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1. Extended q-space map 

To examine whether there are significant replication of QPI features to Bragg peaks higher than 

the first, we have taken a high resolution dI/dV map (pixel per 0.5Ȧ, corresponding topography in 

fig. S1a). The q-space field of view we obtain contains 3rd order Bragg peaks. We indeed confirm 

that replications of QPI features are detected around q=0 and the 1st Bragg peak only (fig. S1b). 

 

fig. S1. Extended q-space map. (a) Topographic image taken during measurement of a high-

resolution dI/dV map (pixel per 0.5 Ȧ). (b) Fourier transform of a dI/dV map measured over the 

region in left panel. No QPI signatures detected around Bragg peaks higher than the 1st order. 

 

2. dI/dV maps: Raw data and symmetrization 

We make use of the mirror symmetry of the crystal in order to enhance the signal to noise ratio of 

the QPI data, in which the mirror symmetry is commonly diminished due to small anisotropies in 

the rastering mechanism. Figure S2 shows the same map of fig. S1, in other energy values, after 

mirroring (and rotation). For each data set used we confirm that no features are added or 

eliminated by the mirroring procedure. We note that a leaf-like pattern about q~0 does not repeat 

at all energies (e.g., fig. S2II-c,d), as would be the case had it originated from some long-

wavelength modulations due to an underlying inhomogeneous potential. 
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fig. S2I. Raw dI/dV maps. (a-o) Raw Fourier transformed dI/dV maps at different energies. All 

features discussed appear in the raw data. 

 

.  

fig. S2II. Mirroring of QPI maps. (a-o) to enhance the symmetric features based on the mirror 

symmetry of the crystal the raw QPI maps were first rotated to align the Bragg peaks, and 

mirrored around a mirror axis taken along two opposite Bragg peaks. No features were artificially 

added or eliminated during this procedure. Mirror symmetry broken mainly by minute anisotropy 

in the scanning mechanism is restored. 

  



3. Fermi arc scattering signature 

An additional data-set taken over a different region (with respect to the one shown in Fig. 1 of the 

main text) on the surface of the same sample show the leaf-like patterns that we associate with 

scattering involving Fermi-arcs. This demonstrates that this feature is not due to a specific 

realization of a vacancy distribution or any other local parameter, but rather a property of the 

interfering electrons. 

 

fig. S3. QPI pattern involving Fermi-arc scattering from a different vacancy distribution. 

(a) Topographic image showing the local distribution of As vacancies over which the presented 

dI/dV map was taken. (b) Fourier transform of that dI/dV map showing a leaf-like pattern similar 

to that of Fig. 1F. Momentum resolution is somewhat lower due to smaller spatial field of view 

imaged. 

 

4. Agreement between vacancy- and step edge–induced QPI 

The step edge that we measure is oriented 49o relative to the -X crystallographic direction (see 

Fig. 2A). The Fourier transform of the 1D interference pattern that we measure due to scattering 

off this step edge at the Fermi energy (EF) perfectly agrees with 2D QPI pattern (along the same 

cut) that we measure off vacancies at the corresponding energy. 
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fig. S4. Agreement between vacancy- and step edge–induced QPI. (a) 3D plot presenting the 

line cut’s QPI data in the vertical plane crossing the horizontal 2D vacancy induced QPI map at 

the right angle (49o) and energy (0meV). It shows the correspondence between the identified 

features in the 2D QPI pattern – namely, ellipse at q=0 and squares at zone edges – and their 

dispersion. (b) corresponding SSP. 

 

 

5. Fermi arc dispersion 

The extent of the Fermi-arcs in momentum space decreases as the Weyl node is approached. At 

the energy of W2 the arc locus becomes almost a straight line connecting the pair of nodes. As a 

result , at the Weyl energy, the shortest q vector in the QPI pattern  involving the Fermi arcs 

results from scattering between k values in the vicinity of the Weyl nodes. As a consequence it 

represents the distance between the Weyl nodes.    
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fig. S5. Calculated Fermi arc dispersion. Fermi-arc extent shrinks as the W2 Weyl node’s 

energy (~2meV above Fermi energy) is approached. 

