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section S1. Analysis of pump fluence–dependent fluorescence measurements 

Let n be the density of fluorophores in a thin film of fluorescent material, n1(t) the density of 

excited state fluorophores and n0(t) = n - n1(t) the density of non-excited fluorophores. In 

general, the temporal evolution of n1 can be described by 

 

                                         
𝑑𝑛1(𝑡)

𝑑𝑡
= 

𝐼𝑝(𝑡)𝜎

ℎ𝜐𝑝
𝑛0(𝑡) − 𝑘𝑛1(𝑡) − 𝛾𝑛1(𝑡)

2                                           (1) 

 

where Ip(t) and υp are the intensity and frequency of the pump light, h is Planck’s constant, σ is 

the absorption cross section of the fluorophores, k = 1/τ is the decay rate or inverse excited state 

lifetime of the fluorophore, and γ is the bi-molecular quenching constant. 

 

We numerically solved Eq. 1 for a pump pulse with a Gaussian temporal profile, a FWHM pulse 

duration of tp = 7 ns and pump fluences between 10-6 and 10-1 J/cm2. The fluorescence intensity 

at each point in time is proportional to n1(t). Integrating n1(t) over the entire length of the pulse 

thus provides a measure of the total fluorescence generated. Figure 1 shows the dependence of 

∫n1(t)dt on pump fluence E. One can clearly distinguish the region of linear increase at lower 

fluence (here, emission is the dominant channel by which excitons decay) and a region with 

square root type increase at higher fluence (here, the dominant channel of exciton decay is 

through exciton-exciton annihilation). The pump fluence E0 at which the slope changes is the 

point where the rates for radiative decay and exciton-exciton annihilation are equal, i.e. 

 

                                                               𝑘𝑛1(𝑡) =  𝛾𝑛1(𝑡)
2                                                         (2) 

 

To estimate the exciton-exciton annihilation rate constant from E0, we solved Eq. 1 analytically 

which can be readily done if one assumes constant pump light intensity, i.e. Ip(t) = Ip,0. The 

steady state limit of this analytic solution is given by 
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Using the same argument about the fluorescence being proportional to n1(t) as above, lim
𝑡→∞

𝑛1(𝑡) 

also provides a measure of the generated fluorescence. Furthermore, as shown in fig. S1, 

lim
𝑡→∞

𝑛1(𝑡) derived from the analytical solution and ∫n1(t)dt from the numerical solution show 

nearly identical dependence on pump fluence, if Ip,0 = E/tp is taken as steady state pump light 

intensity. Taking E = E0 and inserting Eq. 3 into Eq. 2, we can therefore obtain the effective 

annihilation rate constant kXX of the material 
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This expression only depends on the pump fluence E0, at which exciton-exciton annihilation 

becomes dominant, on the wavelength and duration of the pump pulses and on the absorption 

cross section and excited state lifetime of the fluorophore. The latter two are known for eGFP 

and for the TDAF molecule studied here; they can also be measured relatively easily for most 

other materials. Using for eGFP, τeGFP = 3.3 ns and σ(λ=470 nm) = 2.1×10-16 cm2 (Ref. (22)), we 

obtain kXX,eGFP = 2.4×109 s-1. For the TDAF used as a reference, we have τTDAF = 0.89 ns and 

σ(λ=355 nm) = 1.4×10-15 cm2 (Ref. (29)) giving kXX,TDAF = 6.1×1010 s-1. 

 

 

 

 

 

fig. S1. Modelling of bimolecular exciton-exciton annihilation. Dependence of numerical 

solution of Eq. 1 (squares) and of analytical solution for steady state case (dashed black line) on 

pump fluence. Red lines are guides to the eye. 

 

  



section S2. Transfer matrix and coupled oscillator matrix calculations 

In order to model the uncoupled photonic system formed by the highly reflective dielectric 

mirrors, transfer-matrix calculations of a microcavity filled with a passive, non-absorbing 

material were performed, i.e. the material had no excitonic contribution. The sample structure 

consisted of a 1mm-thick SiO2 substrate with 14 pairs of alternating SiO2 (73 nm) and Ta2O5 (59 

nm) layers on top forming the bottom dielectric mirror, followed by a 500-nm-thick eGFP layer, 

an air gap with variable thickness and an identical dielectric mirror on top. The central 

wavelength of the mirrors was λ = 532 nm. The overall cavity thickness is the sum of the 

thicknesses of the eGFP layer and the gap above. The refractive index of eGFP was assumed to 

be neGFP = 1.51. 

 

 

 

fig. S2. Reflectance of a passive microcavity. Thickness- (left) and angular-dependent (right) 

calculated reflectance of a microcavity consisting of identical top and bottom dielectric mirrors 

(14 pairs SiO2/Ta2O5, 532 nm central wavelength), a passive non-absorbing eGFP layer (500 nm 

thickness) and an air gap of varying thickness. The black arrow indicates the cavity thickness 

assumed for the angular-resolved reflectance map, d = 3240 nm. 

