129.0, 129.1, 130.1, 130.9, 131.9, 136.3, 137.6, 141.3, 144.4, 145.3, 145.6, 150.8, 161.1, 163.9, 167.8; LRMS, *m/z* +ESI for $[C_{20}H_{46}N_{6}O_{12}S_{2} + H]^{+}$, calcd 855.27 - detected: 855.26 (M + H), 877.26 (M + Na).



4-(*N*-((1-(2-(2-(2-((5-(dimethylamino)naphthalene)-1-sulfonamido)ethoxy)ethoxy)ethoxy)ethyl)-1*H*-1,2,3triazole-4-yl)methyl)-2-((4-methylphenyl)sulfonamide) acetamido)-2-hydroxybenzoic acid (4b)


(2-azidoethoxy)ethoxy)ethoxy)ethyl)-5-(dimethylamino) naphthalene-1-sulfonamide) was measure and dissolved in 330 µL THF in a 2.0 mL reaction vial wrapped in Aluminum foil followed by 74 mg (0.2 mmol) of the sulfonamide alkyne transferred to the stirring solution. Separately, 3.7 mg (0.02 mmol) sodium ascorbate was dissolved in 330 µL H₂O and introduced to the reaction mixture. Finally, 0.3 mg (0.002 mmol) copper (II) sulfate was added. The reaction was capped, protected from light and allowed to react overnight. Thin layer chromatography (10% CH₂OH in CH₂Cl₂) revealed the depletion of the alkyne starting material ($R_c = 0.62$), the fluorescent azide $(R_f = 0.73)$ and the formation of an intensely fluorescent new spot ($R_f = 0.53$). The reaction was diluted with EtOAc, poured over 25.0 mL H₂O and extracted with 20 mL portions of EtOAc (x3). The combined organics were washed with H₂O (x2), saturated NaCl (x1) followed by drying over anhydrous Na₂SO₄. Evaporation in vacuo gave crude green oil that was purified by reverse phase HPLC and lyophilized to 90 mg of slightly green white powder. Confirmed by 1H, 13C, HSQC, HMBC, TOCSY NMR and LRMS analysis. (57.0% isolated yield). ¹H NMR (500 MHz, DMSO- d_6) δ 2.32 (s, 3H), 2.82 (s, 6H), 2.92 (q, J = 5.8 Hz, 2H), 3.19 – 3.28 (m, 6H), 3.33 – 3.38 (m, 2H), 3.42 – 3.47 (m, 2H), 3.64 (d, J = 5.9 Hz, 2H), 3.77 (t, J = 5.3 Hz, 2H), 4.50 (t, J = 5.2 Hz, 2H), 5.37 (s, 2H), 6.93 (dd, J = 8.8, 2.1 Hz, 1H), 7.26 (d, J = 7.4 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.34 (dd, J = 9.3, 0.7 Hz, 2H), 7.56 (dd, J = 8.7, 7.5 Hz, 1H), 7.59 (dd, J = 8.7, 7.3 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.67 (dt, J = 8.2, 2.0 Hz, 2H), 7.98 (t, J = 5.8 Hz, 2H), 8.09 (dd, J = 7.3,

1.2 Hz, 1H), 8.17 (s, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.43 (dt, J = 8.5, 1.0 Hz, 1H), 10.18 (s, 1H), 10.54 (s, 1H); ¹³C NMR (126 MHz, dmso) δ 21.4, 42.7, 45.6, 46.4, 49.9, 58.5, 69.0, 69.4, 69.9, 69.9, 69.9, 70.0, 106.7, 107.9, 110.9, 115.7, 120.1, 124.1, 125.8, 127.1, 128.2, 128.5, 129.3, 129.5, 129.6, 130.0, 131.3, 136.8, 137.9, 141.8, 143.2, 145.5, 161.7, 167.6, 168.5; LRMS, m/z +ESI for $[C_{39}H_{47}N_7O_{11}S_2 + H]^+$, calcd 854.28 - detected: 854.30 (M + H), 876.23 (M + Na).


SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: Analytical HPLC calibration curve relating measured HPLC peak areas to the concentration of [S3I-201] in solution. Briefly, 200, 100, 50, 10, 5, 1, 0.5 μ M concentrations of S3I-201 were prepared from a 10 mM stock solution (in DMSO) to a final volume of 1.0 mL in Supelco low absorption, 2 mL, clear glass, analytical HPLC vials capped with PTFE/silicone septa, using a 100 mM HEPES solution buffered to pH 7.4. Sample dilutions were created individually to avoid serial dilution errors and measured with 40 μ L injections over 3 replicates, consistent with all previous experimental procedures. Data points are expressed as the mean value \pm standard error.

Supplementary Figure S2: LC-MS/MS fragment analysis of the 108CLWEESR114 peptide fragment from STAT3. The obtained y^+ and b^+ ion fragmentations are consistent with the hypothesis of covalent attachment through *O*-tosyl group displacement of S3I-201 onto Cys108.

Supplementary Figure S3: Fluorescence titration experiments of DB6-055 and DB6-085. A. Gives the spectral scanning output from DB6-055 after excitation at 320 nm, tracking the concentration dependence of the fluorescent signal (left image, legend color coded for concentration). Relative fluorescence intensities of the 530 nm emission wavelengths from DB6-055 excitation were plotted and the linear portion of the spectral window highlighted (right image, insert). **B.** Gives the spectral scanning output from DB6-085 after excitation at 320 nm, tracking the concentration dependence of the fluorescent signal (left image, legend color coded for concentration). Relative fluorescence intensities of the 530 nm emission wavelengths from DB6-085 after excitation at 320 nm, tracking the concentration dependence of the fluorescent signal (left image, legend color coded for concentration). Relative fluorescence intensities of the 530 nm emission wavelengths from DB6-085 excitation were plotted and the linear portion of the spectral window highlighted (right image, insert).

www.impactjournals.com/oncotarget/

	HPLC PA
Best-fit values	
Slope	18.83 ± 0.1420
Y-intercept when X=0.0	13.03 ± 12.31
X-intercept when Y=0.0	-0.6919
1/slope	0.05310
95% Confidence Intervals	
Slope	18.47 to 19.20
Y-intercept when X=0.0	-18.62 to 44.68
X-intercept when Y=0.0	-2.401 to 0.9774
Goodness of Fit	
R square	0.9997
Sy.x	25.96
Is slope significantly non-zero?	
F	17594
DFn, DF	1.000, 5.000
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	1
Total number of values	7
Number of missing values	0
Equation	Y = 18.83 * X + 13.03

Supplementary Table S1: Linear regression analysis of the calibration curve obtained relating HPLC peak area to S3I-201 concentrations

	SH4-054	BP1-102	SF1-066	BP5-087	S3I-201
One phase decay			Ambiguous		
Best-fit values					
Y0	2169	1689	1518	2059	1508
Plateau	3.174	33.37	1540	1926	0.5750
Κ	0.5147	0.5322	~ 16.95	0.1348	2.735
Half Life	1.347	1.302	~ 0.04088	5.141	0.2535
Tau	1.943	1.879	~ 0.05898	7.417	0.3657
Span	2166	1656	-21.92	133.4	1507
Std. Error					
Y0	45.89	8.747	8.322	11.00	6.494
Plateau	17.12	3.861	3.146	18.97	3.508
К	0.02312	0.006806	~	0.04952	0.03079
Span	46.41	9.202	8.897	18.31	7.021
95% Confidence Intervals					
Y0	2077 to 2262	1671 to 1708	1501 to 1536	2036 to 2082	1495 to 1521
Plateau	-31.22 to 37.57	25.29 to 41.45	1534 to 1547	1886 to 1965	-6.665 to 7.815
K	0.4683 to 0.5612	0.5180 to 0.5465	(Very wide)	0.03183 to 0.2378	2.671 to 2.798
Half Life	1.235 to 1.480	1.268 to 1.338		2.915 to 21.78	0.2477 to 0.2595
Tau	1.782 to 2.136	1.830 to 1.931		4.205 to 31.42	0.3574 to 0.3744
Span	2073 to 2259	1637 to 1675	-40.43 to -3.413	95.35 to 171.5	1493 to 1522
Goodness of Fit					
Degrees of Freedom	51	19	21	21	24
R square	0.9792	0.9994	0.2242	0.8117	0.9995
Absolute Sum of Squares	383949	3037	4364	8767	3150
Sy.x	86.77	12.64	14.41	20.43	11.46
Constraints					
Κ	K > 0.0	K > 0.0	K > 0.0	K > 0.0	K > 0.0
Number of points					
Analyzed	54	22	24	24	27