 

6. Correlation between scatterer-free dI/dV modulations and replications of QPI patterns 

The QPI patterns that we observe near scatterers show clear replications of several patterns 

around adjacent Bragg peaks, while the spatial maps of local density of states in scatterer-free 

regions show oscillations on the scale of a unit cell. Both of these phenomena reflect the 

interaction of the electrons with the periodic lattice potential.  

Bloch theorem constrains a state with a crystal momentum 𝑘 to be a super-position of momenta 

𝑘 + 𝐺, where 𝐺 is a vector in the two dimensional reciprocal lattice, Ψ𝑘(𝑟) = ∑ 𝐶𝐺
𝑘𝑒𝑖(𝑘+𝐺)∙𝑟

𝐺 .  

Consequently, the local density of states 𝜌(𝐸, 𝑟) =  ∑ |Ψ𝑘(𝑟)|2𝛿(𝐸 − 𝜖𝑘) 𝑘 in a vacancy-free 

region becomes  𝜌(𝐸, 𝑟) = ∑ 𝐴𝑔𝑒𝑖𝑔∙𝑟
𝑔    where 𝐴𝑔 = ∑ 𝐶𝐺

∗𝑘𝐶𝐺+𝑔
𝑘 𝛿(𝐸 − 𝜖𝑘)𝐺,𝑘  is the amplitude of 

the Bragg peak that corresponds to 𝑔 = 𝐺 − 𝐺′, the position is denoted by r , the energy by E, and 

Ek the energy of the state with momentum k. A state with multiple significant coefficients 𝐶𝐺
𝑘 is 

generally a state with a fine structure within the unit cell.  

A vacancy violates the periodicity and adds a potential V(r), whose Fourier transform is Vq. A 

realistic Gaussian-like impurity potential with a scale 𝜆 < 𝑎 (where a is the lattice constant) 

would yield a QPI pattern that is gradually attenuated with increasing momentum, with a 

characteristic decay momentum of 2π/λ. While we do not know the details of the potential, it is 

reasonable to expect that it allows momentum transfer that extends beyond 2π/a. The vacancy 

may scatter an electron from a state Ψ𝑘(𝑟) to a state Ψ𝑘′(𝑟) through a series of momentum 

transfers qg satisfying 𝑞𝑔 = 𝑘 − 𝑘′ + 𝑔. The amplitude for each such process is proportional, 

within the Born approximation, to ∑ 𝑉𝑞𝑔
𝐶𝐺′+𝑔

∗𝑘 𝐶𝐺′
𝑘′

𝐺′ . Hence, multiple significant coefficients 𝐶𝐺
𝑘 

result in multiple replicas of the QPI around several Bragg peaks (30), limited by the ability of the 

potential to provide the required momentum transfer.  The QPI pattern at momentum q, which is 



the Fourier transform of the local density of states, sums all the scattering processes that involve a 

momentum q, provided that both Ek and Ek’ are identical to the energy being probed.  

The QPI pattern that we measure for the non-topological states is highly anisotropic in a band 

selective manner (bowtie strongly replicated in -X, ellipse in -Y), highly dispersive, non-

monotonic in q (patterns at Bragg peaks are sometimes more intense than the one at q=0, see Fig. 

4A) and sharply changing at high q (note ellipse pattern at Bragg peak half intense, half faint). All 

these are consistent with the wave functions having several significant Bloch components. The 

spatial modulations in the scatterer-free regions lend further support to this interpretation. An 

alternative explanation by which the replicated structure of the QPI emerges from properties of 

the scattering potential requires an elaborate fine tuning of the potential. As the next subsection 

shows, the wave function structure that we extract from the QPI pattern is also consistent with the 

theoretical calculations.  

