Transcription factor RUNX2 up-regulates chemokine receptor CXCR4 to promote invasive and metastatic potentials of human gastric cancer

Supplementary Materials

Supplementary Figure S1: The efficiency of gene transfection. (A) RUNX2 is significantly up-regulated in RUNX2-overexpressing SGC7901 cells as examined by qPCR and WB. (**B** and **C**) RUNX2 is significantly silenced with shRNA in MGC803 and XN0422 cells as examined by qPCR and WB. (**D** and **E**) qPCR and WB show the efficiency of CXCR4 knockdown in RUNX2-overexpressing SGC7901 cells. All results of qPCR are presented as relative fold expression normalized with the level of housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). *P < 0.05, **P < 0.01, Student's *t* test.

Supplementary Figure S2: Representative images for the effect of RUNX2 on the migration and invasion abilities of GC cells. (A) Cell scratching assay of SGC7901-exRUNX2 and control cells. (B and C) Cell scratching assays of MGC803 and XN0422 cells transfected with shRUNX2 constructs (shRUNX2#1 and #2) or mock vector. (D) Cell invasion assay for SGC7901-exRUNX2 and control cells. (E) The invasion assay of MGC803-mock and MGC803-shRUNX2#1 and #2 cells. (F) The invasion assay of XN0422-mock and XN0422-shRUNX2#1 and #2 cells. Scale bar = 50 µm.

Supplementary Figure S3: Representative images of chemotaxis and invasion of GC cells mediated by CXCR4. (A) Chemotaxis of GC cells in response to the CXCR4 ligand SDF-1 α (CXCL12, 10 nM/L). (B) Inhibition of SDF-1 α -induced invasion of SGC7901-exRUNX2 cells by CXCR4 knockdown or AMD3100 treatment (50 ng/mL). Scale bar = 50 μ m.

Supplementary Figure S4: RUNX2 and CXCR4 IHC staining in continuous GC sections. (A) Representative staining of CXCR4 and RUNX2 in human GC specimens. Scale bar = $50 \mu m$. (B) The correlation between the expression of CXCR4 and RUNX2 in human GC specimens.

Supplementary Figure S5: Lineage regression analysis of RUNX2 and RUNX3 mRNA levels. p = 0.046, R² = 0.371

Supplementary Figure S6: Chemotaxis response of the GC cell MGC803 naturally expressing RUNX2 to SDF-1 α (10 nM/L) with or without RUNX2 silencing. Silencing RUNX2 significantly reduced cell migration in response to SDF-1 α (P < 0.05).

Easterns	Univariate analy	sis	Multivariate analysis			
Feature	HR (95%CI)	<i>p</i> value	HR (95%CI)	<i>p</i> value		
Age	1.009 (0.992–1.027)	0.305	1.000 (0.984–1.018)	0.965		
Gender	0.822 (0.524–1.290)	0.394	0.837 (0.523–1.339)	0.458		
TNM stage	1.179 (0.953–1.459)	0.130	1.293 (0.846–1.975)	0.235		
Differentiation degree	1.227 (0.860–1.752)	0.260	0.704 (0.488–1.016)	0.061		
Lymph node metastasis	2.520 (1.596–3.979)	< 0.000	1.539 (1.089–2.591)	0.045		
Depth of invasion	2.587 (1.735–3.858)	< 0.000	1.620 (1.022–2.567)	0.040		
RUNX2 expression	2.010 (1.119–3.612)	0.019	3.454 (1.408-8.230)	0.007		

Supplementary Table S1: Univariate and multivariate analysis of RUNX2 expression and clinicopathological features for predicting the survival of human GC patients

	Mucosa invasion				Liver metastasis				
	Cells	Ex#. 1	Ex. 2	Ex. 3	P value	Ex. 1	Ex. 2	Ex. 3	P value
0.007001	Control	0/5	1/5	2/5	0.016	0/5	1/5	0/5	0.047
SGC7901	exRUNX2	4/5	4/5	3/5		2/5	2/5	1/5	
MCC902	Mock	5/5	4/5	5/5	0.001	4/5	4/5	3/5	0.008
MGC803	shRUNX2	0/5	1/5	1/5		1/5	2/5	1/5	
XN0422	Mock	4/5	4/5	5/5	/5 /5 0.003	3/5	3/5	4/5	0.013
	shRUNX2	1/5	1/5	2/5		1/5	1/5	2/5	

Supplementary Table S2: Influence of RUNX2-overexpression or -knockdown on the invasion and metastasis of GC xenograft in nude mice

Note: Ex[#] Experiment.