Supplementary Table S2: Non-linear regression analysis for the degradation of 100 μM SH-4-054, BP-1-102, SF-1-066, BP-1-102, and S3I-201 as measured in the presence of 10 mM GSH, 10 mM TCEP-HCl, 50 mM HEPES buffered to pH 7.4 and fit to a single exponential one phase decay model to obtain kinetic parameters k_{obs} and t_{1/2} values

	S3I-201	DB5-112
One phase decay		Interrupted
Best-fit values		
Y0	1508	1892
Plateau	0.5750	-435879
Κ	2.735	2.725e-005
Half Life	0.2535	25439
Tau	0.3657	36701
Span	1507	437770
Std. Error		
Y0	6.494	
Plateau	3.508	
Κ	0.03079	
Span	7.021	
95% Confidence Intervals		
Y0	1495 to 1521	
Plateau	-6.665 to 7.815	
Κ	2.671 to 2.798	
Half Life	0.2477 to 0.2595	
Tau	0.3574 to 0.3744	
Span	1493 to 1522	
Goodness of Fit		
Degrees of Freedom	24	
R square	0.9995	
Absolute Sum of Squares	3150	
Sy.x	11.46	
Constraints		
Κ	K > 0.0	K > 0.0
Number of points		
Analyzed	27	16

Supplementary Table S3: Non-linear regression analysis for the degradation of 100 μ M S3I-201 and DB-5-112 as measured in the presence of 10 mM GSH, 10 mM TCEP-HCl, 50 mM HEPES buffered to pH 7.4 and fit to a single exponential one phase decay model to obtain kinetic parameters k_{obs} and $t_{1/2}$ values

Supplementary Table S4: Non-linear regression analysis for the degradation of S3I-201 in the presence of variable concentrations of GSH in a 100 μ M HEPES buffer at pH 7.4

	0.00 mM	0.50 mM	1.00 mM	2.00 mM	5.00 mM	10.00 mM
One phase decay	Ambiguous					
Best-fit values						
Y0	99.73	100.2	86.93	99.37	108.3	98.76
Plateau	~ -1956	15.72	7.005	2.647	2.960	2.091
К	~ 0.0001114	0.09287	0.1660	0.2755	0.7566	1.583
Half Life	~ 6223	7.464	4.176	2.516	0.9162	0.4379
Tau	~ 8977	10.77	6.024	3.630	1.322	0.6317
Span	~ 2056	84.50	79.93	96.72	105.3	96.67
Std. Error						
Y0	0.2075	0.5493	0.5052	1.009	1.420	0.6245
Plateau	~ 530501	0.6512	0.5337	0.8340	1.065	0.3912
К	~ 0.02877	0.001974	0.003493	0.008324	0.02807	0.02679
Span	~ 530501	0.7063	0.5601	1.064	1.458	0.6633
95% Confidence Inter-	vals					
Y0	99.31 to 100.2	99.11 to 101.3	85.92 to 87.94	97.33 to 101.4	105.4 to 111.1	97.48 to 100.0
Plateau	(Very wide)	14.40 to 17.04	5.936 to 8.075	0.9663 to 4.329	0.8185 to 5.102	1.292 to 2.890
К	(Very wide)	0.08887 to 0.09686	0.1590 to 0.1730	0.2587 to 0.2923	0.7001 to 0.8130	1.528 to 1.638
Half Life	(Very wide)	7.156 to 7.799	4.007 to 4.360	2.372 to 2.679	0.8526 to 0.9900	0.4233 to 0.4536
Tau	(Very wide)	10.32 to 11.25	5.781 to 6.290	3.421 to 3.865	1.230 to 1.428	0.6106 to 0.6544
Span	(Very wide)	83.07 to 85.93	78.80 to 81.05	94.58 to 98.87	102.4 to 108.2	95.31 to 98.02
Goodness of Fit						
Degrees of Freedom	30	39	57	45	50	30
R square	0.8797	0.9975	0.9974	0.9946	0.9905	0.9986
Absolute Sum of Squares	6.674	61.85	80.56	197.4	451.2	39.66
Sy.x	0.4717	1.259	1.189	2.094	3.004	1.150
Constraints						
K	K > 0.0	K > 0.0	K > 0.0	K > 0.0	K > 0.0	K > 0.0
Number of points						
Analyzed	33	42	60	48	53	33