 

7. Correspondence between QPI patterns and Bloch wave function 

From Fig. 4A we conclude that at low energies the bowtie QPI appears in comparable intensities 

at q=0 and around the Bragg peak. At somewhat higher energies (-70meV <E< 80meV) the 

Bragg peak pattern dominates, while at yet higher ones the q=0 pattern becomes dominant. The 

ellipse appears with comparable intensities around these two q values at most energies at which 

this band exists. We further note that around Bragg peaks both the ellipse and the bowtie appear 

relatively intense at q<G and fainter at q>G. We have not detected any signature of replications 

for the Fermi arcs, which probably means their wavefunction contains a single dominant Bloch 

term, or several components whose momentum difference is larger than the scale of momentum 

of the potential.  

We now demonstrate how the calculated structure of the Bloch wavefunction of the different 

bands can reproduce these features. We first show in fig. S6 calculated Bloch coefficients of the 

three bands at energy -100meV and at a single momentum (point 6 in inset). Remarkably, we 

indeed find that both the ellipse and the bowtie wavefunctions are constructed from two main 

Bloch terms of adjacent G values. For the ellipse these are G0,0 G0,-1 (the subscripts refer to the 

number of reciprocal basis vectors in the x and y directions), while for the bowtie we find G0,0 

and G-1,0. Indeed in the vacancy-free dI/dV map we find modulations in the -Y at energies where 

the ellipse band dominates, and modulation in the -X direction when the bowtie band dominates 

the dI/dV map. In contrast, for the Fermi arc we find a Bloch wavefunction which is strongly 

dominated by a single term - G0,0. Hence, it is never replicated to higher Bragg peaks, and unlike 

dangling-bond derived trivial bands, it is weakly modulated by the surface potential.  



 

fig. S6I. Structure of the Bloch wave function of the different bands. Coefficients of the 

Bloch wave function calculated by DFT for the ellipse, bowtie and Fermi arc bands (left to right) 

at E=-100meV and k marked by points 6,8,1, respectively, at inset. It shows the anisotropy of the 

Bloch wave function of the ellipse and bowtie bands along -X and -Y respectively as they have 

dominant G’s along these directions in addition to the dominant G=0 terms. In contrast, the 

Fermi-arc wavefunction is composed of a single dominant G, and several evenly distributed 

subdominant coefficients reflecting its extended isotropic nature. 

From this distribution of coefficients of the ellipse, for instance, one can construct a rough picture 

of the wave functions in the range of momenta that covers nine Brillouin zones as shown in fig. 

S6II (left), where color represents the intensity of Bloch coefficient in fig. S6I with matching 

color (i.e. gray – strong, orange – intermediate, pink – weak but finite). The intensity of the 

various instances of the QPI pattern can be read off from this information by multiplying the 

intensities of the initial and final wave numbers. Accordingly the strongest QPI signal originates 

from scattering between states for which 𝑘𝑥 ≈ ± |
𝜋

𝑎
− 𝛿𝑘| (with a small 𝛿𝑘) and  𝑘𝑦 ≈ 0 . This 

scattering appears around the -Y Bragg peak. Since only the internal halves of the ellipse band 

have strong Bloch coefficients only half an ellipse will appear strong in that QPI pattern, as 

indeed seen at the QPI pattern fig. S6II (right) . The next dominant QPI pattern would arise from 

scattering between  𝑘𝑥 ≈
𝜋

𝑎
± 𝛿𝑘 (with a small 𝛿𝑘) and  𝑘𝑦 ≈ 0 (gray to orange) and would 

generate the slightly weaker QPI pattern at q=0. Next contribution comes from scattering between 

momenta at the remote zones on either side of the central one (orange to orange) which 

contributes the faint external halves of the QPI pattern at the -Y Bragg peak. These are hardly 

seen in the QPI shown in fig. S6II (right), but detected at other energy cuts as in the Fermi energy 

