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Recruitment model 

We implemented the differential equation model for the recruitment of foragers (Camazine & 
Sneyd 1991; Seeley et al. 1991), extended it to multiple resources (>= 2), and linked the 
coefficients to variables calculated in our foraging model. 

The original model, figure 4 in Camazine & Sneyd 1991, was developed for two nectar 
sources A and B, and consisted of 7 compartments (p. 284): 

1. Ha: unloading nectar from source A 
2. Hb: unloading nectar from source B 
3. Da: dancing for nectar source A 
4. Db: dancing for nectar source B 
5. A: foraging at nectar source A 
6. B: foraging at nectar source B 
7. F: following a dancer 

Table 1. Parameter values, reproduced from Camazine & Sneyd 1991, table 2 (time values in 
minutes): 

Parameter: definition value 
T1: time from start of unloading to start of following, dancing, or foraging, A foragers 1.0 
T2: time from start of dancing to start of foraging, A foragers 1.5 
T3: time from start of foraging to start of unloading, A foragers 2.5 
T4: time from start of following dancers to start of foraging, A and B foragers 60 
T5: time from start of unloading to start of following, dancing, or foraging, B foragers 3.0 
T6: time from start of dancing to start of foraging, B foragers 2.0 
T7: time from start of foraging to start of unloading, B foragers 3.5 
fx

A: probability of abandoning A, per foraging trip 0.00 
fx

B: probability of abandoning B, per foraging trip 0.04 
fd

A: probability of dancing for A 1.00 
fd

B: probability of dancing for B 0.15 
  
 

Equations, reproduced from Camazine & Sneyd 1991, Appendix: 

dA/dt = (1-fx
A)(1-fd

A)p1Ha + p2Da + p4fl
AF-p3A 

dDa/dt = fd
A(1-fx

A)p1Ha – p2Da 

dHa/dt = p3A – p1Ha 

dF/dt =fx
Ap1Ha + fx

Bp5Hb – p4F 

dB/dt = (1-fd
B)(1-fx

B)p5Hb + p6Db + p4fl
BF-p7B 

dDb/dt = fd
B(1-fx

B)p5Hb – p6Db 

dHb/dt = p7B – p5Hb 



The rates p1 to p7 were obtained from 1/T1 to 1/T7. The recruitment rate of followers 
becoming foragers for A or B, fl

A and fl
B were defined as the likelihood of encountering a 

dancing dancer 

fl
A = τADa/(τADa + τBDb) and fl

B = τBDb/(τADa + τBDb )  

with τi representing the proportion of time at the dance floor spent in dancing. It was 
calculated as the product of the average number of dance circuits and the average circuit time, 
divided by the total time a bee is in compartment Di (thus T2 or T6). 

Our implementation produced the same behaviour as depicted in Camazine & Sneyd 1991 
figure 4, when after 4 hours the sugar solutions in the feeders are switched (Fig. R1). 

 

 

Figure R1. Number of bees foraging on each of the two feeders (dancers + unloaders + 
foragers at a source), and the number of dance followers. 

 

Translating model coefficients 

The coefficients listed above can be linked to the coefficients in the foraging model in the 
following way. The model of Camazine & Sneyd (1991) can also be simplified without 
modifying its behaviour by taking the compartments A and Ha (and B and Hb, etc) together 
and summing the times T1 and T3 to get the new rates.  

Thus, T1 + T3 = ttrip + tUD – tD 

In our foraging model we assume tUD is constant. Simplifying the model of  (Camazine & 
Sneyd 1991) we also assume that tD is constant, and thus, implicitly, that tU is constant. In 
reality tU may decrease with increasing sugar content of the resource, while tD may increase 
with resource quality. Because we are dealing mostly with attractive resources (high NEE) we 
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set T2 = tD to 2 minutes, the maximum value for the most attractive resource in Camazine & 
Sneyd 1991. With a tUD of 3 minutes, this implies that time unloading tU is assumed to be 1 
minute (the minimum value for the most attractive resource in Camazine & Sneyd (1991). 

In our model NEE is assumed to define the attractiveness of a resource. Therefore we need to 
define fx, the probability of abandoning the resource, and fd, the probability of dancing for the 
resource, as functions of NEE: fx(NEE) and fd(NEE). To obtain values for fx and fd we need 
an estimate of NEE for the feeders in the experiment. Concentrations were 0.75 mol/L and 2.5 
mol/L. With molecular weight of succrose 342 g, these are equivalent to 257 g/L and 856 g/L, 
and approximately 0.20 and 0.46 g sugar per g nectar. 

For the feeders at 400 m distance energy expenditure EE, ignoring costs at the feeder, is thus 
(eq. 5) D * (eU+eL) / v  = 400 * (0.037 + 0.075) / 4.17 = 10.7 J.  