The data were fit to a single exponential one phase decay model to obtain kinetic parameters k_{obs} for the determination of the bimolecular rate constant and overall reaction order, with respect to GSH, for its reaction with S3I-201.

www.impactjournals.com/oncotarget/

	$\mathbf{k}_{obs} \left(\mathbf{h}^{-1} \right)$
Best-fit values	
Slope	0.1576 ± 0.003696
Y-intercept when X=0.0	-0.008510 ± 0.01886
X-intercept when Y=0.0	0.05398
1/slope	6.343
95% Confidence Intervals	
Slope	0.1459 to 0.1694
Y-intercept when X=0.0	-0.06854 to 0.05152
X-intercept when Y=0.0	-0.3459 to 0.4130
Goodness of Fit	
R square	0.9984
Sy.x	0.02906
Is slope significantly non-zero?	
F	1819
DFn, DFd	1.000, 3.000
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	5
Maximum number of Y replicates	1
Total number of values	5
Number of missing values	1
Equation	Y = 0.1576 * X - 0.008510

Supplementary Table S5: Linear regression analysis correlating the observed rate constant (k_{obs}) to variable concentrations of the nucleophile GSH, under pseudo first order conditions, to determine the overall reaction order and true bimolecular rate constant $(k_{,})$ with respect to GSH for its reaction with S3I-201

Supplementary Table S6: LC-MS/MS fragmentation matches (delta mass [ppm]) of alkylated peptide 108CLWEESR114 identified in *in vitro* alkylation reactions with S3I-201

#1	b ⁺	b ²⁺	Seq.	\mathbf{y}^+	y ²⁺	#2
1	-483.9	_	C-S3I-201			7
2	+14.55	_	L	-105.80	+172.59	6
3	-121.68	_	W	-117.84	-364.09	5
4	-115.27	-183.08	Е	-129.21	_	4
5	-83.64	_	Е	-117.05	_	3
6	-207.34	-354.41	S	-175.70	_	2
7			R	-68.80	_	1

#1	\mathbf{b}^+	b ²⁺	Seq.	\mathbf{y}^+	\mathbf{y}^{2+}	#2
1	_	_	Q			16
2	_	_	Q	_	_	15
3	-61.30	_	Ι	-40.81	-46.80	14
4	-20.56	_	А	-47.73	-87.45	13
5	-134.13	_	-Carbamidometh	-62.21	-119.41	12
6	-11.53	_	Ι	-69.07	-223.47	11
7	-148.06	_	G	-87.42	_	10
8	+46.02	_	G	-46.45	_	9
9	-113.04	_	Р	-79.30	-337.89	8
10	_	_	Р	-141.96	_	7
11	-96.99	_	Ν	-140.86	_	6
12	-35.49	_	Ι	-74.79	_	5
13	-101.42	_	C-S3I-201	-80.19	_	4
14	-80.69	-189.22	L	-59.09	_	3
15	-65.76	_	D	-563.13	_	2
16			R	_	_	1

Supplementary Table S7: LC-MS/MS fragmentation matches (delta mass [ppm]) of alkylated peptide
247QQIACIGGPPNICLDR262 identified in <i>in vitro</i> alkylation reactions with S3I-201

Observed and database-matched ions with the respective delta mass for the LC-MS/MS fragmentation patterns are highlighted in blue and red for y^{n+} and b^{n+} ions.