Supplementary Table S3: Predicted invasion-related candidate RUNX2-targetting genes by bioinformatic analysis

Genes	Scores	Strand	Predicted site sequences
MMP7	8.254	1	TTTTTTTGTGTTTAA
	7.129	1	CTGGAGTGTGGGGAG
MMP9	7.028	1	AGGGCCTGCGGTTTC
	8.346	1	CGGGTCTGGGGTCTT
MMP13	6.946	1	TCTCTCTGTAGTTAT
CXCR4	11.462	1	CGGAGTGGTTTGACC
E-Cadherin	8.913	1	TGGCGTGGTGGTGTG
	9.056	1	ATTGGCTGTGGCCGG
N-Cadherin	9.071	1	GCTCTTTGTGGGTGC

Supplementary Table S4: Sequences of primers for chromatin-immunoprecipitation (ChIP)

Primer Sequences	Product length (bp)	Product sites
1F: TGGCATTTCATCTCTCCGGG 1R: CGCCTAGAACAGTGCGTGGC	96	-2875 to -2780
2F: CAGCGGTTACCATGGAGGG 2R: CGTTTGAACTTAGAGCGCAG	86	-1847 to -1762
3F: GCAGTTCGAGAGTTTGGGGT 3R: CCCTGAGATTTGCGCTCCGG	96	-1081 to -986
4F: GTTTGGCTCTCTCCGAGTCC 4R: GAAACCCTCTTGCTAGGGAG	81	-885 to -805
5F: GGAGTTAGCCAAGATGTGAC 5R: GAGGAGAGTTGTAGGATTC	143	13 to 155

Supplementary Table S5: The effect of CXCR4 knockdown and AMD3100 treatment on the invasion and metastasis of GC xenograft tumors in nude mice

8007001	Mucosa invasion		P value	Liver metastasis			P value	
SGC /901	Ex#. 1	Ex. 2	Ex. 3		Ex. 1	Ex. 2	Ex. 3	
exRUNX2-mock	4/5	4/5	5/5	0.002	2/5	2/5	3/5	0.024
exRUNX2-shCXCR4	1/5	1/5	2/5	0.003	1/5	0/5	1/5	0.024
exRUNX2 +PBS	5/5	5/5	3/5	0.022	2/5	3/5	2/5	0.012
exRUNX2+AMD3100	1/5	2/5	2/5	0.023	0/5	1/5	0/5	0.013

Note: Ex[#], Experiment.

Supplementary Table S6: Sequences of RUNX2 shRNA and Mock RNA

shRNA	Sequence (5' - 3')
#1	CCGGGTGGTCCTATGACCAGTCTCGGGATCCAAAGACTGGTCATA
	GGACCACTTTTTG
#2	CCGGCCTTGACCATAACCGTCTTCTCAAGAGAAAGACGGTTATGGT
	CAAGGTTTTTTG
#3	CCGGGCACTCCATATCTCTACTATTCAAGAGATAGTAGAGATATGGA
	GTGCTTTTTTG
Mock	CCGGTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTTCG
	GAGAATTTTTG

Supplementary Table S7: Sequences of primers for real-time PCR

Name	Sequence
	F: 5'-GTTTGTTCTCTGACCGCCTC-3'
RUNX2	
	R: 5'-CCAGTTCTGAAGCACCTGA-3'
	F: 5'-ACTACACCGAGGAAATGGGGCT-3'
CXCR4 [‡]	
	R: 5'-CCCACAATGCCAGTTAAGAAGA-3'
	F: 5'-AAGGTGAAGGTCGGAGTCAAC-3'
GAPDH	
	R: 5'-GGGGTCATTGATGGCAACAATA-3'
	F: 5'-GATTGGCTTTGCGCGAGGAGC-3'
MMP7	
	R: 5'-TACCATCCGTCCAGCGTTCATCCT-3'
	F: 5'-GCGGAGCACGGAGACGGGTA-3'
MMP9	
	R: 5'-CCGAGTTGGAACCACGACGCC-3'
	F: 5'-GCCTGCTGGCTCATGCTTTTCCT-3'
MMP13	
	R: 5'-GGGTCCTTGGAGTGGTCAAGACCT-3'
	F: 5'-CCCACCACGTACAAGGGTC-3'
E-Cadherin [‡]	
	R: 5'-ATGCCATCGTTGTTCACTGGA-3'
	F: 5'-TTTGATGGAGGTCTCCTAACACC-3'
N-Cadherin [‡]	
	R: 5'-ACGTTTAACACGTTGGAAATGTG-3'

[‡] primer sequences were selected from primer bank.