Energy intake EI (eq. 7) is then 0.20 * 17.2 * 32.5 = 111.8 J and 0.46 * 17.2 * 32.5 = 257.1 J.  

NEE defined as (EI – EE) / EE becomes (111.8 – 10.7)/10.7=9.5 and (257.1 – 
10.7)/10.7=23.0 for the 0.75 mol/L and 2.5 mol/L feeders, respectively. 

We further have to define functions for the dependency of fx and fd on NEE, fitting to these 
two data points. For the probability to dance for a resource we assume a Hill function: 

𝑓𝑓𝑑𝑑(𝑁𝑁𝑁𝑁𝑁𝑁) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝

𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝+ℎ𝑝𝑝
 with exponent p=5 and h (the value for which fd=0.5) set to 13 (see Fig. 

R2). For the probability to abandon a resource we assume an exponential function: 
𝑓𝑓𝑥𝑥(𝑁𝑁𝑁𝑁𝑁𝑁) = 𝑒𝑒−𝑎𝑎∙𝑁𝑁𝑁𝑁𝑁𝑁 with a=0.325 (see Fig. R3). Clearly, with just two data points available, 
a linear relationship could be used as well, in particular for dancing probability (with 
truncation at 1). For abandoning probability we would in such case miss the likely steep 
increase with very low NEE. 

 

 

Figure R2. The Hill function used for the relationship between dancing probability and NEE. 
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Figure R3. The exponential function used for the relationship between abandoning probability 
and NEE. 

 

Camazine and Sneyd (1991) define τi as the proportion of time a bee in compartment Di 
spends in dancing. This τi is the product of (average nr of circuits) and (average circuit time) 
divided by the time in Di. The average nr of circuits Ncirc depends on resource quality. In 
(Becher et al. 2014) is assumed, referring to (Seeley 1994) that  

 Ncirc(NEE) = 1.16 * NEE 

with a maximum value of 117 circuits (referring to (Seeley & Towne 1992)). 

When average circuit time and time in Di are assumed to be constant, τi scales linearly with 
the number of circuits danced, and it is simpler to formulate it as: 

𝜏𝜏𝑖𝑖(𝑁𝑁𝑁𝑁𝑁𝑁) =
min(1.16 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁, 117)

117
 

 

With the relationships and coefficients as described above (unchanged T1, T3 and T2=T6=2.0) 
the implementation based on NEE produces again (as should be expected) in the same 
dynamics (Fig. R4). 
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Figure R4. The NEE-based implementation of the Camazine and Sneyd (1991) model 
produces identical behaviour. 

 

 

Dynamics over multiple hours 

We applied the model over multiple hours. Each hour was a separate run, with the initial 
number of followers set to 100 (this was varied in a simple sensitivity analysis), and with the 
initial number of dancers (D) and foragers (F here representing foraging & unloading bees) 
copied from the final state of the previous run (if the resource was also present in the previous 
run). The relative values of bees exploiting resource i given by ri = Di+Fi / Σ(Dj+Fj) at the end 
of each run were used in the foraging model as the number of active foragers exploiting each 
resource (so ri multiplied by the assumed number of active foragers in this same hour). 
Figures R5 and R6 show how this could work out for ri in an actual simulation of the foraging 
model. 

The constant number of followers at the start of each hour defines a kind of turn-over rate for 
foragers, with larger values speeding up the dynamics and thereby increasing the differences 
between resources faster. Non-constant numbers could be used, when data are available on the 
actual fluctuating numbers in a real hive. Comparison of the results for all scenarios with the 
number of followers set to 50 and to 200 instead of 100 showed that the impact of this 
parameter was small (Fig. S12), with slightly less patches exploited over the day when the 
parameter was large and the process of focussing on the best patches faster (Fig. S13) 
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Figure R5. The numbers (F+D) of bees exploiting a resource, in case of 4 resources, as 
simulated by the recruitment model. 

 

Figure R6. The fraction of the active foragers pool dedicated to each of 4 resources (values as 
in figure R5) with the dots (only displayed for resource 2) representing the values that are 
actually used in the foraging simulation. With this approach the same number of active 
foragers each hour is used as in the “single-optimal” version of the model. 
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Futher assumptions 

The minimum NEE for resources to be considered was set to 20, implying that energetic net 
profit (gain – cost) had to be 20 times the cost. For the “Alternative Fields” scenarios lower 
values worked well. However, for the other two scenarios, where numerous high quality field 
margins or off-field habitats could be present, this led to too large and unrealistic numbers of 
resources being considered in the recruitment model. Therefore a minimum NEE was set to 
20 (as is also an option in the BEEHAVE model (Becher et al. 2014)). 
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