#1	\mathbf{b}^+	b ²⁺	Seq.	\mathbf{y}^{+}	y ²⁺	#2
1	_	_	V			14
2	+251.53	_	C-S3I-201	_	_	13
3	-62.83	_	Ι	-140.59	-288.58	12
4	+49.42	_	D	-35.30	+242.22	11
5	_	_	K	-91.27	-225.06	10
6	-63.76	+165.40	D	-60.02	+227.19	9
7	+71.60	_	S	-86.79	_	8
8	_	-69.83	G	-17.39	+107.16	7
9	-113.25	_	D	-78.01	_	6
10	-88.70	_	V	-11.09	+700.76	5
11	-10.58	+61.82	А	+73.44	_	4
12	_	_	А	+101.02	_	3
13	_	_	L	-91.29	_	2
14			R	_	_	1

Supplementary Table S8: LC-MS/MS fragmentation matches (delta mass [ppm]) of alkylated peptide 366VCIDKDSGDVAALR379 identified in *in vitro* alkylation reactions with S3I-201

#1	\mathbf{b}^+	b ²⁺	Seq.	\mathbf{y}^{+}	y^{2+}	#2
1	_	_	L			17
2	_	-	L	_	_	16
3	_	-	G	-54.36	_	15
4	_	_	Р	-89.87	_	14
5	-269.38	_	G	_	_	13
6	-30.55	_	V	_	_	12
7	-146.31	_	Ν	-42.58	_	11
8	+11.98	_	Y	-125.20	-174.04	10
9	-155.14	_	S	-136.83	_	9
10	-100.58	_	G	-63.55	_	8
11	_	_	C-S3I-201	-46.87	_	7
12	_	_	Q	-232.11	_	6
13	+21.09	_	Ι	-244.92	_	5
14	+56.49	_	Т	-143.96	_	4
15	-89.30	_	W	-136.95	_	3
16	_	_	А	_	_	2
17			Κ	_	_	1

Supplementary Table S9: LC-MS/MS fragmentation matches (delta mass [ppm]) of alkylated peptide 532LLGPGVNYSGCQITWAK548 identified in *in vitro* alkylation reactions with S3I-201

#1	b ⁺¹	b ²⁺	b ³⁺	Seq.	\mathbf{y}^{+}	y ²⁺	y ³⁺	#2
1	_	_	_	Y				22
2	-5.46	_	_	C-S3I-201	_	_	-72.29	21
3	-281.44	_	_	R	_	_	+166.84	20
4	_	_	_	Р	_	_	_	19
5	-232.37	_	_	Е	_	_	_	18
6	-190.98	-286.04	_	S	_	_	_	17
7	_	_	_	Q	_	_	_	16
8	-136.91	_	_	Е	_	-195.36	_	15
9	_	_	_	Н	_	-52.07	_	14
10	_	+60.78	_	Р	-144.12	_	_	13
11	_	_	+152.03	Е	_	_	_	12
12	_	_	_	А	-125.99	_	_	11
13	_	_	_	D	_	_	_	10
14	_	_	+269.03	Р	-149.01	_	_	9
15	_	_	-254.86	G	+26.46	_	_	8
16	_	_	_	S	-159.80	_	_	7
17	_	_	-165.32	А	-149.73	_	_	6
18	_	_	_	А	-68.23	_	_	5
19	_	_	-237.17	Р	-165.32	_	_	4
20	_	-5.93	_	Y	_	_	_	3
21	_	_	+120.11	L	-55.30	_	_	2
22				Κ	_	_	_	1

Supplementary Table S10: LC-MS/MS fragmentation matches (delta mass [ppm]) of alkylated peptide 686YCRPESQEHPEADPGSAAPYLK707 identified in *in vitro* alkylation reactions with S3I-201