 

The reflectance of this structure was calculated as a function of the overall cavity thickness and 

the emission angle. The results are shown in fig. S2 (the thickness-dependent reflectance is 

shown for normal incidence). Cavity modes show mode quality factors up to Q = 50,000. By 

changing the cavity thickness, the spectral position of the confined cavity modes shifts across the 

stop band of the dielectric mirrors since the conditions for constructive interference change. By 

contrast, the Bragg modes of the dielectric mirrors are not subject to these shifts as their position 

is given by the structure of the mirror itself. Since the mirror distance is a multiple n of the 

central wavelength of the dielectric mirrors, fig. S2 shows several cavity modes with different 

mode numbers CMn. Note that cavity modes can have half-integer mode numbers since 

constructive interference between the dielectric mirrors arises for every λ/2. 

 



The angular-dependent reflectance of the passive eGFP microcavity shows a blueshift of all 

photonic resonances with increasing angle because of their photonic dispersions. Note that the 

Bragg modes (BMn) show a less pronounced blueshift, which is due to their different photonic 

confinement. 

 

In order to extract the excitonic and photonic fractions of exciton-polaritons, we determined the 

Hopfield coefficients n by using the following equation 
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with EX1, EX2 being the excitonic energies, V1, V2 the coupling constants, Eph,n the uncoupled 

photon energies and ELPn the eigenvalues of the matrix. The squares of the entries of the 

eigenvectors (α, β, γ1, …, γn) are the exciton/photon content for each polariton eigenstate. For 

our system, we limited the number of cavity modes to n = 10.  

 

Figure S3 shows the calculated excitonic fractions α2 and β2 as a function of cavity thickness 

(left) and emission angle (right). With increasing cavity thickness, the cavity modes shift to 

smaller energies, thus affecting the coupling mechanism. As a consequence, the polariton states 

also shift to smaller energies. By changing the cavity thickness, the respective polariton 

eigenvalues in fig. S3 were tuned across the entire spectral range of interest (from 550 nm to 450 

nm). As an example, one of the photonic fractions (γ7
2) is also shown in fig. S3 (black line). The 

excitonic fractions α2 and β2 exhibit two maxima that are related to the excitonic transitions X1 

(at 3750 nm) and X2 (at 3600 nm). When tuning the cavity to the optimal thickness for 

condensation (around 3500 nm in this case), the excitonic fractions are smaller indicating that the 

polariton condensate has a substantial photonic character. The photon fraction of the condensed 

polaritons is ~86% at zero emission angle. Increasing the emission angle (fig. S3, right) increases 

the excitonic fraction of the polariton mode, which is due to the polariton dispersion-induced 

blueshift of the lower polariton branch and the subsequent crossing of the excitonic transitions 

X1 and X2. 

 



 

 

fig. S3. Hopfield coefficients. Thickness- (left) and angular-dependent (right) calculated 

Hopfield coefficients α2, β2 and γ7
2 of the microcavity described above. The Hopfield coefficients 

were calculated by using Eq. 5 with coupling coefficients V1 = 97 meV and V2 = 46 meV. The 

angular-dependent Hopfield coefficients represent excitonic and photonic fractions of the 

polariton state LP2. 

  



sectionS3. Excitation-dependent zero-momentum emission of the eGFP microcavities 

Figure S4 shows the non-normalized spectra of the microcavity emission at zero emission angle 

for different excitation powers. Like the angular-resolved luminescence maps shown in Fig. 3 of 

the main manuscript, the different spectra show the condensation of the polariton mode LP2 (16 

nJ, blue line), the interaction-induced blueshift of the condensate (25 nJ, grey line), the 

disappearance of the condensate at excitation powers >50 nJ and the subsequent onset of the weak 

coupling regime (110 nJ, red line) as well as photon lasing (198 nJ, light grey line). 

 

 

 

fig. S4. Zero-momentum emission of eGFP-filled microcavity under nanosecond optical 

excitation. Excitation powers are given in the upper left corner. The spectral positions of 

polaritonic (LPn) and photonic (CMn) transitions are indicated by vertical dashed and dotted 

lines, respectively. 

 

Note that the derived pump pulse energy threshold value for the onset of polariton lasing (P1 = 

12 nJ) relates to a peak excitation power density of 3.4 MW/cm2 and an excitation flux of 24 

mJ/cm2 (taking into account an excitation spot of 8 μm and pulse lengths of 7 ns).  