EF (Fig. 1C). The faintest ellipse QPI pattern we still track would come from momentum transfer 

along the y axis, between states where  𝑘𝑥 ≈
𝜋

𝑎
± 𝛿𝑘 (with a small 𝛿𝑘) and  𝑘𝑦 ≈ 0 to states 

where  𝑘𝑥 ≈
𝜋

𝑎
+ 𝛿𝑘 (with a small 𝛿𝑘) and  𝑘𝑦 ≈ ±

2𝜋

𝑎
  (gray to red). The QPI signal of this event 

appears at the -X Bragg peak (barely observed in Fig. 1C). A similar analysis may be carried out 

for QPI patterns of other bands.  
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fig. S6II. Correspondence between calculated Bloch wavefunction and the QPI pattern. Left 

layout of momentum space, centered around zero momentum, where color of the different zones 

mark the intensity of their associate coefficient in the Bloch wave function of the ellipse band 

shown in fig. S6I. The intensity of the QPI pattern around a given Bragg peak g=G-G’ is 

correlated with the intensity of the multiplication of the Bloch coefficients of the relevant 

scattering process 𝐶𝑘,𝐺𝐶𝑘+𝐺′,𝐺′
∗ . Right: QPI pattern at corresponding energy (-100meV). 

Replications of the ellipse (as well as bowtie) band appear with matching intensities. 

 

8. Band structure calculations  

The ab-initio density-functional theory calculations were performed in the generalized-gradient 

approximation level with spin-orbital coupling, which is implemented in the Vienna ab initio 

simulation package (VASP; 36). To simulate the surface, a slab model with a thickness of seven 

unit cells was constructed, in which the top and bottom surface are terminated by As and Ta, 

respectively. The surface band structures and the Fermi surface were projected to the first unit 

cell of the As-terminated side, which fits the previous experimental band structure well (13). 
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fig. S7. Wavefunction distribution. Ab-initio calculation of the wavefunction equal density 

surface calculated for the ellipse band (left) and Fermi arc (right) at -100meV and arbitrary k-

value.The Fermi arc’s density profile is smoother and isotropic compared to the elipse’s 

distribution. 

 

9. Extracting the intensity of QPI features 

In Fig. 4A we plot the average intensity across the ellipse and bowtie around q=0 and Bragg 

peaks. To extract these intensities we have manually defined the maximal bounding box around a 

quarter of each feature such that will not contain neighboring features. We then averaged over the 

30 highest maxima within the bounding box making sure that these maxima indeed fall on the 

feature of interest and not on a spurious high intensity pixel. From this value we have subtracted 

the average background in the vicinity of the box (note that the background level is more than an 

order of magnitude weaker than the intensity of the features, and therefore had little effect on the 

resulting value). We have repeated this procedure around the Bragg peak by translating the 

bounding box by a reciprocal wave vector such that the bounding box is defined once per feature. 

For the subtraction of the Bragg peak QPI from the q=0 one we have constructed the multiple 

zone boundaries based on the atomic Bragg peaks, and subtracted the average of two zones 

centered about opposite Bragg peaks, normalized to the average intensity of the feature to be 

eliminated in the central q=0 zone. 



 

fig. S8. Extraction of QPI feature intensities. We average over 30 pixels of maximal intensity 

within a predefined bounding box   

 

10. Splitting the line-cut dI/dV into submaps 

In Fig. 2 we split the measured dI/dV line-cut map (Fig. 2B) into two separate submaps, one 

contains the dI/dV features measured on As sites (Fig. 2E) and the other on Ta (Fig. 2F). Figure 

2B already shows the dI/dV after the DC term has been removed (by subtracting the average 

dI/dV value at each energy). As a result false color shows position with intensity larger than the 

average (blue) and smaller (red). We find perfect correlation between the atomic sites in the 

topographic profile displayed at the bottom and the large/small intensity pattern. Accordingly the 

sign of the flattened dI/dV corresponds to being on/off atomic sites. We then split this map 

gathering locations with low and high intensities separately, which forms Fig. 2E,F. Since the 

distribution of these points is regular this amounts to lowering the sampling resolution for each 

submap. The lower spatial resolution results in smaller field of view in q-space. However, it 

allows to separate overlapping low-q features into those residing on/off As sites. Note, that the 

sum of the Fourier-transformed submaps (Fig. 2G,H) does not yield that of the complete map 

since the relative phase information is lost when displaying the magnitude of the Fourier 

decomposition. 