 

 

  



section S4. Thermalization of the polariton emission 

Figure S5 shows the distribution of the polariton occupancy along the dispersion LP2 for 

different pump fluences (c.f. Fig. 3 in main text for definition of LP2). The occupancy is 

corrected for the energy-dependence of the density of states at different momentum values (also 

accounting for the change of polariton character along the dispersion) and is normalized. The 

data was then fitted using a Boltzmann distribution 

 

𝐼 ∝ exp(−
𝐸𝐿𝑃2 − 𝐸𝐿𝑃2(𝑘 = 0)

𝑘𝑏𝑇
) 

 

This yielded effective polariton temperatures of 757 K, 373 K and 315 K for excitation densities 

0.1 P1, 0.9 P1 and 1.0 P1, respectively. For excitation near the condensation threshold, the 

determined polariton temperature is close to the room temperature value, meaning that polaritons 

are fully thermalized. However, we emphasize that even close to condensation threshold the 

polariton occupancy rather follows a Maxwell-Boltzmann-like behavior than a Bose-Einstein 

distribution (indicated by the absence of Bose narrowing close to the dispersion minimum). From 

this, we conclude that our system is in a non-equilibrium state (31, 32). Thermal equilibrium for 

a polariton condensate was experimentally observed in long-lived microcavities (33). 

 

 

 

 

fig. S5. Energy dependence of occupation of the LP2 polariton branch for different excitation 

densities. Boltzmann-fits to the data reveal temperatures of 757 K, 373 K and 315 K for 

excitation densities of 0.1 P1, 0.9 P1 and 1.0 P1, respectively. Above threshold (1.2 P1), the 

intensity is drastically enhanced towards to the ground state (at 2.4 eV) while maintaining the 

same high-energy tail as for P = 1.0 P1. 

  



section S5. Polarization of the condensate 

Bose-Einstein condensation is accompanied by symmetry breaking which manifests itself in a 

condensate polarization that is pinned to the polarization of the excitation laser. In order to verify 

the process of polarization pinning, we examined the polarization-dependent response of the 

microcavity filled with eGFP under fixed polarization of the excitation beam (parallel to the 

entrance slit of the spectrometer, 0°→180°). While the microcavity emission shows no 

polarization-dependence at all in the linear regime (P < P1; fig. S6, left), a clear pinning is 

observed for the polariton condensate (P1 < P < P2; fig. S6, right). Since the dipoles of the eGFP 

fluorophores have a random orientation, only fluorophores with a significant dipole moment 

parallel to the linearly polarized excitation laser are excited during pumping. As pointed out in 

Ref. (10), depolarization due to Förster energy transfer is much slower than the onset of 

condensation leading to the preservation of the excitation polarization in the condensate. Note 

that the polarization dependence in fig. S6 is different from Fig. 3 in the main manuscript where 

we excited the microcavity with unpolarized light and detected the emission only for TE-

polarization. 

 

 

 

 

fig. S6. Polarization pinning of the condensate. Polarization-dependent integrated intensity of 

the microcavity emission below condensation threshold (left) and above (right). The red line 

indicates the linear polarization plane of the excitation laser. 

  



section S6. Spatial coherence of the polariton condensate 

We measured the spatial coherence of the polariton condensate by using a Michelson 

interferometer in mirror-retro-reflector configuration: the real-space luminescence image from 

the microcavity is split by a 50:50 beam splitter into two arms. One arm is directed towards a 45° 

retro-reflector flipping the image and reflecting it back to the beam splitter. The other arm is 

directed towards a plane mirror that is mounted on a piezo-controlled linear translation stage. In 

this way, the image of the sample and its reversed image interfere with each other at the output 

of the beam splitter where a high-resolution imaging CCD camera records the incident 

interference patterns. The position of the plane mirror is tuned to maximize fringe contrast. 

Examples of the resulting interference patterns are shown in fig. S7, for excitation powers below 

(A) and well above condensation threshold P1 but still below photon lasing threshold (B). The 

images are single-shot measurements (excited by a single 7 ns pulse at 460 nm) and the emission 

is passed through edge pass filters to only show the 500-600 nm range. The laser spot is 

indicated by white dashed ellipses in fig. S7 (half the peak power of the Gaussian excitation 

beam). Whereas the pattern does not show any significant structure below threshold, clear 

fringes are evident above threshold providing evidence for the presence of coherence across the 

spatial extend of the condensate. Note that in fig. S7B, the lateral extension of the interference 

fringes is wider than the excitation spot. Since the system is pumped well above threshold and 

the dashed line indicates half the peak power of the excitation beam, we assign this to coherence 

contributions from sample areas that are still pumped above threshold but are outside the marked 

area. [Given the 0.55 numerical aperture of the used imaging system, we believe that the increase 

in size is unlikely to reflect a limit of the point-spread function of the imaging system (34).] 

Furthermore, the interference fringes occasionally show fork-like dislocations (see white circle in 

fig. S7). 

 

 

 

fig. S7. Spatial coherence of eGFP polariton condensates. Single-shot, real-space Michelson 

interferograms of an eGFP microcavity excited below (A) and above (B) condensation threshold 

P1. The image is spectrally filtered by using 500 nm long-pass and 600 nm short-pass filters. The 

white circle in the right image indicates a fork-like dislocation of the interference fringes. Scale 

bars, 5 μm. 


